#include "Globals.h" // NOTE: MSVC stupidness requires this to be the same across all modules #include "Noise.h" #if NOISE_USE_SSE #include //_mm_mul_epi32 #endif #define FAST_FLOOR(x) (((x) < 0) ? (((int)x) - 1) : ((int)x)) NOISE_DATATYPE CubicInterpolate(NOISE_DATATYPE a_A, NOISE_DATATYPE a_B, NOISE_DATATYPE a_C, NOISE_DATATYPE a_D, NOISE_DATATYPE a_Pct) { NOISE_DATATYPE P = (a_D - a_C) - (a_A - a_B); NOISE_DATATYPE Q = (a_A - a_B) - P; NOISE_DATATYPE R = a_C - a_A; NOISE_DATATYPE S = a_B; return ((P * a_Pct + Q) * a_Pct + R) * a_Pct + S; } class cCubicCell2D { public: cCubicCell2D( cNoise & a_Noise, ///< Noise to use for generating the random values NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, ///< Count of the array, in each direction const NOISE_DATATYPE * a_FracX, ///< Pointer to the array that stores the X fractional values const NOISE_DATATYPE * a_FracY ///< Pointer to the attay that stores the Y fractional values ); /// Uses current m_WorkRnds[] to generate part of the array void Generate( int a_FromX, int a_ToX, int a_FromY, int a_ToY ); /// Initializes m_WorkRnds[] with the specified Floor values void InitWorkRnds(int a_FloorX, int a_FloorY); /// Updates m_WorkRnds[] for the new Floor values. void Move(int a_NewFloorX, int a_NewFloorY); protected: typedef NOISE_DATATYPE Workspace[4][4]; cNoise & m_Noise; Workspace * m_WorkRnds; ///< The current random values; points to either m_Workspace1 or m_Workspace2 (doublebuffering) Workspace m_Workspace1; ///< Buffer 1 for workspace doublebuffering, used in Move() Workspace m_Workspace2; ///< Buffer 2 for workspace doublebuffering, used in Move() int m_CurFloorX; int m_CurFloorY; NOISE_DATATYPE * m_Array; int m_SizeX, m_SizeY; const NOISE_DATATYPE * m_FracX; const NOISE_DATATYPE * m_FracY; } ; cCubicCell2D::cCubicCell2D( cNoise & a_Noise, ///< Noise to use for generating the random values NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, ///< Count of the array, in each direction const NOISE_DATATYPE * a_FracX, ///< Pointer to the array that stores the X fractional values const NOISE_DATATYPE * a_FracY ///< Pointer to the attay that stores the Y fractional values ) : m_Noise(a_Noise), m_WorkRnds(&m_Workspace1), m_Array(a_Array), m_SizeX(a_SizeX), m_SizeY(a_SizeY), m_FracX(a_FracX), m_FracY(a_FracY) { } void cCubicCell2D::Generate( int a_FromX, int a_ToX, int a_FromY, int a_ToY ) { for (int y = a_FromY; y < a_ToY; y++) { NOISE_DATATYPE Interp[4]; NOISE_DATATYPE FracY = m_FracY[y]; Interp[0] = CubicInterpolate((*m_WorkRnds)[0][0], (*m_WorkRnds)[0][1], (*m_WorkRnds)[0][2], (*m_WorkRnds)[0][3], FracY); Interp[1] = CubicInterpolate((*m_WorkRnds)[1][0], (*m_WorkRnds)[1][1], (*m_WorkRnds)[1][2], (*m_WorkRnds)[1][3], FracY); Interp[2] = CubicInterpolate((*m_WorkRnds)[2][0], (*m_WorkRnds)[2][1], (*m_WorkRnds)[2][2], (*m_WorkRnds)[2][3], FracY); Interp[3] = CubicInterpolate((*m_WorkRnds)[3][0], (*m_WorkRnds)[3][1], (*m_WorkRnds)[3][2], (*m_WorkRnds)[3][3], FracY); int