// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include "common/bit_util.h" #include "common/logging/log.h" #include "core/hle/kernel/k_handle_table.h" #include "core/hle/kernel/k_page_table.h" #include "core/hle/kernel/process_capability.h" #include "core/hle/kernel/svc_results.h" namespace Kernel { namespace { // clang-format off // Shift offsets for kernel capability types. enum : u32 { CapabilityOffset_PriorityAndCoreNum = 3, CapabilityOffset_Syscall = 4, CapabilityOffset_MapPhysical = 6, CapabilityOffset_MapIO = 7, CapabilityOffset_MapRegion = 10, CapabilityOffset_Interrupt = 11, CapabilityOffset_ProgramType = 13, CapabilityOffset_KernelVersion = 14, CapabilityOffset_HandleTableSize = 15, CapabilityOffset_Debug = 16, }; // Combined mask of all parameters that may be initialized only once. constexpr u32 InitializeOnceMask = (1U << CapabilityOffset_PriorityAndCoreNum) | (1U << CapabilityOffset_ProgramType) | (1U << CapabilityOffset_KernelVersion) | (1U << CapabilityOffset_HandleTableSize) | (1U << CapabilityOffset_Debug); // Packed kernel version indicating 10.4.0 constexpr u32 PackedKernelVersion = 0x520000; // Indicates possible types of capabilities that can be specified. enum class CapabilityType : u32 { Unset = 0U, PriorityAndCoreNum = (1U << CapabilityOffset_PriorityAndCoreNum) - 1, Syscall = (1U << CapabilityOffset_Syscall) - 1, MapPhysical = (1U << CapabilityOffset_MapPhysical) - 1, MapIO = (1U << CapabilityOffset_MapIO) - 1, MapRegion = (1U << CapabilityOffset_MapRegion) - 1, Interrupt = (1U << CapabilityOffset_Interrupt) - 1, ProgramType = (1U << CapabilityOffset_ProgramType) - 1, KernelVersion = (1U << CapabilityOffset_KernelVersion) - 1, HandleTableSize = (1U << CapabilityOffset_HandleTableSize) - 1, Debug = (1U << CapabilityOffset_Debug) - 1, Ignorable = 0xFFFFFFFFU, }; // clang-format on constexpr CapabilityType GetCapabilityType(u32 value) { return static_cast((~value & (value + 1)) - 1); } u32 GetFlagBitOffset(CapabilityType type) { const auto value = static_cast(type); return static_cast(Common::BitSize() - static_cast(std::countl_zero(value))); } } // Anonymous namespace Result ProcessCapabilities::InitializeForKernelProcess(const u32* capabilities, std::size_t num_capabilities, KPageTable& page_table) { Clear(); // Allow all cores and priorities. core_mask = 0xF; priority_mask = 0xFFFFFFFFFFFFFFFF; kernel_version = PackedKernelVersion; return ParseCapabilities(capabilities, num_capabilities, page_table); } Result ProcessCapabilities::InitializeForUserProcess(const u32* capabilities, std::size_t num_capabilities, KPageTable& page_table) { Clear(); return ParseCapabilities(capabilities, num_capabilities, page_table); } void ProcessCapabilities::InitializeForMetadatalessProcess() { // Allow all cores and priorities core_mask = 0xF; priority_mask = 0xFFFFFFFFFFFFFFFF; kernel_version = PackedKernelVersion; // Allow all system calls and interrupts. svc_capabilities.set(); interrupt_capabilities.set(); // Allow using the maximum possible amount of handles handle_table_size = static_cast(KHandleTable::MaxTableSize); // Allow all debugging capabilities. is_debuggable = true; can_force_debug = true; } Result ProcessCapabilities::ParseCapabilities(const u32* capabilities, std::size_t num_capabilities, KPageTable& page_table) { u32 set_flags = 0; u32 set_svc_bits = 0; for (std::size_t i = 0; i < num_capabilities; ++i) { const u32 descriptor = capabilities[i]; const auto type = GetCapabilityType(descriptor); if (type == CapabilityType::MapPhysical) { i++; // The MapPhysical type uses two descriptor flags for its parameters. // If there's only one, then there's a problem. if (i >= num_capabilities) { LOG_ERROR(Kernel, "Invalid