import json import random import string import time from typing import Any import requests from flask import Flask, request from flask_cors import CORS from transformers import AutoTokenizer from g4f import ChatCompletion app = Flask(__name__) CORS(app) @app.route("/chat/completions", methods=["POST"]) def chat_completions(): model = request.get_json().get("model", "gpt-3.5-turbo") stream = request.get_json().get("stream", False) messages = request.get_json().get("messages") response = ChatCompletion.create(model=model, stream=stream, messages=messages) completion_id = "".join(random.choices(string.ascii_letters + string.digits, k=28)) completion_timestamp = int(time.time()) if not stream: return { "id": f"chatcmpl-{completion_id}", "object": "chat.completion", "created": completion_timestamp, "model": model, "choices": [ { "index": 0, "message": { "role": "assistant", "content": response, }, "finish_reason": "stop", } ], "usage": { "prompt_tokens": None, "completion_tokens": None, "total_tokens": None, }, } def streaming(): for chunk in response: completion_data = { "id": f"chatcmpl-{completion_id}", "object": "chat.completion.chunk", "created": completion_timestamp, "model": model, "choices": [ { "index": 0, "delta": { "content": chunk, }, "finish_reason": None, } ], } content = json.dumps(completion_data, separators=(",", ":")) yield f"data: {content}\n\n" time.sleep(0.1) end_completion_data: dict[str, Any] = { "id": f"chatcmpl-{completion_id}", "object": "chat.completion.chunk", "created": completion_timestamp, "model": model, "choices": [ { "index": 0, "delta": {}, "finish_reason": "stop", } ], } content = json.dumps(end_completion_data, separators=(",", ":")) yield f"data: {content}\n\n" return app.response_class(streaming(), mimetype="text/event-stream") #Get the embedding from huggingface def get_embedding(input_text, token): huggingface_token = token embedding_model = "sentence-transformers/all-mpnet-base-v2" max_token_length = 500 # Load the tokenizer for the "all-mpnet-base-v2" model tokenizer = AutoTokenizer.from_pretrained(embedding_model) # Tokenize the text and split the tokens into chunks of 500 tokens each tokens = tokenizer.tokenize(input_text) token_chunks = [tokens[i:i + max_token_length] for i in range(0, len(tokens), max_token_length)] # Initialize an empty list embeddings = [] # Create embeddings for each chunk for chunk in token_chunks: # Convert the chunk tokens back to text chunk_text = tokenizer.convert_tokens_to_string(chunk) # Use the Hugging Face API to get embeddings for the chunk api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{embedding_model}" headers = {"Authorization": f"Bearer {huggingface_token}"} chunk_text = chunk_text.replace("\n", " ") # Make a POST request to get the chunk's embedding response = requests.post(api_url, headers=headers, json={"inputs": chunk_text, "options": {"wait_for_model": True}}) # Parse the response and extract the embedding chunk_embedding = response.json() # Append the embedding to the list embeddings.append(chunk_embedding) #averaging all the embeddings #this isn't very effective #someone a better idea? num_embeddings = len(embeddings) average_embedding = [sum(x) / num_embeddings for x in zip(*embeddings)] embedding = average_embedding return embedding @app.route("/embeddings", methods=["POST"]) def embeddings(): input_text_list = request.get_json().get("input") input_text = ' '.join(map(str, input_text_list)) token = request.headers.get('Authorization').replace("Bearer ", "") embedding = get_embedding(input_text, token) return { "data": [ { "embedding": embedding, "index": 0, "object": "embedding" } ], "model": "text-embedding-ada-002", "object": "list", "usage": { "prompt_tokens": None, "total_tokens": None } } def main(): app.run(host="0.0.0.0", port=1337, debug=True) if __name__ == "__main__": main()