// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include #include #include "audio_core/audio_core.h" #include "audio_core/audio_event.h" #include "audio_core/audio_manager.h" #include "audio_core/sink/cubeb_sink.h" #include "audio_core/sink/sink_stream.h" #include "common/assert.h" #include "common/fixed_point.h" #include "common/logging/log.h" #include "common/reader_writer_queue.h" #include "common/ring_buffer.h" #include "common/settings.h" #include "core/core.h" #ifdef _WIN32 #include #undef CreateEvent #endif namespace AudioCore::Sink { /** * Cubeb sink stream, responsible for sinking samples to hardware. */ class CubebSinkStream final : public SinkStream { public: /** * Create a new sink stream. * * @param ctx_ - Cubeb context to create this stream with. * @param device_channels_ - Number of channels supported by the hardware. * @param system_channels_ - Number of channels the audio systems expect. * @param output_device - Cubeb output device id. * @param input_device - Cubeb input device id. * @param name_ - Name of this stream. * @param type_ - Type of this stream. * @param system_ - Core system. * @param event - Event used only for audio renderer, signalled on buffer consume. */ CubebSinkStream(cubeb* ctx_, const u32 device_channels_, const u32 system_channels_, cubeb_devid output_device, cubeb_devid input_device, const std::string& name_, const StreamType type_, Core::System& system_) : ctx{ctx_}, type{type_}, system{system_} { #ifdef _WIN32 CoInitializeEx(nullptr, COINIT_MULTITHREADED); #endif name = name_; device_channels = device_channels_; system_channels = system_channels_; cubeb_stream_params params{}; params.rate = TargetSampleRate; params.channels = device_channels; params.format = CUBEB_SAMPLE_S16LE; params.prefs = CUBEB_STREAM_PREF_NONE; switch (params.channels) { case 1: params.layout = CUBEB_LAYOUT_MONO; break; case 2: params.layout = CUBEB_LAYOUT_STEREO; break; case 6: params.layout = CUBEB_LAYOUT_3F2_LFE; break; } u32 minimum_latency{0}; const auto latency_error = cubeb_get_min_latency(ctx, ¶ms, &minimum_latency); if (latency_error != CUBEB_OK) { LOG_CRITICAL(Audio_Sink, "Error getting minimum latency, error: {}", latency_error); minimum_latency = 256U; } minimum_latency = std::max(minimum_latency, 256u); playing_buffer.consumed = true; LOG_DEBUG(Service_Audio, "Opening cubeb stream {} type {} with: rate {} channels {} (system channels {}) " "latency {}", name, type, params.rate, params.channels, system_channels, minimum_latency); auto init_error{0}; if (type == StreamType::In) { init_error = cubeb_stream_init(ctx, &stream_backend, name.c_str(), input_device, ¶ms, output_device, nullptr, minimum_latency, &CubebSinkStream::DataCallback, &CubebSinkStream::StateCallback, this); } else { init_error = cubeb_stream_init(ctx, &stream_backend, name.c_str(), input_device, nullptr, output_device, ¶ms, minimum_latency, &CubebSinkStream::DataCallback, &CubebSinkStream::StateCallback, this); } if (init_error != CUBEB_OK) { LOG_CRITICAL(Audio_Sink, "Error initializing cubeb stream, error: {}", init_error); return; } } /** * Destroy the sink stream. */ ~CubebSinkStream() override { LOG_DEBUG(Service_Audio, "Destructing cubeb stream {}", name); if (!ctx) { return; } Finalize(); #ifdef _WIN32 CoUninitialize(); #endif } /** * Finalize the sink stream. */ void Finalize() override { Stop(); cubeb_stream_destroy(stream_backend); } /** * Start the sink stream. * * @param resume - Set to true if this is resuming the stream a previously-active stream. * Default false. */ void Start(const bool resume = false) override { if (!ctx) { return; } if (resume && was_playing) { if (cubeb_stream_start(stream_backend) != CUBEB_OK) { LOG_CRITICAL(Audio_Sink, "Error