// Copyright 2018 yuzu emulator team // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include "common/alignment.h" #include "common/assert.h" #include "common/fiber.h" #include "common/logging/log.h" #include "common/microprofile.h" #include "common/string_util.h" #include "core/arm/exclusive_monitor.h" #include "core/core.h" #include "core/core_manager.h" #include "core/core_timing.h" #include "core/core_timing_util.h" #include "core/cpu_manager.h" #include "core/hle/kernel/address_arbiter.h" #include "core/hle/kernel/client_port.h" #include "core/hle/kernel/client_session.h" #include "core/hle/kernel/errors.h" #include "core/hle/kernel/handle_table.h" #include "core/hle/kernel/kernel.h" #include "core/hle/kernel/memory/memory_block.h" #include "core/hle/kernel/memory/page_table.h" #include "core/hle/kernel/mutex.h" #include "core/hle/kernel/physical_core.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/readable_event.h" #include "core/hle/kernel/resource_limit.h" #include "core/hle/kernel/scheduler.h" #include "core/hle/kernel/shared_memory.h" #include "core/hle/kernel/svc.h" #include "core/hle/kernel/svc_types.h" #include "core/hle/kernel/svc_wrap.h" #include "core/hle/kernel/synchronization.h" #include "core/hle/kernel/thread.h" #include "core/hle/kernel/time_manager.h" #include "core/hle/kernel/transfer_memory.h" #include "core/hle/kernel/writable_event.h" #include "core/hle/lock.h" #include "core/hle/result.h" #include "core/hle/service/service.h" #include "core/memory.h" #include "core/reporter.h" namespace Kernel::Svc { namespace { // Checks if address + size is greater than the given address // This can return false if the size causes an overflow of a 64-bit type // or if the given size is zero. constexpr bool IsValidAddressRange(VAddr address, u64 size) { return address + size > address; } // Helper function that performs the common sanity checks for svcMapMemory // and svcUnmapMemory. This is doable, as both functions perform their sanitizing // in the same order. ResultCode MapUnmapMemorySanityChecks(const Memory::PageTable& manager, VAddr dst_addr, VAddr src_addr, u64 size) { if (!Common::Is4KBAligned(dst_addr)) { LOG_ERROR(Kernel_SVC, "Destination address is not aligned to 4KB, 0x{:016X}", dst_addr); return ERR_INVALID_ADDRESS; } if (!Common::Is4KBAligned(src_addr)) { LOG_ERROR(Kernel_SVC, "Source address is not aligned to 4KB, 0x{:016X}", src_addr); return ERR_INVALID_SIZE; } if (size == 0) { LOG_ERROR(Kernel_SVC, "Size is 0"); return ERR_INVALID_SIZE; } if (!Common::Is4KBAligned(size)) { LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:016X}", size); return ERR_INVALID_SIZE; } if (!IsValidAddressRange(dst_addr, size)) { LOG_ERROR(Kernel_SVC, "Destination is not a valid address range, addr=0x{:016X}, size=0x{:016X}", dst_addr, size); return ERR_INVALID_ADDRESS_STATE; } if (!IsValidAddressRange(src_addr, size)) { LOG_ERROR(Kernel_SVC, "Source is not a valid address range, addr=0x{:016X}, size=0x{:016X}", src_addr, size); return ERR_INVALID_ADDRESS_STATE; } if (!manager.IsInsideAddressSpace(src_addr, size)) { LOG_ERROR(Kernel_SVC, "Source is not within the address space, addr=0x{:016X}, size=0x{:016X}", src_addr, size); return ERR_INVALID_ADDRESS_STATE; } if (manager.IsOutsideStackRegion(dst_addr, size)) { LOG_ERROR(Kernel_SVC, "Destination is not within the stack region, addr=0x{:016X}, size=0x{:016X}", dst_addr, size); return ERR_INVALID_MEMORY_RANGE; } if (manager.IsInsideHeapRegion(dst_addr, size)) { LOG_ERROR(Kernel_SVC, "Destination does not fit within the heap region, addr=0x{:016X}, " "size=0x{:016X}", dst_addr, size); return ERR_INVALID_MEMORY_RANGE; } if (manager.IsInsideAliasRegion(dst_addr, size)) { LOG_ERROR(Kernel_SVC, "Destination does not fit within the map region, addr=0x{:016X}, " "size=0x{:016X}", dst_addr, size); return ERR_INVALID_MEMORY_RANGE; } return RESULT_SUCCESS; } enum class ResourceLimitValueType { CurrentValue, LimitValue, }; ResultVal RetrieveResourceLimitValue(Core::System& system, Handle resource_limit, u32 resource_type, ResourceLimitValueType value_type) { std::lock_guard lock{HLE::g_hle_lock}; const auto type = static_cast(resource_type); if (!IsValidResourceType(type)) { LOG_ERROR(Kernel_SVC, "Invalid resource limit type: '{}'", resource_type); return ERR_INVALID_ENUM_VALUE; } const auto* const current_process = system.Kernel().CurrentProcess(); ASSERT(current_process != nullptr); const auto resource_limit_object = current_process->GetHandleTable().Get(resource_limit); if (!resource_limit_object) { LOG_ERROR(Kernel_SVC, "Handle to non-existent resource limit instance used. Handle={:08X}", resource_limit); return ERR_INVALID_HANDLE; } if (value_type == ResourceLimitValueType::CurrentValue) { return MakeResult(resource_limit_object->GetCurrentResourceValue(type)); } return MakeResult(resource_limit_object->GetMaxResourceValue(type)); } } // Anonymous namespace /// Set the process heap to a given Size. It can both extend and shrink the heap. static ResultCode SetHeapSize(Core::System& system, VAddr* heap_addr, u64 heap_size) { std::lock_guard lock{HLE::g_hle_lock}; LOG_TRACE(Kernel_SVC, "called, heap_size=0x{:X}", heap_size); // Size must be a multiple of 0x200000 (2MB) and be equal to or less than 8GB. if ((heap_size % 0x200000) != 0) { LOG_ERROR(Kernel_SVC, "The heap size is not a multiple of 2MB, heap_size=0x{:016X}", heap_size); return ERR_INVALID_SIZE; } if (heap_size >= 0x200000000) { LOG_ERROR(Kernel_SVC, "The heap size is not less than 8GB, heap_size=0x{:016X}", heap_size); return ERR_INVALID_SIZE; } auto& page_table{system.Kernel().CurrentProcess()->PageTable()}; CASCADE_RESULT(*heap_addr, page_table.SetHeapSize(heap_size)); return RESULT_SUCCESS; } static ResultCode SetHeapSize32(Core::System& system, u32* heap_addr, u32 heap_size) { VAddr temp_heap_addr{}; const ResultCode result{SetHeapSize(system, &temp_heap_addr, heap_size)}; *heap_addr = static_cast(temp_heap_addr); return result; } static ResultCode SetMemoryAttribute(Core::System& system, VAddr address, u64 size, u32 mask, u32 attribute) { std::lock_guard lock{HLE::g_hle_lock}; LOG_DEBUG(Kernel_SVC, "called, address=0x{:016X}, size=0x{:X}, mask=0x{:08X}, attribute=0x{:08X}", address, size, mask, attribute); if (!Common::Is4KBAligned(address)) { LOG_ERROR(Kernel_SVC, "Address not page aligned (0x{:016X})", address); return ERR_INVALID_ADDRESS; } if (size == 0 || !Common::Is4KBAligned(size)) { LOG_ERROR(Kernel_SVC, "Invalid size (0x{:X}). Size must be non-zero and page aligned.", size); return ERR_INVALID_ADDRESS; } if (!IsValidAddressRange(address, size)) { LOG_ERROR(Kernel_SVC, "Address range overflowed (Address: 0x{:016X}, Size: 0x{:016X})", address, size); return ERR_INVALID_ADDRESS_STATE; } const auto attributes{static_cast(mask | attribute)}; if (attributes != static_cast(mask) || (attributes | Memory::MemoryAttribute::Uncached) != Memory::MemoryAttribute::Uncached) { LOG_ERROR(Kernel_SVC, "Memory attribute doesn't match the given mask (Attribute: 0x{:X}, Mask: {:X}", attribute, mask); return ERR_INVALID_COMBINATION; } auto& page_table{system.Kernel().CurrentProcess()->PageTable()}; return page_table.SetMemoryAttribute(address, size, static_cast(mask), static_cast(attribute)); } /// Maps a memory range into a different range. static ResultCode MapMemory(Core::System& system, VAddr dst_addr, VAddr src_addr, u64 size) { std::lock_guard lock{HLE::g_hle_lock}; LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr, src_addr, size); auto& page_table{system.Kernel().CurrentProcess()->PageTable()}; if (const ResultCode result{MapUnmapMemorySanityChecks(page_table, dst_addr, src_addr, size)}; result.IsError()) { return result; } return page_table.Map(dst_addr, src_addr, size); } /// Unmaps a region that was previously mapped with svcMapMemory static ResultCode UnmapMemory(Core::System& system, VAddr dst_addr, VAddr src_addr, u64 size) { std::lock_guard lock{HLE::g_hle_lock}; LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr, src_addr, size); auto& page_table{system.Kernel().CurrentProcess()->PageTable()}; if (const ResultCode result{MapUnmapMemorySanityChecks(page_table, dst_addr, src_addr, size)}; result.IsError()) { return result; } return page_table.Unmap(dst_addr, src_addr, size); } /// Connect to an OS service given the port name, returns the handle to the port to out static ResultCode ConnectToNamedPort(Core::System& system, Handle* out_handle, VAddr port_name_address) { std::lock_guard lock{HLE::g_hle_lock}; auto& memory = system.Memory(); if (!memory.IsValidVirtualAddress(port_name_address)) { LOG_ERROR(Kernel_SVC, "Port Name Address is not a valid virtual address, port_name_address=0x{:016X}", port_name_address); return ERR_NOT_FOUND; } static constexpr std::size_t PortNameMaxLength = 11; // Read 1 char beyond the max allowed port name to detect names that are too long. const std::string port_name = memory.ReadCString(port_name_address, PortNameMaxLength + 1); if (port_name.size() > PortNameMaxLength) { LOG_ERROR(Kernel_SVC, "Port name is too long, expected {} but got {}", PortNameMaxLength, port_name.size()); return ERR_OUT_OF_RANGE; } LOG_TRACE(Kernel_SVC, "called port_name={}", port_name); auto& kernel = system.Kernel(); const auto it = kernel.FindNamedPort(port_name); if (!kernel.IsValidNamedPort(it)) { LOG_WARNING(Kernel_SVC, "tried to connect to unknown port: {}", port_name); return ERR_NOT_FOUND; } ASSERT(kernel.CurrentProcess()->GetResourceLimit()->Reserve(ResourceType::Sessions, 1)); auto client_port = it->second; std::shared_ptr client_session; CASCADE_RESULT(client_session, client_port->Connect()); // Return the client session auto& handle_table = kernel.CurrentProcess()->GetHandleTable(); CASCADE_RESULT(*out_handle, handle_table.Create(client_session)); return RESULT_SUCCESS; } static ResultCode ConnectToNamedPort32(Core::System& system, Handle* out_handle, u32 port_name_address) { return ConnectToNamedPort(system, out_handle, port_name_address); } /// Makes a blocking IPC call to an OS service. static ResultCode SendSyncRequest(Core::System& system, Handle handle) { const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); std::shared_ptr session = handle_table.Get(handle); if (!session) { LOG_ERROR(Kernel_SVC, "called with invalid handle=0x{:08X}", handle); return ERR_INVALID_HANDLE; } LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({})", handle, session->GetName()); auto thread = system.CurrentScheduler().GetCurrentThread(); { SchedulerLock lock(system.Kernel()); thread->InvalidateHLECallback(); thread->SetStatus(ThreadStatus::WaitIPC); session->SendSyncRequest(SharedFrom(thread), system.Memory()); } if (thread->HasHLECallback()) { Handle event_handle = thread->GetHLETimeEvent(); if (event_handle != InvalidHandle) { auto& time_manager = system.Kernel().TimeManager(); time_manager.UnscheduleTimeEvent(event_handle); } thread->InvokeHLECallback(SharedFrom(thread)); } return RESULT_SUCCESS; } static ResultCode SendSyncRequest32(Core::System& system, Handle handle) { return SendSyncRequest(system, handle); } /// Get the ID for the specified thread. static ResultCode GetThreadId(Core::System& system, u64* thread_id, Handle thread_handle) { LOG_TRACE(Kernel_SVC, "called thread=0x{:08X}", thread_handle); const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); const std::shared_ptr thread = handle_table.Get(thread_handle); if (!thread) { LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", thread_handle); return ERR_INVALID_HANDLE; } *thread_id = thread->GetThreadID(); return RESULT_SUCCESS; } static ResultCode GetThreadId32(Core::System& system, u32* thread_id_low, u32* thread_id_high, Handle thread_handle) { u64 thread_id{}; const ResultCode result{GetThreadId(system, &thread_id, thread_handle)}; *thread_id_low = static_cast(thread_id >> 32); *thread_id_high = static_cast(thread_id & std::numeric_limits::max()); return result; } /// Gets the ID of the specified process or a specified thread's owning process. static ResultCode GetProcessId(Core::System& system, u64* process_id, Handle handle) { LOG_DEBUG(Kernel_SVC, "called handle=0x{:08X}", handle); const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); const std::shared_ptr process = handle_table.Get(handle); if (process) { *process_id = process->GetProcessID(); return RESULT_SUCCESS; } const std::shared_ptr thread = handle_table.Get(handle); if (thread) { const Process* const owner_process = thread->GetOwnerProcess(); if (!owner_process) { LOG_ERROR(Kernel_SVC, "Non-existent owning process encountered."); return ERR_INVALID_HANDLE; } *process_id = owner_process->GetProcessID(); return RESULT_SUCCESS; } // NOTE: This should also handle debug objects before returning. LOG_ERROR(Kernel_SVC, "Handle does not exist, handle=0x{:08X}", handle); return