// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "audio_core/sink.h" #include "audio_core/sink_details.h" #include "audio_core/stream.h" #include "common/assert.h" #include "common/logging/log.h" #include "core/core_timing.h" #include "core/core_timing_util.h" #include "core/settings.h" namespace AudioCore { constexpr size_t MaxAudioBufferCount{32}; u32 Stream::GetNumChannels() const { switch (format) { case Format::Mono16: return 1; case Format::Stereo16: return 2; case Format::Multi51Channel16: return 6; } LOG_CRITICAL(Audio, "Unimplemented format={}", static_cast(format)); UNREACHABLE(); return {}; } Stream::Stream(u32 sample_rate, Format format, ReleaseCallback&& release_callback, SinkStream& sink_stream, std::string&& name_) : sample_rate{sample_rate}, format{format}, release_callback{std::move(release_callback)}, sink_stream{sink_stream}, name{std::move(name_)} { release_event = CoreTiming::RegisterEvent( name, [this](u64 userdata, int cycles_late) { ReleaseActiveBuffer(); }); } void Stream::Play() { state = State::Playing; PlayNextBuffer(); } void Stream::Stop() { ASSERT_MSG(false, "Unimplemented"); } s64 Stream::GetBufferReleaseCycles(const Buffer& buffer) const { const size_t num_samples{buffer.GetSamples().size() / GetNumChannels()}; return CoreTiming::usToCycles((static_cast(num_samples) * 1000000) / sample_rate); } static void VolumeAdjustSamples(std::vector& samples) { const float volume{std::clamp(Settings::values.volume, 0.0f, 1.0f)}; if (volume == 1.0f) { return; } // Implementation of a volume slider with a dynamic range of 60 dB const float volume_scale_factor{std::exp(6.90775f * volume) * 0.001f}; for (auto& sample : samples) { sample = static_cast(sample * volume_scale_factor); } } void Stream::PlayNextBuffer() { if (!IsPlaying()) { // Ensure we are in playing state before playing the next buffer return; } if (active_buffer) { // Do not queue a new buffer if we are already playing a buffer return; } if (queued_buffers.empty()) { // No queued buffers - we are effectively paused return; } active_buffer = queued_buffers.front(); queued_buffers.pop(); VolumeAdjustSamples(active_buffer->Samples()); sink_stream.EnqueueSamples(GetNumChannels(), active_buffer->GetSamples()); CoreTiming::ScheduleEventThreadsafe(GetBufferReleaseCycles(*active_buffer), release_event, {}); } void Stream::ReleaseActiveBuffer() { ASSERT(active_buffer); released_buffers.push(std::move(active_buffer)); release_callback(); PlayNextBuffer(); } bool Stream::QueueBuffer(BufferPtr&& buffer) { if (queued_buffers.size() < MaxAudioBufferCount) { queued_buffers.push(std::move(buffer)); PlayNextBuffer(); return true; } return false; } bool Stream::ContainsBuffer(Buffer::Tag tag) const { ASSERT_MSG(false, "Unimplemented"); return {}; } std::vector Stream::GetTagsAndReleaseBuffers(size_t max_count) { std::vector tags; for (size_t count = 0; count < max_count && !released_buffers.empty(); ++count) { tags.push_back(released_buffers.front()->GetTag()); released_buffers.pop(); } return tags; } } // namespace AudioCore