idx = y * m_SizeX + a_FromX; for (int x = a_FromX; x < a_ToX; x++) { m_Array[idx++] = CubicInterpolate(Interp[0], Interp[1], Interp[2], Interp[3], m_FracX[x]); } // for x } // for y } void cCubicCell2D::InitWorkRnds(int a_FloorX, int a_FloorY) { m_CurFloorX = a_FloorX; m_CurFloorY = a_FloorY; for (int x = 0; x < 4; x++) { int cx = a_FloorX + x - 1; for (int y = 0; y < 4; y++) { int cy = a_FloorY + y - 1; (*m_WorkRnds)[x][y] = (NOISE_DATATYPE)m_Noise.IntNoise2D(cx, cy); } } } void cCubicCell2D::Move(int a_NewFloorX, int a_NewFloorY) { // Swap the doublebuffer: int OldFloorX = m_CurFloorX; int OldFloorY = m_CurFloorY; Workspace * OldWorkRnds = m_WorkRnds; m_WorkRnds = (m_WorkRnds == &m_Workspace1) ? &m_Workspace2 : &m_Workspace1; // Reuse as much of the old workspace as possible: int DiffX = OldFloorX - a_NewFloorX; int DiffY = OldFloorY - a_NewFloorY; for (int x = 0; x < 4; x++) { int cx = a_NewFloorX + x - 1; int OldX = x - DiffX; // Where would this X be in the old grid? for (int y = 0; y < 4; y++) { int cy = a_NewFloorY + y - 1; int OldY = y - DiffY; // Where would this Y be in the old grid? if ((OldX >= 0) && (OldX < 4) && (OldY >= 0) && (OldY < 4)) { (*m_WorkRnds)[x][y] = (*OldWorkRnds)[OldX][OldY]; } else { (*m_WorkRnds)[x][y] = (NOISE_DATATYPE)m_Noise.IntNoise2D(cx, cy); } } } m_CurFloorX = a_NewFloorX; m_CurFloorY = a_NewFloorY; } /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // cNoise: cNoise::cNoise(unsigned int a_Seed) : m_Seed(a_Seed) { } #if NOISE_USE_SSE /**************** * SSE Random value generator **/ __m128 cNoise::SSE_IntNoise2D( int a_X1, int a_Y1, int a_X2, int a_Y2, int a_X3, int a_Y3, int a_X4, int a_Y4 ) const { const __m128i X4 = _mm_set_epi32(a_X4, a_X3, a_X2, a_X1); const __m128i Y4 = _mm_set_epi32(a_Y4, a_Y3, a_Y2, a_Y1); const __m128 One4 = _mm_set_ps1( 1.f ); const __m128i YScale4 = _mm_set1_epi32( 57 ); const __m128i i15731 = _mm_set1_epi32( 15731 ); const __m128i i789221 = _mm_set1_epi32( 789221 ); const __m128i i1376312589 = _mm_set1_epi32(1376312589); const __m128i MaskValue4 = _mm_set1_epi32(0x7fffffff); const __m128 f1073741824 = _mm_set_ps1( 1073741824.0f ); const __m128i Seed4 = _mm_mullo_epi32( _mm_mullo_epi32( _mm_set1_epi32( m_Seed ), YScale4 ), YScale4 ); const __m128i ScaledY4 = _mm_mullo_epi32( Y4, YScale4 ); const __m128i n4 = _mm_add_epi32( _mm_add_epi32( X4, ScaledY4 ), Seed4 ); const __m128i nn4 = _mm_slli_epi32( n4, 13 ); const __m128i nnn4 = _mm_xor_si128( nn4, n4 ); const __m128i StepA4 = _mm_mullo_epi32( nnn4, nnn4 ); const __m128i StepAA4 = _mm_add_epi32( _mm_mullo_epi32( StepA4, i15731 ), i789221 ); const __m128i StepB4 = _mm_add_epi32( _mm_mullo_epi32( nnn4, StepAA4 ), i1376312589 ); const __m128i StepC4 = _mm_and_si128( StepB4, MaskValue4 ); const __m128 StepD4 = _mm_div_ps( _mm_cvtepi32_ps( StepC4 ), f1073741824 ); const __m128 Result4 = _mm_sub_ps( One4, StepD4 ); return Result4; } #endif /*************** * Interpolated (and 1 smoothed) noise in 1-dimension **/ float cNoise::LinearNoise1D( float a_X ) const { int BaseX = FAST_FLOOR( a_X ); float FracX = (a_X) - BaseX; return LinearInterpolate( IntNoise( BaseX ), IntNoise( BaseX+1 ), FracX); } float cNoise::CosineNoise1D( float a_X ) const { int BaseX = FAST_FLOOR( a_X ); float FracX = (a_X) - BaseX; return CosineInterpolate( IntNoise( BaseX ), IntNoise( BaseX+1 ), FracX); } float cNoise::CubicNoise1D( float a_X ) const { int BaseX = FAST_FLOOR( a_X ); float FracX = (a_X) - BaseX; return CubicInterpolate( IntNoise( BaseX-1 ), IntNoise( BaseX ), IntNoise( BaseX+1 ), IntNoise( BaseX+2 ), FracX); } float cNoise::SmoothNoise1D( int a_X ) const { return IntNoise(a_X)/2 + IntNoise(a_X-1)/4 + IntNoise(a_X+1)/4; } /****************** * Interpolated (and 1 smoothed) noise in 2-dimensions **/ float cNoise::LinearNoise2D( float a_X, float a_Y ) const { const int BaseX = FAST_FLOOR( a_X ); const int BaseY = FAST_FLOOR( a_Y ); const float tl = IntNoise2D( BaseX, BaseY ); const float tr = IntNoise2D( BaseX+1, BaseY ); const float bl = IntNoise2D( BaseX, BaseY+1 ); const float br = IntNoise2D( BaseX+1, BaseY+1 ); const float FracX = (a_X) - BaseX; const float interp1 = LinearInterpolate( tl, tr, FracX ); const float interp2 = LinearInterpolate( bl, br, FracX ); const float FracY = (a_Y) - BaseY; return LinearInterpolate( interp1, interp2, FracY ); } float cNoise::CosineNoise2D( float a_X, float a_Y ) const { const int BaseX = FAST_FLOOR( a_X ); const int BaseY = FAST_FLOOR( a_Y ); const float tl = IntNoise2D( BaseX, BaseY ); const float tr = IntNoise2D( BaseX+1, BaseY ); const float bl = IntNoise2D( BaseX, BaseY+1 ); const float br = IntNoise2D( BaseX+1, BaseY+1 ); const float FracX = (a_X) - BaseX; const float interp1 = CosineInterpolate( tl, tr, FracX ); const float interp2 = CosineInterpolate( bl, br, FracX ); const float FracY = (a_Y) - BaseY; return CosineInterpolate( interp1, interp2, FracY ); } float cNoise::CubicNoise2D( float a_X, float a_Y ) const { const int BaseX = FAST_FLOOR( a_X ); const int BaseY = FAST_FLOOR( a_Y ); const float points[4][4] = { IntNoise2D( BaseX-1, BaseY-1 ), IntNoise2D( BaseX, BaseY-1 ), IntNoise2D( BaseX+1, BaseY-1 ), IntNoise2D( BaseX+2, BaseY-1 ), IntNoise2D( BaseX-1, BaseY ), IntNoise2D( BaseX, BaseY ), IntNoise2D( BaseX+1, BaseY ), IntNoise2D( BaseX+2, BaseY ), IntNoise2D( BaseX-1, BaseY+1 ), IntNoise2D( BaseX, BaseY+1 ), IntNoise2D( BaseX+1, BaseY+1 ), IntNoise2D( BaseX+2, BaseY+1 ), IntNoise2D( BaseX-1, BaseY+2 ), IntNoise2D( BaseX, BaseY+2 ), IntNoise2D( BaseX+1, BaseY+2 ), IntNoise2D( BaseX+2, BaseY+2 ), }; const float FracX = (a_X) - BaseX; const float interp1 = CubicInterpolate( points[0][0], points[0][1], points[0][2], points[0][3], FracX ); const