from __future__ import annotations import asyncio import uuid import json import os from py_arkose_generator.arkose import get_values_for_request from async_property import async_cached_property from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from ..base_provider import AsyncGeneratorProvider from ..helper import format_prompt, get_cookies from ...webdriver import get_browser, get_driver_cookies from ...typing import AsyncResult, Messages from ...requests import StreamSession from ...image import to_image, to_bytes, ImageType, ImageResponse # Aliases for model names MODELS = { "gpt-3.5": "text-davinci-002-render-sha", "gpt-3.5-turbo": "text-davinci-002-render-sha", "gpt-4": "gpt-4", "gpt-4-gizmo": "gpt-4-gizmo" } class OpenaiChat(AsyncGeneratorProvider): """A class for creating and managing conversations with OpenAI chat service""" url = "https://chat.openai.com" working = True needs_auth = True supports_gpt_35_turbo = True supports_gpt_4 = True _cookies: dict = {} _default_model: str = None @classmethod async def create( cls, prompt: str = None, model: str = "", messages: Messages = [], history_disabled: bool = False, action: str = "next", conversation_id: str = None, parent_id: str = None, image: ImageType = None, **kwargs ) -> Response: """Create a new conversation or continue an existing one Args: prompt: The user input to start or continue the conversation model: The name of the model to use for generating responses messages: The list of previous messages in the conversation history_disabled: A flag indicating if the history and training should be disabled action: The type of action to perform, either "next", "continue", or "variant" conversation_id: The ID of the existing conversation, if any parent_id: The ID of the parent message, if any image: The image to include in the user input, if any **kwargs: Additional keyword arguments to pass to the generator Returns: A Response object that contains the generator, action, messages, and options """ # Add the user input to the messages list if prompt: messages.append({ "role": "user", "content": prompt }) generator = cls.create_async_generator( model, messages, history_disabled=history_disabled, action=action, conversation_id=conversation_id, parent_id=parent_id, image=image, response_fields=True, **kwargs ) return Response( generator, action, messages, kwargs ) @classmethod async def _upload_image( cls, session: StreamSession, headers: dict, image: ImageType ) -> ImageResponse: """Upload an image to the service and get the download URL Args: session: The StreamSession object to use for requests headers: The headers to include in the requests image: The image to upload, either a PIL Image object or a bytes object Returns: An ImageResponse object that contains the download URL, file name, and other data """ # Convert the image to a PIL Image object and get the extension image = to_image(image) extension = image.format.lower() # Convert the image to a bytes object and get the size data_bytes = to_bytes(image) data = { "file_name": f"{image.width}x{image.height}.{extension}", "file_size": len(data_bytes), "use_case": "multimodal" } # Post the image data to the service and get the image data async with session.post(f"{cls.url}/backend-api/files", json=data, headers=headers) as response: response.raise_for_status() image_data = { **data, **await response.json(), "mime_type": f"image/{extension}", "extension": extension, "height": image.height, "width": image.width } # Put the image bytes to the upload URL and check the status async with session.put( image_data["upload_url"], data=data_bytes, headers={ "Content-Type": image_data["mime_type"], "x-ms-blob-type": "BlockBlob" } ) as response: response.raise_for_status() # Post the file ID to the service and get the download URL async with session.post( f"{cls.url}/backend-api/files/{image_data['file_id']}/uploaded", json={}, headers=headers ) as response: response.raise_for_status() download_url = (await response.json())["download_url"] return ImageResponse(download_url, image_data["file_name"], image_data) @classmethod async def _get_default_model(cls, session: StreamSession, headers: dict): """Get the default model name from the service Args: session: The StreamSession object to use for requests headers: The headers to include in the requests Returns: The default model name as a string """ # Check the cache for the default model if cls._default_model: return cls._default_model # Get the models data from the service async with session.get(f"{cls.url}/backend-api/models", headers=headers) as response: data = await response.json() if "categories" in data: cls._default_model = data["categories"][-1]["default_model"] else: raise RuntimeError(f"Response: {data}") return cls._default_model @classmethod def _create_messages(cls, prompt: str, image_response: ImageResponse = None): """Create a list of messages for the user input Args: prompt: The user input as a string image_response: The image response object, if any Returns: A list of messages with the user input and the image, if any """ # Check if there is an image response if not image_response: # Create a content object with the text type and the prompt content = {"content_type": "text", "parts": [prompt]} else: # Create a content object with the multimodal text type and the image and the prompt content = { "content_type": "multimodal_text", "parts": [{ "asset_pointer": f"file-service://{image_response.get('file_id')}", "height": image_response.get("height"), "size_bytes": image_response.get("file_size"), "width": image_response.get("width"), }, prompt] } # Create a message object with the user role and the content messages = [{ "id": str(uuid.uuid4()), "author": {"role": "user"}, "content": content, }] # Check if there is an image response if image_response: # Add the metadata object with the attachments messages[0]["metadata"] = { "attachments": [{ "height": image_response.get("height"), "id": image_response.get("file_id"), "mimeType": image_response.get("mime_type"), "name": image_response.get("file_name"), "size": image_response.get("file_size"), "width": image_response.get("width"), }] } return messages @classmethod async def _get_generated_image(cls, session: StreamSession, headers: dict, line: dict) -> ImageResponse: """ Retrieves the image response based on the message content. :param session: The StreamSession object. :param headers: HTTP headers for the request. :param line: The line of response containing image information. :return: An ImageResponse object with the image details. """ if "parts" not in line["message"]["content"]: return first_part = line["message"]["content"]["parts"][0] if "asset_pointer" not in first_part or "metadata" not in first_part: return file_id = first_part["asset_pointer"].split("file-service://", 1)[1] prompt = first_part["metadata"]["dalle"]["prompt"] try: async with session.get(f"{cls.url}/backend-api/files/{file_id}/download", headers=headers) as response: response.raise_for_status() download_url = (await response.json())["download_url"] return ImageResponse(download_url, prompt) except Exception as e: raise RuntimeError(f"Error in downloading image: {e}") @classmethod async def _delete_conversation(cls, session: StreamSession, headers: dict, conversation_id: str): async with session.patch( f"{cls.url}/backend-api/conversation/{conversation_id}", json={"is_visible": False}, headers=headers ) as response: response.raise_for_status() @classmethod async def create_async_generator( cls, model: str, messages: Messages, proxy: str = None, timeout: int = 120, access_token: str = None, cookies: dict = None, auto_continue: bool = False, history_disabled: bool = True, action: str = "next", conversation_id: str = None, parent_id: str = None, image: ImageType = None, response_fields: bool = False, **kwargs ) -> AsyncResult: """ Create an asynchronous generator for the conversation. Args: model (str): The model name. messages (Messages): The list of previous messages. proxy (str): Proxy to use for requests. timeout (int): Timeout for requests. access_token (str): Access token for authentication. cookies (dict): Cookies to use for authentication. auto_continue (bool): Flag to automatically continue the conversation. history_disabled (bool): Flag to disable history and training. action (str): Type of action ('next', 'continue', 'variant'). conversation_id (str): ID of the conversation. parent_id (str): ID of the parent message. image (ImageType): Image to include in the conversation. response_fields (bool): Flag to include response fields in the output. **kwargs: Additional keyword arguments. Yields: AsyncResult: Asynchronous results from the generator. Raises: RuntimeError: If an error occurs during processing. """ model = MODELS.get(model, model) if not parent_id: parent_id = str(uuid.uuid4()) if not cookies: cookies = cls._cookies or get_cookies("chat.openai.com") if not access_token and "access_token" in cookies: access_token = cookies["access_token"] if not access_token: login_url = os.environ.get("G4F_LOGIN_URL") if login_url: yield f"Please login: [ChatGPT]({login_url})\n\n" access_token, cookies = cls._browse_access_token(proxy) cls._cookies = cookies headers = {"Authorization": f"Bearer {access_token}"} async with StreamSession( proxies={"https": proxy}, impersonate="chrome110", timeout=timeout, cookies=dict([(name, value) for name, value in cookies.items() if name == "_puid"]) ) as session: if not model: model = await cls._get_default_model(session, headers) try: image_response = None if image: image_response = await cls._upload_image(session, headers, image) yield image_response except Exception as e: yield e end_turn = EndTurn() while not end_turn.is_end: data = { "action": action, "arkose_token": await cls._get_arkose_token(session), "conversation_id": conversation_id, "parent_message_id": parent_id, "model": model, "history_and_training_disabled": history_disabled and not auto_continue, } if action != "continue": prompt = format_prompt(messages) if not conversation_id else messages[-1]["content"] data["messages"] = cls._create_messages(prompt, image_response) async with session.post( f"{cls.url}/backend-api/conversation", json=data, headers={"Accept": "text/event-stream", **headers} ) as response: if not response.ok: raise RuntimeError(f"Response {response.status_code}: {await response.text()}") try: last_message: int = 0 async for line in response.iter_lines(): if not line.startswith(b"data: "): continue elif