starting cubeb stream"); } paused = false; } else if (!resume) { if (cubeb_stream_start(stream_backend) != CUBEB_OK) { LOG_CRITICAL(Audio_Sink, "Error starting cubeb stream"); } paused = false; } } /** * Stop the sink stream. */ void Stop() override { if (!ctx) { return; } if (cubeb_stream_stop(stream_backend) != CUBEB_OK) { LOG_CRITICAL(Audio_Sink, "Error stopping cubeb stream"); } was_playing.store(!paused); paused = true; } /** * Append a new buffer and its samples to a waiting queue to play. * * @param buffer - Audio buffer information to be queued. * @param samples - The s16 samples to be queue for playback. */ void AppendBuffer(::AudioCore::Sink::SinkBuffer& buffer, std::vector& samples) override { if (type == StreamType::In) { queue.enqueue(buffer); queued_buffers++; } else { constexpr s32 min{std::numeric_limits::min()}; constexpr s32 max{std::numeric_limits::max()}; auto yuzu_volume{Settings::Volume()}; auto volume{system_volume * device_volume * yuzu_volume}; if (system_channels == 6 && device_channels == 2) { // We're given 6 channels, but our device only outputs 2, so downmix. constexpr std::array down_mix_coeff{1.0f, 0.707f, 0.251f, 0.707f}; for (u32 read_index = 0, write_index = 0; read_index < samples.size(); read_index += system_channels, write_index += device_channels) { const auto left_sample{ ((Common::FixedPoint<49, 15>( samples[read_index + static_cast(Channels::FrontLeft)]) * down_mix_coeff[0] + samples[read_index + static_cast(Channels::Center)] * down_mix_coeff[1] + samples[read_index + static_cast(Channels::LFE)] * down_mix_coeff[2] + samples[read_index + static_cast(Channels::BackLeft)] * down_mix_coeff[3]) * volume) .to_int()}; const auto right_sample{ ((Common::FixedPoint<49, 15>( samples[read_index + static_cast(Channels::FrontRight)]) * down_mix_coeff[0] + samples[read_index + static_cast(Channels::Center)] * down_mix_coeff[1] + samples[read_index + static_cast(Channels::LFE)] * down_mix_coeff[2] + samples[read_index + static_cast(Channels::BackRight)] * down_mix_coeff[3]) * volume) .to_int()}; samples[write_index + static_cast(Channels::FrontLeft)] = static_cast(std::clamp(left_sample, min, max)); samples[write_index + static_cast(Channels::FrontRight)] = static_cast(std::clamp(right_sample, min, max)); } samples.resize(samples.size() / system_channels * device_channels); } else if (system_channels == 2 && device_channels == 6) { // We need moar samples! Not all games will provide 6 channel audio. // TODO: Implement some upmixing here. Currently just passthrough, with other // channels left as silence. std::vector new_samples(samples.size() / system_channels * device_channels, 0); for (u32 read_index = 0, write_index = 0; read_index < samples.size(); read_index += system_channels, write_index += device_channels) { const auto left_sample{static_cast(std::clamp( static_cast( static_cast( samples[read_index + static_cast(Channels::FrontLeft)]) * volume), min, max))}; new_samples[write_index + static_cast(Channels::FrontLeft)] = left_sample; const auto right_sample{static_cast(std::clamp( static_cast( static_cast( samples[read_index + static_cast(Channels::FrontRight)]) * volume), min, max))}; new_samples[write_index + static_cast(Channels::FrontRight)] = right_sample; } samples = std::move(new_samples); } else if (volume != 1.0f) { for (u32 i = 0; i < samples.size(); i++) { samples[i] = static_cast(std::clamp( static_cast(static_cast(samples[i]) * volume), min, max)); } } samples_buffer.Push(samples); queue.enqueue(buffer); queued_buffers++; } } /** * Release a buffer. Audio In only, will fill a buffer with recorded samples. * * @param num_samples - Maximum