// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #pragma once /** * This is a system to schedule events into the emulated machine's future. Time is measured * in main CPU clock cycles. * * To schedule an event, you first have to register its type. This is where you pass in the * callback. You then schedule events using the type id you get back. * * The int cyclesLate that the callbacks get is how many cycles late it was. * So to schedule a new event on a regular basis: * inside callback: * ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever") */ #include #include #include #include "common/common_types.h" namespace CoreTiming { struct EventType; using TimedCallback = std::function; /** * CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is * required to end slice -1 and start slice 0 before the first cycle of code is executed. */ void Init(); void Shutdown(); /** * This should only be called from the emu thread, if you are calling it any other thread, you are * doing something evil */ u64 GetTicks(); u64 GetIdleTicks(); void AddTicks(u64 ticks); /** * Returns the event_type identifier. if name is not unique, it will assert. */ EventType* RegisterEvent(const std::string& name, TimedCallback callback); void UnregisterAllEvents(); /** * After the first Advance, the slice lengths and the downcount will be reduced whenever an event * is scheduled earlier than the current values. * Scheduling from a callback will not update the downcount until the Advance() completes. */ void ScheduleEvent(s64 cycles_into_future, const EventType* event_type, u64 userdata = 0); /** * This is to be called when outside of hle threads, such as the graphics thread, wants to * schedule things to be executed on the main thread. * Not that this doesn't change slice_length and thus events scheduled by this might be called * with a delay of up to MAX_SLICE_LENGTH */ void ScheduleEventThreadsafe(s64 cycles_into_future, const EventType* event_type, u64 userdata); void UnscheduleEvent(const EventType* event_type, u64 userdata); void UnscheduleEventThreadsafe(const EventType* event_type, u64 userdata); /// We only permit one event of each type in the queue at a time. void RemoveEvent(const EventType* event_type); void RemoveNormalAndThreadsafeEvent(const EventType* event_type); /** Advance must be called at the beginning of dispatcher loops, not the end. Advance() ends * the previous timing slice and begins the next one, you must Advance from the previous * slice to the current one before executing any cycles. CoreTiming starts in slice -1 so an * Advance() is required to initialize the slice length before the first cycle of emulated * instructions is executed. */ void Advance(); void MoveEvents(); /// Pretend that the main CPU has executed enough cycles to reach the next event. void Idle(); /// Clear all pending events. This should ONLY be done on exit. void ClearPendingEvents(); void ForceExceptionCheck(s64 cycles); std::chrono::microseconds GetGlobalTimeUs(); int GetDowncount(); } // namespace CoreTiming