ERR_INVALID_HANDLE; } /// Wait for the given handles to synchronize, timeout after the specified nanoseconds static ResultCode WaitSynchronization(Core::System& system, Handle* index, VAddr handles_address, u64 handle_count, s64 nano_seconds) { LOG_TRACE(Kernel_SVC, "called handles_address=0x{:X}, handle_count={}, nano_seconds={}", handles_address, handle_count, nano_seconds); auto& memory = system.Memory(); if (!memory.IsValidVirtualAddress(handles_address)) { LOG_ERROR(Kernel_SVC, "Handle address is not a valid virtual address, handle_address=0x{:016X}", handles_address); return ERR_INVALID_POINTER; } static constexpr u64 MaxHandles = 0x40; if (handle_count > MaxHandles) { LOG_ERROR(Kernel_SVC, "Handle count specified is too large, expected {} but got {}", MaxHandles, handle_count); return ERR_OUT_OF_RANGE; } auto* const thread = system.CurrentScheduler().GetCurrentThread(); auto& kernel = system.Kernel(); using ObjectPtr = Thread::ThreadSynchronizationObjects::value_type; Thread::ThreadSynchronizationObjects objects(handle_count); const auto& handle_table = kernel.CurrentProcess()->GetHandleTable(); for (u64 i = 0; i < handle_count; ++i) { const Handle handle = memory.Read32(handles_address + i * sizeof(Handle)); const auto object = handle_table.Get(handle); if (object == nullptr) { LOG_ERROR(Kernel_SVC, "Object is a nullptr"); return ERR_INVALID_HANDLE; } objects[i] = object; } auto& synchronization = kernel.Synchronization(); const auto [result, handle_result] = synchronization.WaitFor(objects, nano_seconds); *index = handle_result; return result; } static ResultCode WaitSynchronization32(Core::System& system, u32 timeout_low, u32 handles_address, s32 handle_count, u32 timeout_high, Handle* index) { const s64 nano_seconds{(static_cast(timeout_high) << 32) | static_cast(timeout_low)}; return WaitSynchronization(system, index, handles_address, handle_count, nano_seconds); } /// Resumes a thread waiting on WaitSynchronization static ResultCode CancelSynchronization(Core::System& system, Handle thread_handle) { LOG_TRACE(Kernel_SVC, "called thread=0x{:X}", thread_handle); const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); std::shared_ptr thread = handle_table.Get(thread_handle); if (!thread) { LOG_ERROR(Kernel_SVC, "Thread handle does not exist, thread_handle=0x{:08X}", thread_handle); return ERR_INVALID_HANDLE; } thread->CancelWait(); return RESULT_SUCCESS; } /// Attempts to locks a mutex, creating it if it does not already exist static ResultCode ArbitrateLock(Core::System& system, Handle holding_thread_handle, VAddr mutex_addr, Handle requesting_thread_handle) { LOG_TRACE(Kernel_SVC, "called holding_thread_handle=0x{:08X}, mutex_addr=0x{:X}, " "requesting_current_thread_handle=0x{:08X}", holding_thread_handle, mutex_addr, requesting_thread_handle); if (Core::Memory::IsKernelVirtualAddress(mutex_addr)) { LOG_ERROR(Kernel_SVC, "Mutex Address is a kernel virtual address, mutex_addr={:016X}", mutex_addr); return ERR_INVALID_ADDRESS_STATE; } if (!Common::IsWordAligned(mutex_addr)) { LOG_ERROR(Kernel_SVC, "Mutex Address is not word aligned, mutex_addr={:016X}", mutex_addr); return ERR_INVALID_ADDRESS; } auto* const current_process = system.Kernel().CurrentProcess(); return current_process->GetMutex().TryAcquire(mutex_addr, holding_thread_handle, requesting_thread_handle); } /// Unlock a mutex static ResultCode ArbitrateUnlock(Core::System& system, VAddr mutex_addr) { LOG_TRACE(Kernel_SVC, "called mutex_addr=0x{:X}", mutex_addr); if (Core::Memory::IsKernelVirtualAddress(mutex_addr)) { LOG_ERROR(Kernel_SVC, "Mutex Address is a kernel virtual address, mutex_addr={:016X}", mutex_addr); return ERR_INVALID_ADDRESS_STATE; } if (!Common::IsWordAligned(mutex_addr)) { LOG_ERROR(Kernel_SVC, "Mutex Address is not word aligned, mutex_addr={:016X}", mutex_addr); return ERR_INVALID_ADDRESS; } auto* const current_process = system.Kernel().CurrentProcess(); return current_process->GetMutex().Release(mutex_addr); } enum class BreakType : u32 { Panic = 0, AssertionFailed = 1, PreNROLoad = 3, PostNROLoad = 4, PreNROUnload = 5, PostNROUnload = 6, CppException = 7, }; struct BreakReason { union { u32 raw; BitField<0, 30, BreakType> break_type; BitField<31, 1, u32> signal_debugger; }; }; /// Break program execution static void Break(Core::System& system, u32 reason, u64 info1, u64 info2) { BreakReason break_reason{reason}; bool has_dumped_buffer{}; std::vector debug_buffer; const auto handle_debug_buffer = [&](VAddr addr, u64 sz) { if (sz == 0 || addr == 0 || has_dumped_buffer) { return; } auto& memory = system.Memory(); // This typically is an error code so we're going to assume this is the case if (sz == sizeof(u32)) { LOG_CRITICAL(Debug_Emulated, "debug_buffer_err_code={:X}", memory.Read32(addr)); } else { // We don't know what's in here so we'll hexdump it debug_buffer.resize(sz); memory.ReadBlock(addr, debug_buffer.data(), sz); std::string hexdump; for (std::size_t i = 0; i < debug_buffer.size(); i++) { hexdump += fmt::format("{:02X} ", debug_buffer[i]); if (i != 0 && i % 16 == 0) { hexdump += '\n'; } } LOG_CRITICAL(Debug_Emulated, "debug_buffer=\n{}", hexdump); } has_dumped_buffer = true; }; switch (break_reason.break_type) { case BreakType::Panic: LOG_CRITICAL(Debug_Emulated, "Signalling debugger, PANIC! info1=0x{:016X}, info2=0x{:016X}", info1, info2); handle_debug_buffer(info1, info2); break; case BreakType::AssertionFailed: LOG_CRITICAL(Debug_Emulated, "Signalling debugger, Assertion failed! info1=0x{:016X}, info2=0x{:016X}", info1, info2); handle_debug_buffer(info1, info2); break; case BreakType::PreNROLoad: LOG_WARNING( Debug_Emulated, "Signalling debugger, Attempting to load an NRO at 0x{:016X} with size 0x{:016X}", info1, info2); break; case BreakType::PostNROLoad: LOG_WARNING(Debug_Emulated, "Signalling debugger, Loaded an NRO at 0x{:016X} with size 0x{:016X}", info1, info2); break; case BreakType::PreNROUnload: LOG_WARNING( Debug_Emulated, "Signalling debugger, Attempting to unload an NRO at 0x{:016X} with size 0x{:016X}", info1, info2); break; case BreakType::PostNROUnload: LOG_WARNING(Debug_Emulated, "Signalling debugger, Unloaded an NRO at 0x{:016X} with size 0x{:016X}", info1, info2); break; case BreakType::CppException: LOG_CRITICAL(Debug_Emulated, "Signalling debugger. Uncaught C++ exception encountered."); break; default: LOG_WARNING( Debug_Emulated, "Signalling debugger, Unknown break