// Copyright 2018 yuzu emulator team // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/assert.h" #include "common/logging/log.h" #include "core/arm/arm_interface.h" #include "core/core.h" #include "core/core_timing.h" #include "core/hle/kernel/kernel.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/scheduler.h" namespace Kernel { std::mutex Scheduler::scheduler_mutex; Scheduler::Scheduler(Core::ARM_Interface& cpu_core) : cpu_core(cpu_core) {} Scheduler::~Scheduler() { for (auto& thread : thread_list) { thread->Stop(); } } bool Scheduler::HaveReadyThreads() const { std::lock_guard lock(scheduler_mutex); return ready_queue.get_first() != nullptr; } Thread* Scheduler::GetCurrentThread() const { return current_thread.get(); } u64 Scheduler::GetLastContextSwitchTicks() const { return last_context_switch_time; } Thread* Scheduler::PopNextReadyThread() { Thread* next = nullptr; Thread* thread = GetCurrentThread(); if (thread && thread->GetStatus() == ThreadStatus::Running) { // We have to do better than the current thread. // This call returns null when that's not possible. next = ready_queue.pop_first_better(thread->GetPriority()); if (!next) { // Otherwise just keep going with the current thread next = thread; } } else { next = ready_queue.pop_first(); } return next; } void Scheduler::SwitchContext(Thread* new_thread) { Thread* const previous_thread = GetCurrentThread(); Process* const previous_process = Core::CurrentProcess(); UpdateLastContextSwitchTime(previous_thread, previous_process); // Save context for previous thread if (previous_thread) { cpu_core.SaveContext(previous_thread->GetContext()); // Save the TPIDR_EL0 system register in case it was modified. previous_thread->SetTPIDR_EL0(cpu_core.GetTPIDR_EL0()); if (previous_thread->GetStatus() == ThreadStatus::Running) { // This is only the case when a reschedule is triggered without the current thread // yielding execution (i.e. an event triggered, system core time-sliced, etc) ready_queue.push_front(previous_thread->GetPriority(), previous_thread); previous_thread->SetStatus(ThreadStatus::Ready); } } // Load context of new thread if (new_thread) { ASSERT_MSG(new_thread->GetStatus() == ThreadStatus::Ready, "Thread must be ready to become running."); // Cancel any outstanding wakeup events for this thread new_thread->CancelWakeupTimer(); current_thread = new_thread; ready_queue.remove(new_thread->GetPriority(), new_thread); new_thread->SetStatus(ThreadStatus::Running); auto* const thread_owner_process = current_thread->GetOwnerProcess(); if (previous_process != thread_owner_process) { Core::System::GetInstance().Kernel().MakeCurrentProcess(thread_owner_process); SetCurrentPageTable(&Core::CurrentProcess()->VMManager().page_table); } cpu_core.LoadContext(new_thread->GetContext()); cpu_core.SetTlsAddress(new_thread->GetTLSAddress()); cpu_core.SetTPIDR_EL0(new_thread->GetTPIDR_EL0()); cpu_core.ClearExclusiveState(); } else { current_thread = nullptr; // Note: We do not reset the current process and current page table when idling because // technically we haven't changed processes, our threads are just paused. } } void Scheduler::UpdateLastContextSwitchTime(Thread* thread, Process* process) { const u64 prev_switch_ticks = last_context_switch_time; const u64 most_recent_switch_ticks = CoreTiming::GetTicks(); const u64 update_ticks = most_recent_switch_ticks - prev_switch_ticks; if (thread != nullptr) { thread->UpdateCPUTimeTicks(update_ticks); } if (process != nullptr) { process->UpdateCPUTimeTicks(update_ticks); } last_context_switch_time = most_recent_switch_ticks; } void Scheduler::Reschedule() { std::lock_guard lock(scheduler_mutex); Thread* cur = GetCurrentThread(); Thread* next = PopNextReadyThread(); if (cur && next) { LOG_TRACE(Kernel, "context switch {} -> {}", cur->GetObjectId(), next->GetObjectId()); } else if (cur) { LOG_TRACE(Kernel, "context switch {} -> idle", cur->GetObjectId()); } else if (next) { LOG_TRACE(Kernel, "context switch idle -> {}", next->GetObjectId()); } SwitchContext(next); } void Scheduler::AddThread(SharedPtr thread, u32 priority) { std::lock_guard lock(scheduler_mutex); thread_list.push_back(std::move(thread)); ready_queue.prepare(priority); } void Scheduler::RemoveThread(Thread* thread) { std::lock_guard lock(scheduler_mutex); thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread), thread_list.end()); } void Scheduler::ScheduleThread(Thread* thread, u32 priority) { std::lock_guard lock(scheduler_mutex); ASSERT(thread->GetStatus() == ThreadStatus::Ready); ready_queue.push_back(priority, thread); } void Scheduler::UnscheduleThread(Thread* thread, u32 priority) { std::lock_guard lock(scheduler_mutex); ASSERT(thread->GetStatus() == ThreadStatus::Ready); ready_queue.remove(priority, thread); } void Scheduler::SetThreadPriority(Thread* thread, u32 priority) { std::lock_guard lock(scheduler_mutex); // If thread was ready, adjust queues if (thread->GetStatus() == ThreadStatus::Ready) ready_queue.move(thread, thread->GetPriority(), priority); else ready_queue.prepare(priority); } } // namespace Kernel