float interp2 = CubicInterpolate( points[1][0], points[1][1], points[1][2], points[1][3], FracX ); const float interp3 = CubicInterpolate( points[2][0], points[2][1], points[2][2], points[2][3], FracX ); const float interp4 = CubicInterpolate( points[3][0], points[3][1], points[3][2], points[3][3], FracX ); const float FracY = (a_Y) - BaseY; return CubicInterpolate( interp1, interp2, interp3, interp4, FracY ); } #if NOISE_USE_SSE float cNoise::SSE_CubicNoise2D( float a_X, float a_Y ) const { const int BaseX = FAST_FLOOR( a_X ); const int BaseY = FAST_FLOOR( a_Y ); __m128 points4[4] = { SSE_IntNoise2D( BaseX-1, BaseY-1, BaseX-1, BaseY, BaseX-1, BaseY+1, BaseX-1, BaseY+2 ), SSE_IntNoise2D( BaseX, BaseY-1, BaseX, BaseY, BaseX, BaseY+1, BaseX, BaseY+2 ), SSE_IntNoise2D( BaseX+1, BaseY-1, BaseX+1, BaseY, BaseX+1, BaseY+1, BaseX+1, BaseY+2 ), SSE_IntNoise2D( BaseX+2, BaseY-1, BaseX+2, BaseY, BaseX+2, BaseY+1, BaseX+2, BaseY+2 ), }; const float FracX = (a_X) - BaseX; union { __m128 p4; float p[4]; } AllInterp = { CubicInterpolate4( points4[0], points4[1], points4[2], points4[3], FracX ) }; const float FracY = (a_Y) - BaseY; return CubicInterpolate( AllInterp.p[0], AllInterp.p[1], AllInterp.p[2], AllInterp.p[3], FracY ); } #endif /****************** * Interpolated (and 1 smoothed) noise in 3-dimensions **/ float cNoise::CosineNoise3D( float a_X, float a_Y, float a_Z ) const { const int BaseX = FAST_FLOOR( a_X ); const int BaseY = FAST_FLOOR( a_Y ); const int BaseZ = FAST_FLOOR( a_Z ); const float ftl = IntNoise3D( BaseX, BaseY, BaseZ ); const float ftr = IntNoise3D( BaseX+1, BaseY, BaseZ ); const float fbl = IntNoise3D( BaseX, BaseY+1, BaseZ ); const float fbr = IntNoise3D( BaseX+1, BaseY+1, BaseZ ); const float btl = IntNoise3D( BaseX, BaseY, BaseZ+1 ); const float btr = IntNoise3D( BaseX+1, BaseY, BaseZ+1 ); const float bbl = IntNoise3D( BaseX, BaseY+1, BaseZ+1 ); const float bbr = IntNoise3D( BaseX+1, BaseY+1, BaseZ+1 ); const float FracX = (a_X) - BaseX; const float finterp1 = CosineInterpolate( ftl, ftr, FracX ); const float finterp2 = CosineInterpolate( fbl, fbr, FracX ); const float binterp1 = CosineInterpolate( btl, btr, FracX ); const float binterp2 = CosineInterpolate( bbl, bbr, FracX ); const float FracY = (a_Y) - BaseY; const float interp1 = CosineInterpolate( finterp1, finterp2, FracY ); const float interp2 = CosineInterpolate( binterp1, binterp2, FracY ); const float FracZ = (a_Z) - BaseZ; return CosineInterpolate( interp1, interp2, FracZ ); } float cNoise::CubicNoise3D( float a_X, float a_Y, float a_Z ) const { const int BaseX = FAST_FLOOR( a_X ); const int BaseY = FAST_FLOOR( a_Y ); const int BaseZ = FAST_FLOOR( a_Z ); const float points1[4][4] = { IntNoise3D( BaseX-1, BaseY-1, BaseZ-1 ), IntNoise3D( BaseX, BaseY-1, BaseZ-1 ), IntNoise3D( BaseX+1, BaseY-1, BaseZ-1 ), IntNoise3D( BaseX+2, BaseY-1, BaseZ-1 ), IntNoise3D( BaseX-1, BaseY, BaseZ-1 ), IntNoise3D( BaseX, BaseY, BaseZ-1 ), IntNoise3D( BaseX+1, BaseY, BaseZ-1 ), IntNoise3D( BaseX+2, BaseY, BaseZ-1 ), IntNoise3D( BaseX-1, BaseY+1, BaseZ-1 ), IntNoise3D( BaseX, BaseY+1, BaseZ-1 ), IntNoise3D( BaseX+1, BaseY+1, BaseZ-1 ), IntNoise3D( BaseX+2, BaseY+1, BaseZ-1 ), IntNoise3D( BaseX-1, BaseY+2, BaseZ-1 ), IntNoise3D( BaseX, BaseY+2, BaseZ-1 ), IntNoise3D( BaseX+1, BaseY+2, BaseZ-1 ), IntNoise3D( BaseX+2, BaseY+2, BaseZ-1 ), }; const float FracX = (a_X) - BaseX; const float x1interp1 = CubicInterpolate( points1[0][0], points1[0][1], points1[0][2], points1[0][3], FracX ); const float x1interp2 = CubicInterpolate( points1[1][0], points1[1][1], points1[1][2], points1[1][3], FracX ); const float x1interp3 = CubicInterpolate( points1[2][0], points1[2][1], points1[2][2], points1[2][3], FracX ); const float x1interp4 = CubicInterpolate( points1[3][0], points1[3][1], points1[3][2], points1[3][3], FracX ); const float points2[4][4] = { IntNoise3D( BaseX-1, BaseY-1, BaseZ ), IntNoise3D( BaseX, BaseY-1, BaseZ ), IntNoise3D( BaseX+1, BaseY-1, BaseZ ), IntNoise3D( BaseX+2, BaseY-1, BaseZ ), IntNoise3D( BaseX-1, BaseY, BaseZ ), IntNoise3D( BaseX, BaseY, BaseZ ), IntNoise3D( BaseX+1, BaseY, BaseZ ), IntNoise3D( BaseX+2, BaseY, BaseZ ), IntNoise3D( BaseX-1, BaseY+1, BaseZ ), IntNoise3D( BaseX, BaseY+1, BaseZ ), IntNoise3D( BaseX+1, BaseY+1, BaseZ ), IntNoise3D( BaseX+2, BaseY+1, BaseZ ), IntNoise3D( BaseX-1, BaseY+2, BaseZ ), IntNoise3D( BaseX, BaseY+2, BaseZ ), IntNoise3D( BaseX+1, BaseY+2, BaseZ ), IntNoise3D( BaseX+2, BaseY+2, BaseZ ), }; const float x2interp1 = CubicInterpolate( points2[0][0], points2[0][1], points2[0][2], points2[0][3], FracX ); const float x2interp2 = CubicInterpolate( points2[1][0], points2[1][1], points2[1][2], points2[1][3], FracX ); const float x2interp3 = CubicInterpolate( points2[2][0], points2[2][1], points2[2][2], points2[2][3], FracX ); const float x2interp4 = CubicInterpolate( points2[3][0], points2[3][1], points2[3][2], points2[3][3], FracX ); const float points3[4][4] = { IntNoise3D( BaseX-1, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX+1, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX-1, BaseY, BaseZ+1 ), IntNoise3D( BaseX, BaseY, BaseZ+1 ), IntNoise3D( BaseX+1, BaseY, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY, BaseZ+1 ), IntNoise3D( BaseX-1, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX+1, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX-1, BaseY+2, BaseZ+1 ), IntNoise3D( BaseX, BaseY+2, BaseZ+1 ), IntNoise3D( BaseX+1, BaseY+2, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY+2, BaseZ+1 ), }; const float x3interp1 = CubicInterpolate( points3[0][0], points3[0][1], points3[0][2], points3[0][3], FracX ); const float x3interp2 = CubicInterpolate( points3[1][0], points3[1][1], points3[1][2], points3[1][3], FracX ); const float x3interp3 = CubicInterpolate( points3[2][0], points3[2][1], points3[2][2], points3[2][3], FracX ); const float x3interp4 = CubicInterpolate( points3[3][0], points3[3][1], points3[3][2], points3[3][3], FracX ); const float points4[4][4] = { IntNoise3D( BaseX-1, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX+1, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX-1, BaseY, BaseZ+2 ), IntNoise3D( BaseX, BaseY, BaseZ+2 ), IntNoise3D( BaseX+1, BaseY, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY, BaseZ+2 ), IntNoise3D( BaseX-1, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX+1, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX-1, BaseY+2, BaseZ+2 ), IntNoise3D( BaseX, BaseY+2, BaseZ+2 ), IntNoise3D( BaseX+1, BaseY+2, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY+2, BaseZ+2 ), }; const float x4interp1 = CubicInterpolate( points4[0][0], points4[0][1], points4[0][2], points4[0][3], FracX ); const float x4interp2 = CubicInterpolate( points4[1][0], points4[1][1], points4[1][2], points4[1][3], FracX ); const float x4interp3 = CubicInterpolate( points4[2][0], points4[2][1], points4[2][2], points4[2][3], FracX ); const float x4interp4 = CubicInterpolate( points4[3][0], points4[3][1], points4[3][2], points4[3][3], FracX ); const float FracY = (a_Y) - BaseY; const float yinterp1 = CubicInterpolate( x1interp1, x1interp2, x1interp3, x1interp4, FracY ); const float yinterp2 = CubicInterpolate( x2interp1, x2interp2, x2interp3, x2interp4, FracY ); const float yinterp3 = CubicInterpolate( x3interp1, x3interp2, x3interp3, x3interp4, FracY ); const float yinterp4 = CubicInterpolate( x4interp1, x4interp2, x4interp3, x4interp4, FracY ); const float FracZ = (a_Z) - BaseZ; return CubicInterpolate( yinterp1, yinterp2, yinterp3, yinterp4, FracZ ); } /****************** * Private **/ #if NOISE_USE_SSE __m128 cNoise::CubicInterpolate4( const __m128 & a_A, const __m128 & a_B, const __m128 & a_C, const __m128 & a_D, float a_Pct ) const { const __m128 P = _mm_sub_ps( _mm_sub_ps( a_D, a_C ), _mm_sub_ps( a_A, a_B ) ); const __m128 Q = _mm_sub_ps( _mm_sub_ps( a_A, a_B ), P ); const __m128 R = _mm_sub_ps( a_C, a_A ); const __m128 Pct = _mm_set_ps1( a_Pct ); const __m128 Pct2 = _mm_mul_ps( Pct, Pct ); const __m128 Pct3 = _mm_mul_ps( Pct2, Pct ); return _mm_add_ps( _mm_add_ps( _mm_add_ps( _mm_mul_ps(P, Pct3), _mm_mul_ps( Q, Pct2 ) ), _mm_mul_ps( R, Pct ) ), a_B ); } #endif void IntArrayLinearInterpolate2D( int * a_Array, int a_SizeX, int a_SizeY, // Dimensions of the array int a_AnchorStepX, int a_AnchorStepY // Distances between the anchor points in each direction ) { // First interpolate columns where the anchor points are: int LastYCell = a_SizeY - a_AnchorStepY; for (int y = 0; y < LastYCell; y += a_AnchorStepY) { int Idx = a_SizeX * y; for (int x = 0; x < a_SizeX; x += a_AnchorStepX) { int StartValue = a_Array[Idx]; int EndValue = a_Array[Idx + a_SizeX * a_AnchorStepY]; int