reason {}, info1=0x{:016X}, info2=0x{:016X}", static_cast(break_reason.break_type.Value()), info1, info2); handle_debug_buffer(info1, info2); break; } system.GetReporter().SaveSvcBreakReport( static_cast(break_reason.break_type.Value()), break_reason.signal_debugger, info1, info2, has_dumped_buffer ? std::make_optional(debug_buffer) : std::nullopt); if (!break_reason.signal_debugger) { LOG_CRITICAL( Debug_Emulated, "Emulated program broke execution! reason=0x{:016X}, info1=0x{:016X}, info2=0x{:016X}", reason, info1, info2); handle_debug_buffer(info1, info2); auto* const current_thread = system.CurrentScheduler().GetCurrentThread(); const auto thread_processor_id = current_thread->GetProcessorID(); system.ArmInterface(static_cast(thread_processor_id)).LogBacktrace(); system.Kernel().CurrentProcess()->PrepareForTermination(); // Kill the current thread current_thread->Stop(); } } /// Used to output a message on a debug hardware unit - does nothing on a retail unit static void OutputDebugString([[maybe_unused]] Core::System& system, VAddr address, u64 len) { if (len == 0) { return; } std::string str(len, '\0'); system.Memory().ReadBlock(address, str.data(), str.size()); LOG_DEBUG(Debug_Emulated, "{}", str); } /// Gets system/memory information for the current process static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, u64 handle, u64 info_sub_id) { std::lock_guard lock{HLE::g_hle_lock}; LOG_TRACE(Kernel_SVC, "called info_id=0x{:X}, info_sub_id=0x{:X}, handle=0x{:08X}", info_id, info_sub_id, handle); enum class GetInfoType : u64 { // 1.0.0+ AllowedCPUCoreMask = 0, AllowedThreadPriorityMask = 1, MapRegionBaseAddr = 2, MapRegionSize = 3, HeapRegionBaseAddr = 4, HeapRegionSize = 5, TotalPhysicalMemoryAvailable = 6, TotalPhysicalMemoryUsed = 7, IsCurrentProcessBeingDebugged = 8, RegisterResourceLimit = 9, IdleTickCount = 10, RandomEntropy = 11, ThreadTickCount = 0xF0000002, // 2.0.0+ ASLRRegionBaseAddr = 12, ASLRRegionSize = 13, StackRegionBaseAddr = 14, StackRegionSize = 15, // 3.0.0+ SystemResourceSize = 16, SystemResourceUsage = 17, TitleId = 18, // 4.0.0+ PrivilegedProcessId = 19, // 5.0.0+ UserExceptionContextAddr = 20, // 6.0.0+ TotalPhysicalMemoryAvailableWithoutSystemResource = 21, TotalPhysicalMemoryUsedWithoutSystemResource = 22, }; const auto info_id_type = static_cast(info_id); switch (info_id_type) { case GetInfoType::AllowedCPUCoreMask: case GetInfoType::AllowedThreadPriorityMask: case GetInfoType::MapRegionBaseAddr: case GetInfoType::MapRegionSize: case GetInfoType::HeapRegionBaseAddr: case GetInfoType::HeapRegionSize: case GetInfoType::ASLRRegionBaseAddr: case GetInfoType::ASLRRegionSize: case GetInfoType::StackRegionBaseAddr: case GetInfoType::StackRegionSize: case GetInfoType::TotalPhysicalMemoryAvailable: case GetInfoType::TotalPhysicalMemoryUsed: case GetInfoType::SystemResourceSize: case GetInfoType::SystemResourceUsage: case GetInfoType::TitleId: case GetInfoType::UserExceptionContextAddr: case GetInfoType::TotalPhysicalMemoryAvailableWithoutSystemResource: case GetInfoType::TotalPhysicalMemoryUsedWithoutSystemResource: { if (info_sub_id != 0) { LOG_ERROR(Kernel_SVC, "Info sub id is non zero! info_id={}, info_sub_id={}", info_id, info_sub_id); return ERR_INVALID_ENUM_VALUE; } const auto& current_process_handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); const auto process = current_process_handle_table.Get(static_cast(handle)); if (!process) { LOG_ERROR(Kernel_SVC, "Process is not valid! info_id={}, info_sub_id={}, handle={:08X}", info_id, info_sub_id, handle); return ERR_INVALID_HANDLE; } switch (info_id_type) { case GetInfoType::AllowedCPUCoreMask: *result = process->GetCoreMask(); return RESULT_SUCCESS; case GetInfoType::AllowedThreadPriorityMask: *result = process->GetPriorityMask(); return RESULT_SUCCESS; case GetInfoType::MapRegionBaseAddr: *result = process->PageTable().GetAliasRegionStart(); return RESULT_SUCCESS; case GetInfoType::MapRegionSize: *result = process->PageTable().GetAliasRegionSize(); return RESULT_SUCCESS; case GetInfoType::HeapRegionBaseAddr: *result = process->PageTable().GetHeapRegionStart(); return RESULT_SUCCESS; case GetInfoType::HeapRegionSize: *result = process->PageTable().GetHeapRegionSize(); return RESULT_SUCCESS; case GetInfoType::ASLRRegionBaseAddr: *result = process->PageTable().GetAliasCodeRegionStart(); return RESULT_SUCCESS; case GetInfoType::ASLRRegionSize: *result = process->PageTable().GetAliasCodeRegionSize(); return RESULT_SUCCESS; case GetInfoType::StackRegionBaseAddr: *result = process->PageTable().GetStackRegionStart(); return RESULT_SUCCESS; case GetInfoType::StackRegionSize: *result = process->PageTable().GetStackRegionSize(); return RESULT_SUCCESS; case GetInfoType::TotalPhysicalMemoryAvailable: *result = process->GetTotalPhysicalMemoryAvailable(); return RESULT_SUCCESS; case GetInfoType::TotalPhysicalMemoryUsed: *result = process->GetTotalPhysicalMemoryUsed(); return RESULT_SUCCESS; case GetInfoType::SystemResourceSize: *result = process->GetSystemResourceSize(); return RESULT_SUCCESS; case GetInfoType::SystemResourceUsage: LOG_WARNING(Kernel_SVC, "(STUBBED) Attempted to query system resource usage"); *result = process->GetSystemResourceUsage(); return RESULT_SUCCESS; case GetInfoType::TitleId: *result = process->GetTitleID(); return RESULT_SUCCESS; case GetInfoType::UserExceptionContextAddr: *result = process->GetTLSRegionAddress(); return RESULT_SUCCESS; case GetInfoType::TotalPhysicalMemoryAvailableWithoutSystemResource: *result = process->GetTotalPhysicalMemoryAvailableWithoutSystemResource(); return RESULT_SUCCESS; case GetInfoType::TotalPhysicalMemoryUsedWithoutSystemResource: *result = process->GetTotalPhysicalMemoryUsedWithoutSystemResource(); return RESULT_SUCCESS; default: break; } LOG_ERROR(Kernel_SVC, "Unimplemented svcGetInfo id=0x{:016X}", info_id); return ERR_INVALID_ENUM_VALUE; } case GetInfoType::IsCurrentProcessBeingDebugged: *result = 0; return RESULT_SUCCESS; case GetInfoType::RegisterResourceLimit: { if (handle != 0) { LOG_ERROR(Kernel, "Handle is non zero! handle={:08X}", handle); return ERR_INVALID_HANDLE; } if (info_sub_id != 0) { LOG_ERROR(Kernel, "Info sub id is non zero! info_id={}, info_sub_id={}", info_id, info_sub_id); return ERR_INVALID_COMBINATION; } Process* const current_process = system.Kernel().CurrentProcess(); HandleTable& handle_table = current_process->GetHandleTable(); const