number of samples to receive. * @return Vector of recorded samples. May have fewer than num_samples. */ std::vector ReleaseBuffer(const u64 num_samples) override { static constexpr s32 min = std::numeric_limits::min(); static constexpr s32 max = std::numeric_limits::max(); auto samples{samples_buffer.Pop(num_samples)}; // TODO: Up-mix to 6 channels if the game expects it. // For audio input this is unlikely to ever be the case though. // Incoming mic volume seems to always be very quiet, so multiply by an additional 8 here. // TODO: Play with this and find something that works better. auto volume{system_volume * device_volume * 8}; for (u32 i = 0; i < samples.size(); i++) { samples[i] = static_cast( std::clamp(static_cast(static_cast(samples[i]) * volume), min, max)); } if (samples.size() < num_samples) { samples.resize(num_samples, 0); } return samples; } /** * Check if a certain buffer has been consumed (fully played). * * @param tag - Unique tag of a buffer to check for. * @return True if the buffer has been played, otherwise false. */ bool IsBufferConsumed(const u64 tag) override { if (released_buffer.tag == 0) { if (!released_buffers.try_dequeue(released_buffer)) { return false; } } if (released_buffer.tag == tag) { released_buffer.tag = 0; return true; } return false; } /** * Empty out the buffer queue. */ void ClearQueue() override { samples_buffer.Pop(); while (queue.pop()) { } while (released_buffers.pop()) { } queued_buffers = 0; released_buffer = {}; playing_buffer = {}; playing_buffer.consumed = true; } private: /** * Signal events back to the audio system that a buffer was played/can be filled. * * @param buffer - Consumed audio buffer to be released. */ void SignalEvent(const ::AudioCore::Sink::SinkBuffer& buffer) { auto& manager{system.AudioCore().GetAudioManager()}; switch (type) { case StreamType::Out: released_buffers.enqueue(buffer); manager.SetEvent(Event::Type::AudioOutManager, true); break; case StreamType::In: released_buffers.enqueue(buffer); manager.SetEvent(Event::Type::AudioInManager, true); break; case StreamType::Render: break; } } /** * Main callback from Cubeb. Either expects samples from us (audio render/audio out), or will * provide samples to be copied (audio in). * * @param stream - Cubeb-specific data about the stream. * @param user_data - Custom data pointer passed along, points to a CubebSinkStream. * @param in_buff - Input buffer to be used if the stream is an input type. * @param out_buff - Output buffer to be used if the stream is an output type. * @param num_frames_ - Number of frames of audio in the buffers. Note: Not number of samples. */ static long DataCallback([[maybe_unused]] cubeb_stream* stream, void* user_data, [[maybe_unused]] const void* in_buff, void* out_buff, long num_frames_) { auto* impl = static_cast(user_data); if (!impl) { return -1; } const std::size_t num_channels = impl->GetDeviceChannels(); const std::size_t frame_size = num_channels; const std::size_t frame_size_bytes = frame_size * sizeof(s16); const std::size_t num_frames{static_cast(num_frames_)}; size_t frames_written{0}; [[maybe_unused]] bool underrun{false}; if (impl->type == StreamType::In) { // INPUT std::span input_buffer{reinterpret_cast(in_buff), num_frames * frame_size}; while (frames_written < num_frames) { auto& playing_buffer{impl->playing_buffer}; // If the playing buffer has been consumed or has no frames, we need a new one if (playing_buffer.consumed || playing_buffer.frames == 0) { if (!impl->queue.try_dequeue(impl->playing_buffer)) { // If no buffer was available we've underrun, just push the samples and // continue. underrun = true; impl->samples_buffer.Push(&input_buffer[frames_written * frame_size], (num_frames - frames_written) * frame_size); frames_written = num_frames; continue; } else { // Successfully got a new buffer, mark the old one as consumed and signal. impl->queued_buffers--; impl->SignalEvent(impl->playing_buffer); } } // Get the minimum frames available between the currently playing buffer, and the // amount we have left to fill size_t frames_available{ std::min(playing_buffer.frames - playing_buffer.frames_played, num_frames - frames_written)}; impl->samples_buffer.Push(&input_buffer[frames_written * frame_size], frames_available * frame_size); frames_written += frames_available; playing_buffer.frames_played += frames_available; // If that's all the frames in the current buffer, add its samples and mark it as // consumed if (playing_buffer.frames_played >= playing_buffer.frames) { impl->AddPlayedSampleCount(playing_buffer.frames_played * num_channels); impl->playing_buffer.consumed = true; } } std::memcpy(&impl->last_frame[0], &input_buffer[(frames_written - 1) * frame_size], frame_size_bytes); } else { // OUTPUT std::span output_buffer{reinterpret_cast(out_buff), num_frames * frame_size}; while (frames_written < num_frames) { auto& playing_buffer{impl->playing_buffer}; // If the playing buffer has been consumed or has no frames, we need a new one if (playing_buffer.consumed || playing_buffer.frames == 0) { if (!impl->queue.try_dequeue(impl->playing_buffer)) { // If no buffer was available we've underrun, fill the remaining buffer with // the last written frame and continue. underrun = true; for (size_t i = frames_written; i < num_frames; i++) { std::memcpy(&output_buffer[i * frame_size], &impl->last_frame[0], frame_size_bytes); } frames_written = num_frames; continue; } else { // Successfully got a new buffer, mark the old one as consumed and signal. impl->queued_buffers--; impl->SignalEvent(impl->playing_buffer); } } // Get the minimum frames available between the currently playing buffer, and the // amount we have left to fill size_t frames_available{ std::min(playing_buffer.frames - playing_buffer.frames_played, num_frames - frames_written)}; impl->samples_buffer.Pop(&output_buffer[frames_written * frame_size], frames_available * frame_size); frames_written += frames_available; playing_buffer.frames_played += frames_available; // If that's all the frames in the current buffer, add its samples and mark it as // consumed if (playing_buffer.frames_played >= playing_buffer.frames) { impl->AddPlayedSampleCount(playing_buffer.frames_played * num_channels); impl->playing_buffer.consumed = true; } } std::memcpy(&impl->last_frame[0], &output_buffer[(frames_written - 1) * frame_size], frame_size_bytes); } return num_frames_; } /** * Cubeb callback for if a device state changes. Unused currently. * * @param stream - Cubeb-specific data about the stream. * @param user_data - Custom data pointer passed along, points to a CubebSinkStream. * @param state - New state of the device. */ static void StateCallback([[maybe_unused]] cubeb_stream* stream, [[maybe_unused]] void* user_data, [[maybe_unused]] cubeb_state state) {} /// Main Cubeb context cubeb* ctx{}; /// Cubeb stream backend cubeb_stream* stream_backend{}; /// Name of this stream std::string name{}; /// Type of this stream StreamType type; /// Core system Core::System& system; /// Ring buffer of the samples waiting to be played or consumed Common::RingBuffer samples_buffer; /// Audio buffers queued and waiting to play Common::ReaderWriterQueue<::AudioCore::Sink::SinkBuffer> queue; /// The currently-playing audio buffer ::AudioCore::Sink::SinkBuffer playing_buffer{}; /// Audio buffers which have been played and are in queue to be released by the audio