line.startswith(b"data: [DONE]"): break try: line = json.loads(line[6:]) except: continue if "message" not in line: continue if "error" in line and line["error"]: raise RuntimeError(line["error"]) if "message_type" not in line["message"]["metadata"]: continue try: image_response = await cls._get_generated_image(session, headers, line) if image_response: yield image_response except Exception as e: yield e if line["message"]["author"]["role"] != "assistant": continue if line["message"]["content"]["content_type"] != "text": continue if line["message"]["metadata"]["message_type"] not in ("next", "continue", "variant"): continue conversation_id = line["conversation_id"] parent_id = line["message"]["id"] if response_fields: response_fields = False yield ResponseFields(conversation_id, parent_id, end_turn) if "parts" in line["message"]["content"]: new_message = line["message"]["content"]["parts"][0] if len(new_message) > last_message: yield new_message[last_message:] last_message = len(new_message) if "finish_details" in line["message"]["metadata"]: if line["message"]["metadata"]["finish_details"]["type"] == "stop": end_turn.end() except Exception as e: raise e if not auto_continue: break action = "continue" await asyncio.sleep(5) if history_disabled and auto_continue: await cls._delete_conversation(session, headers, conversation_id) @classmethod def _browse_access_token(cls, proxy: str = None) -> tuple[str, dict]: """ Browse to obtain an access token. Args: proxy (str): Proxy to use for browsing. Returns: tuple[str, dict]: A tuple containing the access token and cookies. """ driver = get_browser(proxy=proxy) try: driver.get(f"{cls.url}/") WebDriverWait(driver, 1200).until(EC.presence_of_element_located((By.ID, "prompt-textarea"))) access_token = driver.execute_script( "let session = await fetch('/api/auth/session');" "let data = await session.json();" "let accessToken = data['accessToken'];" "let expires = new Date(); expires.setTime(expires.getTime() + 60 * 60 * 24 * 7);" "document.cookie = 'access_token=' + accessToken + ';expires=' + expires.toUTCString() + ';path=/';" "return accessToken;" ) return access_token, get_driver_cookies(driver) finally: driver.quit() @classmethod async def _get_arkose_token(cls, session: StreamSession) -> str: """ Obtain an Arkose token for the session. Args: session (StreamSession): The session object. Returns: str: The Arkose token. Raises: RuntimeError: If unable to retrieve the token. """ config = { "pkey": "3D86FBBA-9D22-402A-B512-3420086BA6CC", "surl": "https://tcr9i.chat.openai.com", "headers": { "User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0 Safari/537.36' }, "site": cls.url, } args_for_request = get_values_for_request(config) async with session.post(**args_for_request) as response: response.raise_for_status() decoded_json = await response.json() if "token" in decoded_json: return decoded_json["token"] raise RuntimeError(f"Response: {decoded_json}") class EndTurn: """ Class to represent the end of a conversation turn. """ def __init__(self): self.is_end = False def end(self): self.is_end = True class ResponseFields: """ Class to encapsulate response fields. """ def __init__(self, conversation_id: str, message_id: str, end_turn: EndTurn): self.conversation_id = conversation_id self.message_id = message_id self._end_turn = end_turn class Response(): """ Class to encapsulate a response from the chat service. """ def __init__( self, generator: AsyncResult, action: str, messages: Messages, options: dict ): self._generator = generator self.action = action self.is_end = False self._message = None self._messages = messages self._options = options self._fields = None async def generator(self): if self._generator: self._generator = None chunks = [] async for chunk in self._generator: if isinstance(chunk, ResponseFields): self._fields = chunk else: yield chunk chunks.append(str(chunk)) self._message = "".join(chunks) if not self._fields: raise RuntimeError("Missing response fields") self.is_end = self._fields._end_turn.is_end def __aiter__(self): return self.generator() @async_cached_property async def message(self) -> str: await self.generator() return self._message async def get_fields(self): await self.generator() return {"conversation_id": self._fields.conversation_id, "parent_id": self._fields.message_id} async def next(self, prompt: str, **kwargs) -> Response: return await OpenaiChat.create( **self._options, prompt=prompt, messages=await self.messages, action="next", **await self.get_fields(), **kwargs ) async def do_continue(self, **kwargs) -> Response: fields = await self.get_fields() if self.is_end: raise RuntimeError("Can't continue message. Message already finished.") return await OpenaiChat.create( **self._options, messages=await self.messages, action="continue", **fields, **kwargs ) async def variant(self, **kwargs) -> Response: if self.action != "next": raise RuntimeError("Can't create variant from continue or variant request.") return await OpenaiChat.create( **self._options, messages=self._messages, action="variant", **await self.get_fields(), **kwargs ) @async_cached_property async def messages(self): messages = self._messages messages.append({"role": "assistant", "content": await self.message}) return messages