auto resource_limit = current_process->GetResourceLimit(); if (!resource_limit) { *result = KernelHandle::InvalidHandle; // Yes, the kernel considers this a successful operation. return RESULT_SUCCESS; } const auto table_result = handle_table.Create(resource_limit); if (table_result.Failed()) { return table_result.Code(); } *result = *table_result; return RESULT_SUCCESS; } case GetInfoType::RandomEntropy: if (handle != 0) { LOG_ERROR(Kernel_SVC, "Process Handle is non zero, expected 0 result but got {:016X}", handle); return ERR_INVALID_HANDLE; } if (info_sub_id >= Process::RANDOM_ENTROPY_SIZE) { LOG_ERROR(Kernel_SVC, "Entropy size is out of range, expected {} but got {}", Process::RANDOM_ENTROPY_SIZE, info_sub_id); return ERR_INVALID_COMBINATION; } *result = system.Kernel().CurrentProcess()->GetRandomEntropy(info_sub_id); return RESULT_SUCCESS; case GetInfoType::PrivilegedProcessId: LOG_WARNING(Kernel_SVC, "(STUBBED) Attempted to query privileged process id bounds, returned 0"); *result = 0; return RESULT_SUCCESS; case GetInfoType::ThreadTickCount: { constexpr u64 num_cpus = 4; if (info_sub_id != 0xFFFFFFFFFFFFFFFF && info_sub_id >= num_cpus) { LOG_ERROR(Kernel_SVC, "Core count is out of range, expected {} but got {}", num_cpus, info_sub_id); return ERR_INVALID_COMBINATION; } const auto thread = system.Kernel().CurrentProcess()->GetHandleTable().Get( static_cast(handle)); if (!thread) { LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", static_cast(handle)); return ERR_INVALID_HANDLE; } const auto& core_timing = system.CoreTiming(); const auto& scheduler = system.CurrentScheduler(); const auto* const current_thread = scheduler.GetCurrentThread(); const bool same_thread = current_thread == thread.get(); const u64 prev_ctx_ticks = scheduler.GetLastContextSwitchTicks(); u64 out_ticks = 0; if (same_thread && info_sub_id == 0xFFFFFFFFFFFFFFFF) { const u64 thread_ticks = current_thread->GetTotalCPUTimeTicks(); out_ticks = thread_ticks + (core_timing.GetCPUTicks() - prev_ctx_ticks); } else if (same_thread && info_sub_id == system.CurrentCoreIndex()) { out_ticks = core_timing.GetCPUTicks() - prev_ctx_ticks; } *result = out_ticks; return RESULT_SUCCESS; } default: LOG_ERROR(Kernel_SVC, "Unimplemented svcGetInfo id=0x{:016X}", info_id); return ERR_INVALID_ENUM_VALUE; } } static ResultCode GetInfo32(Core::System& system, u32* result_low, u32* result_high, u32 sub_id_low, u32 info_id, u32 handle, u32 sub_id_high) { const u64 sub_id{static_cast(sub_id_low | (static_cast(sub_id_high) << 32))}; u64 res_value{}; const ResultCode result{GetInfo(system, &res_value, info_id, handle, sub_id)}; *result_high = static_cast(res_value >> 32); *result_low = static_cast(res_value & std::numeric_limits::max()); return result; } /// Maps memory at a desired address static ResultCode MapPhysicalMemory(Core::System& system, VAddr addr, u64 size) { std::lock_guard lock{HLE::g_hle_lock}; LOG_DEBUG(Kernel_SVC, "called, addr=0x{:016X}, size=0x{:X}", addr, size); if (!Common::Is4KBAligned(addr)) { LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, 0x{:016X}", addr); return ERR_INVALID_ADDRESS; } if (!Common::Is4KBAligned(size)) { LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:X}", size); return ERR_INVALID_SIZE; } if (size == 0) { LOG_ERROR(Kernel_SVC, "Size is zero"); return ERR_INVALID_SIZE; } if (!(addr < addr + size)) { LOG_ERROR(Kernel_SVC, "Size causes 64-bit overflow of address"); return ERR_INVALID_MEMORY_RANGE; } Process* const current_process{system.Kernel().CurrentProcess()}; auto& page_table{current_process->PageTable()}; if (current_process->GetSystemResourceSize() == 0) { LOG_ERROR(Kernel_SVC, "System Resource Size is zero"); return ERR_INVALID_STATE; } if (!page_table.IsInsideAddressSpace(addr, size)) { LOG_ERROR(Kernel_SVC, "Address is not within the address space, addr=0x{:016X}, size=0x{:016X}", addr, size); return ERR_INVALID_MEMORY_RANGE; } if (page_table.IsOutsideAliasRegion(addr, size)) { LOG_ERROR(Kernel_SVC, "Address is not within the alias region, addr=0x{:016X}, size=0x{:016X}", addr, size); return ERR_INVALID_MEMORY_RANGE; } return page_table.MapPhysicalMemory(addr, size); } /// Unmaps memory previously mapped via MapPhysicalMemory static ResultCode UnmapPhysicalMemory(Core::System& system, VAddr addr, u64 size) { std::lock_guard lock{HLE::g_hle_lock}; LOG_DEBUG(Kernel_SVC, "called, addr=0x{:016X}, size=0x{:X}", addr, size); if (!Common::Is4KBAligned(addr)) { LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, 0x{:016X}", addr); return ERR_INVALID_ADDRESS; } if (!Common::Is4KBAligned(size)) { LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:X}", size); return ERR_INVALID_SIZE; } if (size == 0) { LOG_ERROR(Kernel_SVC, "Size is zero"); return ERR_INVALID_SIZE; } if (!(addr < addr + size)) { LOG_ERROR(Kernel_SVC, "Size causes 64-bit overflow of address"); return ERR_INVALID_MEMORY_RANGE; } Process* const current_process{system.Kernel().CurrentProcess()}; auto& page_table{current_process->PageTable()}; if (current_process->GetSystemResourceSize() == 0) { LOG_ERROR(Kernel_SVC, "System Resource Size is zero"); return ERR_INVALID_STATE; } if (!page_table.IsInsideAddressSpace(addr, size)) { LOG_ERROR(Kernel_SVC, "Address is not within the address space, addr=0x{:016X}, size=0x{:016X}", addr, size); return ERR_INVALID_MEMORY_RANGE; } if (page_table.IsOutsideAliasRegion(addr, size)) { LOG_ERROR(Kernel_SVC, "Address is not within the alias region, addr=0x{:016X}, size=0x{:016X}", addr, size); return ERR_INVALID_MEMORY_RANGE; } return page_table.UnmapPhysicalMemory(addr, size); } /// Sets the thread activity static ResultCode SetThreadActivity(Core::System& system, Handle handle, u32 activity) { LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, activity=0x{:08X}", handle, activity); if (activity > static_cast(ThreadActivity::Paused)) { return ERR_INVALID_ENUM_VALUE; } const auto* current_process = system.Kernel().CurrentProcess(); const std::shared_ptr thread = current_process->GetHandleTable().Get(handle); if (!thread) { LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", handle); return ERR_INVALID_HANDLE; } if (thread->GetOwnerProcess() != current_process) { LOG_ERROR(Kernel_SVC, "The current process does not own the current thread, thread_handle={:08X} " "thread_pid={}, " "current_process_pid={}", handle, thread->GetOwnerProcess()->GetProcessID(), current_process->GetProcessID()); return