// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include #include "audio_core/audio_core.h" #include "common/assert.h" #include "common/common_types.h" #include "common/logging/log.h" #include "core/hle/config_mem.h" #include "core/hle/kernel/memory.h" #include "core/hle/kernel/vm_manager.h" #include "core/hle/result.h" #include "core/hle/shared_page.h" #include "core/memory.h" #include "core/memory_setup.h" //////////////////////////////////////////////////////////////////////////////////////////////////// namespace Kernel { static MemoryRegionInfo memory_regions[3]; /// Size of the APPLICATION, SYSTEM and BASE memory regions (respectively) for each system /// memory configuration type. static const u32 memory_region_sizes[8][3] = { // Old 3DS layouts {0x04000000, 0x02C00000, 0x01400000}, // 0 {/* This appears to be unused. */}, // 1 {0x06000000, 0x00C00000, 0x01400000}, // 2 {0x05000000, 0x01C00000, 0x01400000}, // 3 {0x04800000, 0x02400000, 0x01400000}, // 4 {0x02000000, 0x04C00000, 0x01400000}, // 5 // New 3DS layouts {0x07C00000, 0x06400000, 0x02000000}, // 6 {0x0B200000, 0x02E00000, 0x02000000}, // 7 }; void MemoryInit(u32 mem_type) { // TODO(yuriks): On the n3DS, all o3DS configurations (<=5) are forced to 6 instead. ASSERT_MSG(mem_type <= 5, "New 3DS memory configuration aren't supported yet!"); ASSERT(mem_type != 1); // The kernel allocation regions (APPLICATION, SYSTEM and BASE) are laid out in sequence, with // the sizes specified in the memory_region_sizes table. VAddr base = 0; for (int i = 0; i < 3; ++i) { memory_regions[i].base = base; memory_regions[i].size = memory_region_sizes[mem_type][i]; memory_regions[i].used = 0; memory_regions[i].linear_heap_memory = std::make_shared>(); // Reserve enough space for this region of FCRAM. // We do not want this block of memory to be relocated when allocating from it. memory_regions[i].linear_heap_memory->reserve(memory_regions[i].size); base += memory_regions[i].size; } // We must've allocated the entire FCRAM by the end ASSERT(base == Memory::FCRAM_SIZE); using ConfigMem::config_mem; config_mem.app_mem_type = mem_type; // app_mem_malloc does not always match the configured size for memory_region[0]: in case the // n3DS type override is in effect it reports the size the game expects, not the real one. config_mem.app_mem_alloc = memory_region_sizes[mem_type][0]; config_mem.sys_mem_alloc = memory_regions[1].size; config_mem.base_mem_alloc = memory_regions[2].size; } void MemoryShutdown() { for (auto& region : memory_regions) { region.base = 0; region.size = 0; region.used = 0; region.linear_heap_memory = nullptr; } } MemoryRegionInfo* GetMemoryRegion(MemoryRegion region) { switch (region) { case MemoryRegion::APPLICATION: return &memory_regions[0]; case MemoryRegion::SYSTEM: return &memory_regions[1]; case MemoryRegion::BASE: return &memory_regions[2]; default: UNREACHABLE(); } } std::array vram; std::array n3ds_extra_ram; void HandleSpecialMapping(VMManager& address_space, const AddressMapping& mapping) { using namespace Memory; struct MemoryArea { VAddr vaddr_base; PAddr paddr_base; u32 size; }; // The order of entries in this array is important. The VRAM and IO VAddr ranges overlap, and // VRAM must be tried first. static constexpr MemoryArea memory_areas[] = { {VRAM_VADDR, VRAM_PADDR, VRAM_SIZE}, {IO_AREA_VADDR, IO_AREA_PADDR, IO_AREA_SIZE}, {DSP_RAM_VADDR, DSP_RAM_PADDR, DSP_RAM_SIZE}, {N3DS_EXTRA_RAM_VADDR, N3DS_EXTRA_RAM_PADDR, N3DS_EXTRA_RAM_SIZE - 0x20000}, }; VAddr mapping_limit = mapping.address + mapping.size; if (mapping_limit < mapping.address) { LOG_CRITICAL(Loader, "Mapping size overflowed: address=0x%08" PRIX32 " size=0x%" PRIX32, mapping.address, mapping.size); return; } auto area = std::find_if(std::begin(memory_areas), std::end(memory_areas), [&](const auto& area) { return mapping.address >= area.vaddr_base && mapping_limit <= area.vaddr_base + area.size; }); if (area == std::end(memory_areas)) { LOG_ERROR(Loader, "Unhandled special mapping: address=0x%08" PRIX32 " size=0x%" PRIX32 " read_only=%d unk_flag=%d", mapping.address, mapping.size, mapping.read_only, mapping.unk_flag); return; } u32 offset_into_region = mapping.address - area->vaddr_base; if (area->paddr_base == IO_AREA_PADDR) { LOG_ERROR(Loader, "MMIO mappings are not supported yet. phys_addr=0x%08" PRIX32, area->paddr_base + offset_into_region); return; } // TODO(yuriks): Use GetPhysicalPointer when that becomes independent of the virtual // mappings. u8* target_pointer = nullptr; switch (area->paddr_base) { case VRAM_PADDR: target_pointer = vram.data(); break; case DSP_RAM_PADDR: target_pointer = AudioCore::GetDspMemory().data(); break; case N3DS_EXTRA_RAM_PADDR: target_pointer = n3ds_extra_ram.data(); break; default: UNREACHABLE(); } // TODO(yuriks): This flag seems to have some other effect, but it's unknown what MemoryState memory_state = mapping.unk_flag ? MemoryState::Static : MemoryState::IO; auto vma = address_space .MapBackingMemory(mapping.address, target_pointer + offset_into_region, mapping.size, memory_state) .MoveFrom(); address_space.Reprotect(vma, mapping.read_only ? VMAPermission::Read : VMAPermission::ReadWrite); } void MapSharedPages(VMManager& address_space) { auto cfg_mem_vma = address_space .MapBackingMemory(Memory::CONFIG_MEMORY_VADDR, reinterpret_cast(&ConfigMem::config_mem), Memory::CONFIG_MEMORY_SIZE, MemoryState::Shared) .MoveFrom(); address_space.Reprotect(cfg_mem_vma, VMAPermission::Read); auto shared_page_vma = address_space .MapBackingMemory(Memory::SHARED_PAGE_VADDR, reinterpret_cast(&SharedPage::shared_page), Memory::SHARED_PAGE_SIZE, MemoryState::Shared) .MoveFrom(); address_space.Reprotect(shared_page_vma, VMAPermission::Read); } } // namespace Kernel