Diff = EndValue - StartValue; for (int CellY = 1; CellY < a_AnchorStepY; CellY++) { a_Array[Idx + a_SizeX * CellY] = StartValue + CellY * Diff / a_AnchorStepY; } // for CellY Idx += a_AnchorStepX; } // for x } // for y // Now interpolate in rows, each row has values in the anchor columns int LastXCell = a_SizeX - a_AnchorStepX; for (int y = 0; y < a_SizeY; y++) { int Idx = a_SizeX * y; for (int x = 0; x < LastXCell; x += a_AnchorStepX) { int StartValue = a_Array[Idx]; int EndValue = a_Array[Idx + a_AnchorStepX]; int Diff = EndValue - StartValue; for (int CellX = 1; CellX < a_AnchorStepX; CellX++) { a_Array[Idx + CellX] = StartValue + CellX * Diff / a_AnchorStepX; } // for CellY Idx += a_AnchorStepX; } } } #if NOISE_USE_INLINE #include "Noise.inc" #endif /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // cCubicNoise: cCubicNoise::cCubicNoise(int a_Seed) : m_Noise(a_Seed) { } void cCubicNoise::Generate2D( NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, ///< Size of the array (num doubles), in each direction NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction NOISE_DATATYPE * a_Workspace ///< Workspace that this function can use and trash ) { ASSERT(a_SizeX < MAX_SIZE); ASSERT(a_SizeY < MAX_SIZE); ASSERT(a_StartX < a_EndX); ASSERT(a_StartY < a_EndY); // Calculate the integral and fractional parts of each coord: int FloorX[MAX_SIZE]; int FloorY[MAX_SIZE]; NOISE_DATATYPE FracX[MAX_SIZE]; NOISE_DATATYPE FracY[MAX_SIZE]; int SameX[MAX_SIZE]; int SameY[MAX_SIZE]; int NumSameX, NumSameY; CalcFloorFrac(a_SizeX, a_StartX, a_EndX, FloorX, FracX, SameX, NumSameX); CalcFloorFrac(a_SizeY, a_StartY, a_EndY, FloorY, FracY, SameY, NumSameY); cCubicCell2D Cell(m_Noise, a_Array, a_SizeX, a_SizeY, FracX, FracY); Cell.InitWorkRnds(FloorX[0], FloorY[0]); // Calculate query values using Cell: int FromY = 0; for (int y = 0; y < NumSameY; y++) { int ToY = FromY + SameY[y]; int FromX = 0; int CurFloorY = FloorY[FromY]; for (int x = 0; x < NumSameX; x++) { int ToX = FromX + SameX[x]; Cell.Generate(FromX, ToX, FromY, ToY); Cell.Move(FloorX[ToX], CurFloorY); FromX = ToX; } Cell.Move(FloorX[0], FloorY[ToY]); FromY = ToY; } } void cCubicNoise::CalcFloorFrac( int a_Size, NOISE_DATATYPE a_Start, NOISE_DATATYPE a_End, int * a_Floor, NOISE_DATATYPE * a_Frac, int * a_Same, int & a_NumSame ) { NOISE_DATATYPE val = a_Start; NOISE_DATATYPE dif = (a_End - a_Start) / a_Size; for (int i = 0; i < a_Size; i++) { a_Floor[i] = FAST_FLOOR(val); a_Frac[i] = val - a_Floor[i]; val += dif; } // Mark up the same floor values into a_Same / a_NumSame: int CurFloor = a_Floor[0]; int LastSame = 0; a_NumSame = 0; for (int i = 1; i < a_Size; i++) { if (a_Floor[i] != CurFloor) { a_Same[a_NumSame] = i - LastSame; LastSame = i; a_NumSame += 1; CurFloor = a_Floor[i]; } } // for i - a_Floor[] if (LastSame < a_Size) { a_Same[a_NumSame] = a_Size - LastSame; a_NumSame += 1; } }