From 820d81b9a5392951c18daa5a47d6c0ffd28baa9b Mon Sep 17 00:00:00 2001 From: Zach Hilman Date: Thu, 22 Nov 2018 00:33:53 -0500 Subject: scheduler: Add explanations for YieldWith and WithoutLoadBalancing --- src/core/hle/kernel/scheduler.h | 70 +++++++++++++++++++++++++++++++++++++++-- 1 file changed, 68 insertions(+), 2 deletions(-) (limited to 'src/core/hle/kernel/scheduler.h') diff --git a/src/core/hle/kernel/scheduler.h b/src/core/hle/kernel/scheduler.h index 8444afdbc..71b32589a 100644 --- a/src/core/hle/kernel/scheduler.h +++ b/src/core/hle/kernel/scheduler.h @@ -49,13 +49,79 @@ public: void UnscheduleThread(Thread* thread, u32 priority); /// Moves a thread to the back of the current priority queue - void RescheduleThread(Thread* thread, u32 priority); + void MoveThreadToBackOfPriorityQueue(Thread* thread, u32 priority); /// Sets the priority of a thread in the scheduler void SetThreadPriority(Thread* thread, u32 priority); /// Gets the next suggested thread for load balancing - Thread* GetNextSuggestedThread(u32 core); + Thread* GetNextSuggestedThread(u32 core) const; + + /** + * YieldWithoutLoadBalancing -- analogous to normal yield on a system + * Moves the thread to the end of the ready queue for its priority, and then reschedules the + * system to the new head of the queue. + * + * Example (Single Core -- but can be extrapolated to multi): + * ready_queue[prio=0]: ThreadA, ThreadB, ThreadC (->exec order->) + * Currently Running: ThreadR + * + * ThreadR calls YieldWithoutLoadBalancing + * + * ThreadR is moved to the end of ready_queue[prio=0]: + * ready_queue[prio=0]: ThreadA, ThreadB, ThreadC, ThreadR (->exec order->) + * Currently Running: Nothing + * + * System is rescheduled (ThreadA is popped off of queue): + * ready_queue[prio=0]: ThreadB, ThreadC, ThreadR (->exec order->) + * Currently Running: ThreadA + * + * If the queue is empty at time of call, no yielding occurs. This does not cross between cores + * or priorities at all. + */ + void YieldWithoutLoadBalancing(Thread* thread); + + /** + * YieldWithLoadBalancing -- yield but with better selection of the new running thread + * Moves the current thread to the end of the ready queue for its priority, then selects a + * 'suggested thread' (a thread on a different core that could run on this core) from the + * scheduler, changes its core, and reschedules the current core to that thread. + * + * Example (Dual Core -- can be extrapolated to Quad Core, this is just normal yield if it were + * single core): + * ready_queue[core=0][prio=0]: ThreadA, ThreadB (affinities not pictured as irrelevant + * ready_queue[core=1][prio=0]: ThreadC[affinity=both], ThreadD[affinity=core1only] + * Currently Running: ThreadQ on Core 0 || ThreadP on Core 1 + * + * ThreadQ calls YieldWithLoadBalancing + * + * ThreadQ is moved to the end of ready_queue[core=0][prio=0]: + * ready_queue[core=0][prio=0]: ThreadA, ThreadB + * ready_queue[core=1][prio=0]: ThreadC[affinity=both], ThreadD[affinity=core1only] + * Currently Running: ThreadQ on Core 0 || ThreadP on Core 1 + * + * A list of suggested threads for each core is compiled + * Suggested Threads: {ThreadC on Core 1} + * If this were quad core (as the switch is), there could be between 0 and 3 threads in this + * list. If there are more than one, the thread is selected by highest prio. + * + * ThreadC is core changed to Core 0: + * ready_queue[core=0][prio=0]: ThreadC, ThreadA, ThreadB, ThreadQ + * ready_queue[core=1][prio=0]: ThreadD + * Currently Running: None on Core 0 || ThreadP on Core 1 + * + * System is rescheduled (ThreadC is popped off of queue): + * ready_queue[core=0][prio=0]: ThreadA, ThreadB, ThreadQ + * ready_queue[core=1][prio=0]: ThreadD + * Currently Running: ThreadC on Core 0 || ThreadP on Core 1 + * + * If no suggested threads can be found this will behave just as normal yield. If there are + * multiple candidates for the suggested thread on a core, the highest prio is taken. + */ + void YieldWithLoadBalancing(Thread* thread); + + /// Currently unknown -- asserts as unimplemented on call + void YieldAndWaitForLoadBalancing(Thread* thread); /// Returns a list of all threads managed by the scheduler const std::vector>& GetThreadList() const { -- cgit v1.2.3