combination! i={}", i); return ResultInvalidCombination; } const auto size_flags = capabilities[i]; if (GetCapabilityType(size_flags) != CapabilityType::MapPhysical) { LOG_ERROR(Kernel, "Invalid capability type! size_flags={}", size_flags); return ResultInvalidCombination; } const auto result = HandleMapPhysicalFlags(descriptor, size_flags, page_table); if (result.IsError()) { LOG_ERROR(Kernel, "Failed to map physical flags! descriptor={}, size_flags={}", descriptor, size_flags); return result; } } else { const auto result = ParseSingleFlagCapability(set_flags, set_svc_bits, descriptor, page_table); if (result.IsError()) { LOG_ERROR( Kernel, "Failed to parse capability flag! set_flags={}, set_svc_bits={}, descriptor={}", set_flags, set_svc_bits, descriptor); return result; } } } return ResultSuccess; } Result ProcessCapabilities::ParseSingleFlagCapability(u32& set_flags, u32& set_svc_bits, u32 flag, KPageTable& page_table) { const auto type = GetCapabilityType(flag); if (type == CapabilityType::Unset) { return ResultInvalidArgument; } // Bail early on ignorable entries, as one would expect, // ignorable descriptors can be ignored. if (type == CapabilityType::Ignorable) { return ResultSuccess; } // Ensure that the give flag hasn't already been initialized before. // If it has been, then bail. const u32 flag_length = GetFlagBitOffset(type); const u32 set_flag = 1U << flag_length; if ((set_flag & set_flags & InitializeOnceMask) != 0) { LOG_ERROR(Kernel, "Attempted to initialize flags that may only be initialized once. set_flags={}", set_flags); return ResultInvalidCombination; } set_flags |= set_flag; switch (type) { case CapabilityType::PriorityAndCoreNum: return HandlePriorityCoreNumFlags(flag); case CapabilityType::Syscall: return HandleSyscallFlags(set_svc_bits, flag); case CapabilityType::MapIO: return HandleMapIOFlags(flag, page_table); case CapabilityType::MapRegion: return HandleMapRegionFlags(flag, page_table); case CapabilityType::Interrupt: return HandleInterruptFlags(flag); case CapabilityType::ProgramType: return HandleProgramTypeFlags(flag); case CapabilityType::KernelVersion: return HandleKernelVersionFlags(flag); case CapabilityType::HandleTableSize: return HandleHandleTableFlags(flag); case CapabilityType::Debug: return HandleDebugFlags(flag); default: break; } LOG_ERROR(Kernel, "Invalid capability type! type={}", type); return ResultInvalidArgument; } void ProcessCapabilities::Clear() { svc_capabilities.reset(); interrupt_capabilities.reset(); core_mask = 0; priority_mask = 0; handle_table_size = 0; kernel_version = 0; program_type = ProgramType::SysModule; is_debuggable = false; can_force_debug = false; } Result ProcessCapabilities::HandlePriorityCoreNumFlags(u32 flags) { if (priority_mask != 0 || core_mask != 0) { LOG_ERROR(Kernel, "Core or priority mask are not zero! priority_mask={}, core_mask={}", priority_mask, core_mask); return ResultInvalidArgument; } const u32 core_num_min = (flags >> 16) & 0xFF; const u32 core_num_max = (flags >> 24) & 0xFF; if (core_num_min > core_num_max) { LOG_ERROR(Kernel, "Core min is greater than core max! core_num_min={}, core_num_max={}", core_num_min, core_num_max); return ResultInvalidCombination; } const u32 priority_min = (flags >> 10) & 0x3F; const u32 priority_max = (flags >> 4) & 0x3F; if (priority_min > priority_max) { LOG_ERROR(Kernel, "Priority min is greater than priority max! priority_min={}, priority_max={}", core_num_min, priority_max); return ResultInvalidCombination; } // The switch only has 4 usable cores. if (core_num_max >= 4) { LOG_ERROR(Kernel, "Invalid max cores specified! core_num_max={}", core_num_max); return ResultInvalidCoreId; } const auto make_mask = [](u64 min, u64 max) { const u64 range = max - min + 1; const u64 mask = (1ULL << range) - 1; return mask << min; }; core_mask = make_mask(core_num_min, core_num_max); priority_mask = make_mask(priority_min, priority_max); return ResultSuccess; } Result ProcessCapabilities::HandleSyscallFlags(u32& set_svc_bits, u32 flags) { const u32 index = flags >> 29; const u32 svc_bit = 1U << index; // If we've already set this svc before, bail. if ((set_svc_bits & svc_bit) != 0) { return ResultInvalidCombination; } set_svc_bits |= svc_bit; const u32 svc_mask = (flags >> 5) & 0xFFFFFF; for (u32 i = 0; i < 24; ++i) { const u32 svc_number = index * 24 + i; if ((svc_mask & (1U << i)) == 0) { continue; } svc_capabilities[svc_number] = true; } return ResultSuccess; } Result ProcessCapabilities::HandleMapPhysicalFlags(u32 flags, u32 size_flags, KPageTable& page_table) { // TODO(Lioncache): Implement once the memory manager can handle this. return ResultSuccess; } Result ProcessCapabilities::HandleMapIOFlags(u32 flags, KPageTable& page_table) { // TODO(Lioncache): Implement once the memory manager can handle this. return ResultSuccess; } Result ProcessCapabilities::HandleMapRegionFlags(u32 flags, KPageTable& page_table) { // TODO(Lioncache): Implement once the memory manager can handle this. return ResultSuccess; } Result ProcessCapabilities::HandleInterruptFlags(u32 flags) { constexpr u32 interrupt_ignore_value = 0x3FF; const u32 interrupt0 = (flags >> 12) & 0x3FF; const u32 interrupt1 = (flags >> 22) & 0x3FF; for (u32 interrupt : {interrupt0, interrupt1}) { if (interrupt == interrupt_ignore_value) { continue; } // NOTE: // This should be checking a generic interrupt controller value // as part of the calculation, however, given we don't currently // emulate that, it's sufficient to mark every interrupt as defined. if (interrupt >= interrupt_capabilities.size()) { LOG_ERROR(Kernel, "Process interrupt capability is out of range! svc_number={}", interrupt); return ResultOutOfRange; } interrupt_capabilities[interrupt] = true; } return ResultSuccess; } Result ProcessCapabilities::HandleProgramTypeFlags(u32 flags) { const u32 reserved = flags >> 17; if (reserved != 0) { LOG_ERROR(Kernel, "Reserved value is non-zero! reserved={}", reserved); return ResultReservedUsed; } program_type = static_cast((flags >> 14) & 0b111); return ResultSuccess; } Result ProcessCapabilities::HandleKernelVersionFlags(u32 flags) { // Yes, the internal member variable is checked in the actual kernel here. // This might look odd for options that are only allowed to be initialized // just once, however the kernel has a separate initialization function for // kernel processes and userland processes. The kernel variant sets this // member variable ahead of time. const u32 major_version = kernel_version >> 19; if (major_version != 0 || flags < 0x80000) { LOG_ERROR(Kernel, "Kernel version is non zero or flags are too small! major_version={}, flags={}", major_version, flags); return ResultInvalidArgument; } kernel_version = flags; return ResultSuccess; } Result ProcessCapabilities::HandleHandleTableFlags(u32 flags) { const u32 reserved = flags >> 26; if (reserved != 0) { LOG_ERROR(Kernel, "Reserved value is non-zero! reserved={}", reserved); return ResultReservedUsed; } handle_table_size = static_cast((flags >> 16) & 0x3FF); return ResultSuccess; } Result ProcessCapabilities::HandleDebugFlags(u32 flags) { const u32 reserved = flags >> 19; if (reserved != 0) { LOG_ERROR(Kernel, "Reserved value is non-zero! reserved={}", reserved); return ResultReservedUsed; } is_debuggable = (flags & 0x20000) != 0; can_force_debug = (flags & 0x40000) != 0; return ResultSuccess; } } // namespace Kernel