system Common::ReaderWriterQueue<::AudioCore::Sink::SinkBuffer> released_buffers{}; /// Currently released buffer waiting to be taken by the audio system ::AudioCore::Sink::SinkBuffer released_buffer{}; /// The last played (or received) frame of audio, used when the callback underruns std::array last_frame{}; }; CubebSink::CubebSink(std::string_view target_device_name) { // Cubeb requires COM to be initialized on the thread calling cubeb_init on Windows #ifdef _WIN32 com_init_result = CoInitializeEx(nullptr, COINIT_MULTITHREADED); #endif if (cubeb_init(&ctx, "yuzu", nullptr) != CUBEB_OK) { LOG_CRITICAL(Audio_Sink, "cubeb_init failed"); return; } if (target_device_name != auto_device_name && !target_device_name.empty()) { cubeb_device_collection collection; if (cubeb_enumerate_devices(ctx, CUBEB_DEVICE_TYPE_OUTPUT, &collection) != CUBEB_OK) { LOG_WARNING(Audio_Sink, "Audio output device enumeration not supported"); } else { const auto collection_end{collection.device + collection.count}; const auto device{ std::find_if(collection.device, collection_end, [&](const cubeb_device_info& info) { return info.friendly_name != nullptr && target_device_name == std::string(info.friendly_name); })}; if (device != collection_end) { output_device = device->devid; } cubeb_device_collection_destroy(ctx, &collection); } } cubeb_get_max_channel_count(ctx, &device_channels); device_channels = device_channels >= 6U ? 6U : 2U; } CubebSink::~CubebSink() { if (!ctx) { return; } for (auto& sink_stream : sink_streams) { sink_stream.reset(); } cubeb_destroy(ctx); #ifdef _WIN32 if (SUCCEEDED(com_init_result)) { CoUninitialize(); } #endif } SinkStream* CubebSink::AcquireSinkStream(Core::System& system, const u32 system_channels, const std::string& name, const StreamType type) { SinkStreamPtr& stream = sink_streams.emplace_back(std::make_unique( ctx, device_channels, system_channels, output_device, input_device, name, type, system)); return stream.get(); } void CubebSink::CloseStream(const SinkStream* stream) { for (size_t i = 0; i < sink_streams.size(); i++) { if (sink_streams[i].get() == stream) { sink_streams[i].reset(); sink_streams.erase(sink_streams.begin() + i); break; } } } void CubebSink::CloseStreams() { sink_streams.clear(); } void CubebSink::PauseStreams() { for (auto& stream : sink_streams) { stream->Stop(); } } void CubebSink::UnpauseStreams() { for (auto& stream : sink_streams) { stream->Start(true); } } f32 CubebSink::GetDeviceVolume() const { if (sink_streams.empty()) { return 1.0f; } return sink_streams[0]->GetDeviceVolume(); } void CubebSink::SetDeviceVolume(const f32 volume) { for (auto& stream : sink_streams) { stream->SetDeviceVolume(volume); } } void CubebSink::SetSystemVolume(const f32 volume) { for (auto& stream : sink_streams) { stream->SetSystemVolume(volume); } } std::vector ListCubebSinkDevices(const bool capture) { std::vector device_list; cubeb* ctx; if (cubeb_init(&ctx, "yuzu Device Enumerator", nullptr) != CUBEB_OK) { LOG_CRITICAL(Audio_Sink, "cubeb_init failed"); return {}; } auto type{capture ? CUBEB_DEVICE_TYPE_INPUT : CUBEB_DEVICE_TYPE_OUTPUT}; cubeb_device_collection collection; if (cubeb_enumerate_devices(ctx, type, &collection) != CUBEB_OK) { LOG_WARNING(Audio_Sink, "Audio output device enumeration not supported"); } else { for (std::size_t i = 0; i < collection.count; i++) { const cubeb_device_info& device = collection.device[i]; if (device.friendly_name && device.friendly_name[0] != '\0' && device.state == CUBEB_DEVICE_STATE_ENABLED) { device_list.emplace_back(device.friendly_name); } } cubeb_device_collection_destroy(ctx, &collection); } cubeb_destroy(ctx); return device_list; } } // namespace AudioCore::Sink