ERR_INVALID_HANDLE; } if (thread.get() == system.CurrentScheduler().GetCurrentThread()) { LOG_ERROR(Kernel_SVC, "The thread handle specified is the current running thread"); return ERR_BUSY; } return thread->SetActivity(static_cast(activity)); } /// Gets the thread context static ResultCode GetThreadContext(Core::System& system, VAddr thread_context, Handle handle) { LOG_DEBUG(Kernel_SVC, "called, context=0x{:08X}, thread=0x{:X}", thread_context, handle); const auto* current_process = system.Kernel().CurrentProcess(); const std::shared_ptr thread = current_process->GetHandleTable().Get(handle); if (!thread) { LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", handle); return ERR_INVALID_HANDLE; } if (thread->GetOwnerProcess() != current_process) { LOG_ERROR(Kernel_SVC, "The current process does not own the current thread, thread_handle={:08X} " "thread_pid={}, " "current_process_pid={}", handle, thread->GetOwnerProcess()->GetProcessID(), current_process->GetProcessID()); return ERR_INVALID_HANDLE; } if (thread.get() == system.CurrentScheduler().GetCurrentThread()) { LOG_ERROR(Kernel_SVC, "The thread handle specified is the current running thread"); return ERR_BUSY; } Core::ARM_Interface::ThreadContext64 ctx = thread->GetContext64(); // Mask away mode bits, interrupt bits, IL bit, and other reserved bits. ctx.pstate &= 0xFF0FFE20; // If 64-bit, we can just write the context registers directly and we're good. // However, if 32-bit, we have to ensure some registers are zeroed out. if (!current_process->Is64BitProcess()) { std::fill(ctx.cpu_registers.begin() + 15, ctx.cpu_registers.end(), 0); std::fill(ctx.vector_registers.begin() + 16, ctx.vector_registers.end(), u128{}); } system.Memory().WriteBlock(thread_context, &ctx, sizeof(ctx)); return RESULT_SUCCESS; } /// Gets the priority for the specified thread static ResultCode GetThreadPriority(Core::System& system, u32* priority, Handle handle) { LOG_TRACE(Kernel_SVC, "called"); const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); const std::shared_ptr thread = handle_table.Get(handle); if (!thread) { *priority = 0; LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", handle); return ERR_INVALID_HANDLE; } *priority = thread->GetPriority(); return RESULT_SUCCESS; } static ResultCode GetThreadPriority32(Core::System& system, u32* priority, Handle handle) { return GetThreadPriority(system, priority, handle); } /// Sets the priority for the specified thread static ResultCode SetThreadPriority(Core::System& system, Handle handle, u32 priority) { LOG_TRACE(Kernel_SVC, "called"); if (priority > THREADPRIO_LOWEST) { LOG_ERROR( Kernel_SVC, "An invalid priority was specified, expected {} but got {} for thread_handle={:08X}", THREADPRIO_LOWEST, priority, handle); return ERR_INVALID_THREAD_PRIORITY; } const auto* const current_process = system.Kernel().CurrentProcess(); std::shared_ptr thread = current_process->GetHandleTable().Get(handle); if (!thread) { LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", handle); return ERR_INVALID_HANDLE; } thread->SetPriority(priority); return RESULT_SUCCESS; } /// Get which CPU core is executing the current thread static u32 GetCurrentProcessorNumber(Core::System& system) { LOG_TRACE(Kernel_SVC, "called"); return static_cast(system.CurrentPhysicalCore().CoreIndex()); } static ResultCode MapSharedMemory(Core::System& system, Handle shared_memory_handle, VAddr addr, u64 size, u32 permissions) { std::lock_guard lock{HLE::g_hle_lock}; LOG_TRACE(Kernel_SVC, "called, shared_memory_handle=0x{:X}, addr=0x{:X}, size=0x{:X}, permissions=0x{:08X}", shared_memory_handle, addr, size, permissions); if (!Common::Is4KBAligned(addr)) { LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, addr=0x{:016X}", addr); return ERR_INVALID_ADDRESS; } if (size == 0) { LOG_ERROR(Kernel_SVC, "Size is 0"); return ERR_INVALID_SIZE; } if (!Common::Is4KBAligned(size)) { LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, size=0x{:016X}", size); return ERR_INVALID_SIZE; } if (!IsValidAddressRange(addr, size)) { LOG_ERROR(Kernel_SVC, "Region is not a valid address range, addr=0x{:016X}, size=0x{:016X}", addr, size); return ERR_INVALID_ADDRESS_STATE; } const auto permission_type = static_cast(permissions); if ((permission_type | Memory::MemoryPermission::Write) != Memory::MemoryPermission::ReadAndWrite) { LOG_ERROR(Kernel_SVC, "Expected Read or ReadWrite permission but got permissions=0x{:08X}", permissions); return ERR_INVALID_MEMORY_PERMISSIONS; } auto* const current_process{system.Kernel().CurrentProcess()}; auto& page_table{current_process->PageTable()}; if (page_table.IsInvalidRegion(addr, size)) { LOG_ERROR(Kernel_SVC, "Addr does not fit within the valid region, addr=0x{:016X}, " "size=0x{:016X}", addr, size); return ERR_INVALID_MEMORY_RANGE; } if (page_table.IsInsideHeapRegion(addr, size)) { LOG_ERROR(Kernel_SVC, "Addr does not fit within the heap region, addr=0x{:016X}, " "size=0x{:016X}", addr, size); return ERR_INVALID_MEMORY_RANGE; } if (page_table.IsInsideAliasRegion(addr, size)) { LOG_ERROR(Kernel_SVC, "Address does not fit within the map region, addr=0x{:016X}, " "size=0x{:016X}", addr, size); return ERR_INVALID_MEMORY_RANGE; } auto shared_memory{current_process->GetHandleTable().Get(shared_memory_handle)}; if (!shared_memory) { LOG_ERROR(Kernel_SVC, "Shared memory does not exist, shared_memory_handle=0x{:08X}", shared_memory_handle); return ERR_INVALID_HANDLE; } return shared_memory->Map(*current_process, addr, size, permission_type); } static ResultCode QueryProcessMemory(Core::System& system, VAddr memory_info_address, VAddr page_info_address, Handle process_handle, VAddr address) { std::lock_guard lock{HLE::g_hle_lock}; LOG_TRACE(Kernel_SVC, "called process=0x{:08X} address={:X}", process_handle, address); const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); std::shared_ptr process = handle_table.Get(process_handle); if (!process) { LOG_ERROR(Kernel_SVC, "Process handle does not exist, process_handle=0x{:08X}", process_handle); return ERR_INVALID_HANDLE; } auto& memory{system.Memory()}; const auto memory_info{process->PageTable().QueryInfo(address).GetSvcMemoryInfo()}; memory.Write64(memory_info_address + 0x00, memory_info.addr); memory.Write64(memory_info_address + 0x08, memory_info.size); memory.Write32(memory_info_address + 0x10, static_cast(memory_info.state) & 0xff); memory.Write32(memory_info_address + 0x14, static_cast(memory_info.attr)); memory.Write32(memory_info_address + 0x18, static_cast(memory_info.perm)); memory.Write32(memory_info_address + 0x1c, memory_info.ipc_refcount); memory.Write32(memory_info_address + 0x20, memory_info.device_refcount); memory.Write32(memory_info_address + 0x24, 0); // Page info appears to be currently unused by the kernel and is always set to zero. memory.Write32(page_info_address, 0); return RESULT_SUCCESS; } static ResultCode QueryMemory(Core::System& system, VAddr memory_info_address, VAddr page_info_address, VAddr query_address) { LOG_TRACE(Kernel_SVC, "called, memory_info_address=0x{:016X}, page_info_address=0x{:016X}, " "query_address=0x{:016X}", memory_info_address, page_info_address, query_address); return QueryProcessMemory(system, memory_info_address, page_info_address, CurrentProcess, query_address); } static ResultCode QueryMemory32(Core::System& system, u32 memory_info_address, u32 page_info_address, u32 query_address) { return QueryMemory(system, memory_info_address, page_info_address, query_address); } static ResultCode MapProcessCodeMemory(Core::System& system, Handle process_handle, u64 dst_address, u64 src_address, u64 size) { LOG_DEBUG(Kernel_SVC, "called. process_handle=0x{:08X}, dst_address=0x{:016X}, " "src_address=0x{:016X}, size=0x{:016X}", process_handle, dst_address, src_address, size); if (!Common::Is4KBAligned(src_address)) { LOG_ERROR(Kernel_SVC, "src_address is not page-aligned (src_address=0x{:016X}).", src_address); return ERR_INVALID_ADDRESS; } if (!Common::Is4KBAligned(dst_address)) { LOG_ERROR(Kernel_SVC, "dst_address is not page-aligned (dst_address=0x{:016X}).", dst_address); return ERR_INVALID_ADDRESS; } if (size == 0 || !Common::Is4KBAligned(size)) { LOG_ERROR(Kernel_SVC, "Size is zero or not page-aligned (size=0x{:016X})", size); return ERR_INVALID_SIZE; } if (!IsValidAddressRange(dst_address, size)) { LOG_ERROR(Kernel_SVC, "Destination address range overflows the address space (dst_address=0x{:016X}, " "size=0x{:016X}).", dst_address, size); return ERR_INVALID_ADDRESS_STATE; } if (!IsValidAddressRange(src_address, size)) { LOG_ERROR(Kernel_SVC, "Source address range overflows the address space (src_address=0x{:016X}, " "size=0x{:016X}).", src_address, size); return ERR_INVALID_ADDRESS_STATE; } const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); auto process = handle_table.Get(process_handle); if (!process) { LOG_ERROR(Kernel_SVC, "Invalid process handle specified (handle=0x{:08X}).", process_handle); return ERR_INVALID_HANDLE; } auto& page_table = process->PageTable(); if (!page_table.IsInsideAddressSpace(src_address, size)) { LOG_ERROR(Kernel_SVC, "Source address range is not within the address space (src_address=0x{:016X}, " "size=0x{:016X}).", src_address, size); return ERR_INVALID_ADDRESS_STATE; } if (!page_table.IsInsideASLRRegion(dst_address, size)) { LOG_ERROR(Kernel_SVC, "Destination address range is not within the ASLR region (dst_address=0x{:016X}, " "size=0x{:016X}).", dst_address, size); return ERR_INVALID_MEMORY_RANGE; } return page_table.MapProcessCodeMemory(dst_address, src_address, size); } static ResultCode UnmapProcessCodeMemory(Core::System& system, Handle process_handle, u64 dst_address, u64 src_address, u64 size) { LOG_DEBUG(Kernel_SVC, "called. process_handle=0x{:08X}, dst_address=0x{:016X}, src_address=0x{:016X}, " "size=0x{:016X}", process_handle, dst_address, src_address, size); if (!Common::Is4KBAligned(dst_address)) { LOG_ERROR(Kernel_SVC, "dst_address is not page-aligned (dst_address=0x{:016X}).", dst_address); return ERR_INVALID_ADDRESS; } if (!Common::Is4KBAligned(src_address)) { LOG_ERROR(Kernel_SVC, "src_address is not page-aligned (src_address=0x{:016X}).", src_address); return ERR_INVALID_ADDRESS; } if (size == 0 || Common::Is4KBAligned(size)) { LOG_ERROR(Kernel_SVC, "Size is zero or not page-aligned (size=0x{:016X}).", size); return ERR_INVALID_SIZE; } if (!IsValidAddressRange(dst_address, size)) { LOG_ERROR(Kernel_SVC, "Destination address range overflows the address space (dst_address=0x{:016X}, " "size=0x{:016X}).", dst_address, size); return ERR_INVALID_ADDRESS_STATE; } if (!IsValidAddressRange(src_address, size)) { LOG_ERROR(Kernel_SVC, "Source address range overflows the address space (src_address=0x{:016X}, " "size=0x{:016X}).", src_address, size); return ERR_INVALID_ADDRESS_STATE; } const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); auto process = handle_table.Get(process_handle); if (!process) { LOG_ERROR(Kernel_SVC, "Invalid process handle specified (handle=0x{:08X}).", process_handle); return ERR_INVALID_HANDLE; } auto& page_table = process->PageTable(); if (!page_table.IsInsideAddressSpace(src_address, size)) { LOG_ERROR(Kernel_SVC, "Source address range is not within the address space (src_address=0x{:016X}, " "size=0x{:016X}).", src_address, size); return ERR_INVALID_ADDRESS_STATE; } if (!page_table.IsInsideASLRRegion(dst_address, size)) { LOG_ERROR(Kernel_SVC, "Destination address range is not within the ASLR region (dst_address=0x{:016X}, " "size=0x{:016X}).", dst_address, size); return ERR_INVALID_MEMORY_RANGE; } return page_table.UnmapProcessCodeMemory(dst_address, src_address, size); } /// Exits the current process static void ExitProcess(Core::System& system) { auto* current_process = system.Kernel().CurrentProcess(); UNIMPLEMENTED(); LOG_INFO(Kernel_SVC, "Process {} exiting", current_process->GetProcessID()); ASSERT_MSG(current_process->GetStatus() == ProcessStatus::Running, "Process has already exited"); current_process->PrepareForTermination(); // Kill the current thread system.CurrentScheduler().GetCurrentThread()->Stop(); } /// Creates a new thread static ResultCode CreateThread(Core::System& system, Handle* out_handle, VAddr entry_point, u64 arg, VAddr stack_top, u32 priority, s32 processor_id) { LOG_DEBUG(Kernel_SVC, "called entrypoint=0x{:08X}, arg=0x{:08X}, stacktop=0x{:08X}, " "threadpriority=0x{:08X}, processorid=0x{:08X} : created handle=0x{:08X}", entry_point, arg, stack_top, priority, processor_id, *out_handle); auto* const current_process = system.Kernel().CurrentProcess(); if (processor_id == THREADPROCESSORID_IDEAL) { // Set the target CPU to the one specified by the process. processor_id = current_process->GetIdealCore(); ASSERT(processor_id != THREADPROCESSORID_IDEAL); } if (processor_id < THREADPROCESSORID_0 || processor_id > THREADPROCESSORID_3) { LOG_ERROR(Kernel_SVC, "Invalid thread processor ID: {}", processor_id); return ERR_INVALID_PROCESSOR_ID; } const u64 core_mask = current_process->GetCoreMask(); if ((core_mask | (1ULL << processor_id)) != core_mask) { LOG_ERROR(Kernel_SVC, "Invalid thread core specified ({})", processor_id); return ERR_INVALID_PROCESSOR_ID; } if (priority > THREADPRIO_LOWEST) { LOG_ERROR(Kernel_SVC, "Invalid thread priority specified ({}). Must be within the range 0-64", priority); return ERR_INVALID_THREAD_PRIORITY; } if (((1ULL << priority) & current_process->GetPriorityMask()) == 0) { LOG_ERROR(Kernel_SVC, "Invalid thread priority specified ({})", priority); return ERR_INVALID_THREAD_PRIORITY; } auto& kernel = system.Kernel(); ASSERT(kernel.CurrentProcess()->GetResourceLimit()->Reserve(ResourceType::Threads, 1)); ThreadType type = THREADTYPE_USER; CASCADE_RESULT(std::shared_ptr thread, Thread::Create(system, type, "", entry_point, priority, arg, processor_id, stack_top, current_process)); const auto new_thread_handle = current_process->GetHandleTable().Create(thread); if (new_thread_handle.Failed()) { LOG_ERROR(Kernel_SVC, "Failed to create handle with error=0x{:X}", new_thread_handle.Code().raw); return new_thread_handle.Code(); } *out_handle = *new_thread_handle; // Set the thread name for debugging purposes. thread->SetName( fmt::format("thread[entry_point={:X}, handle={:X}]", entry_point, *new_thread_handle)); return RESULT_SUCCESS; } /// Starts the thread for the provided handle static ResultCode StartThread(Core::System& system, Handle thread_handle) { LOG_DEBUG(Kernel_SVC, "called thread=0x{:08X}", thread_handle); const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); const std::shared_ptr thread = handle_table.Get(thread_handle); if (!thread) { LOG_ERROR(Kernel_SVC, "Thread handle does not exist, thread_handle=0x{:08X}", thread_handle); return ERR_INVALID_HANDLE; } ASSERT(thread->GetStatus() == ThreadStatus::Dormant); return thread->Start(); } /// Called when a thread exits static void ExitThread(Core::System& system) { LOG_DEBUG(Kernel_SVC, "called, pc=0x{:08X}", system.CurrentArmInterface().GetPC()); auto* const current_thread = system.CurrentScheduler().GetCurrentThread(); system.GlobalScheduler().RemoveThread(SharedFrom(current_thread)); current_thread->Stop(); } /// Sleep the current thread static void SleepThread(Core::System& system, s64 nanoseconds) { LOG_DEBUG(Kernel_SVC, "called nanoseconds={}", nanoseconds); enum class SleepType : s64 { YieldWithoutLoadBalancing = 0, YieldWithLoadBalancing = -1, YieldAndWaitForLoadBalancing = -2, }; auto& scheduler = system.CurrentScheduler(); auto* const current_thread = scheduler.GetCurrentThread(); bool is_redundant = false; if (nanoseconds <= 0) { switch (static_cast(nanoseconds)) { case SleepType::YieldWithoutLoadBalancing: { auto pair = current_thread->YieldSimple(); is_redundant = pair.second; break; } case SleepType::YieldWithLoadBalancing: { auto pair = current_thread->YieldAndBalanceLoad(); is_redundant = pair.second; break; } case SleepType::YieldAndWaitForLoadBalancing: { auto pair = current_thread->YieldAndWaitForLoadBalancing(); is_redundant = pair.second; break; } default: UNREACHABLE_MSG("Unimplemented sleep yield type '{:016X}'!", nanoseconds); } } else { current_thread->Sleep(nanoseconds); } if (is_redundant && !system.Kernel().IsMulticore()) { system.GetCpuManager().PreemptSingleCore(); } } /// Wait process wide key atomic static ResultCode WaitProcessWideKeyAtomic(Core::System& system, VAddr mutex_addr, VAddr condition_variable_addr, Handle thread_handle, s64 nano_seconds) { LOG_TRACE( Kernel_SVC, "called mutex_addr={:X}, condition_variable_addr={:X}, thread_handle=0x{:08X}, timeout={}", mutex_addr, condition_variable_addr, thread_handle, nano_seconds); if (Core::Memory::IsKernelVirtualAddress(mutex_addr)) { LOG_ERROR( Kernel_SVC, "Given mutex address must not be within the kernel address space. address=0x{:016X}", mutex_addr); return ERR_INVALID_ADDRESS_STATE; } if (!Common::IsWordAligned(mutex_addr)) { LOG_ERROR(Kernel_SVC, "Given mutex address must be word-aligned. address=0x{:016X}", mutex_addr); return ERR_INVALID_ADDRESS; } ASSERT(condition_variable_addr == Common::AlignDown(condition_variable_addr, 4)); auto& kernel = system.Kernel(); Handle event_handle; Thread* current_thread = system.CurrentScheduler().GetCurrentThread(); auto* const current_process = system.Kernel().CurrentProcess(); { SchedulerLockAndSleep lock(kernel, event_handle, current_thread, nano_seconds); const auto& handle_table = current_process->GetHandleTable(); std::shared_ptr thread = handle_table.Get(thread_handle); ASSERT(thread); current_thread->SetSynchronizationResults(nullptr, RESULT_TIMEOUT); if (thread->IsPendingTermination()) { lock.CancelSleep(); return ERR_THREAD_TERMINATING; } const auto release_result = current_process->GetMutex().Release(mutex_addr); if (release_result.IsError()) { lock.CancelSleep(); return release_result; } if (nano_seconds == 0) { lock.CancelSleep(); return RESULT_TIMEOUT; } current_thread->SetCondVarWaitAddress(condition_variable_addr); current_thread->SetMutexWaitAddress(mutex_addr); current_thread->SetWaitHandle(thread_handle); current_thread->SetStatus(ThreadStatus::WaitCondVar); current_process->InsertConditionVariableThread(SharedFrom(current_thread)); } if (event_handle != InvalidHandle) { auto& time_manager = kernel.TimeManager(); time_manager.UnscheduleTimeEvent(event_handle); } { SchedulerLock lock(kernel); auto* owner = current_thread->GetLockOwner(); if (owner != nullptr) { owner->RemoveMutexWaiter(SharedFrom(current_thread)); } current_process->RemoveConditionVariableThread(SharedFrom(current_thread)); } // Note: Deliberately don't attempt to inherit the lock owner's priority. return current_thread->GetSignalingResult(); } /// Signal process wide key static void SignalProcessWideKey(Core::System& system, VAddr condition_variable_addr, s32 target) { LOG_TRACE(Kernel_SVC, "called, condition_variable_addr=0x{:X}, target=0x{:08X}", condition_variable_addr, target); ASSERT(condition_variable_addr == Common::AlignDown(condition_variable_addr, 4)); // Retrieve a list of all threads that are waiting for this condition variable. auto& kernel = system.Kernel(); SchedulerLock lock(kernel); auto* const current_process = kernel.CurrentProcess(); std::vector> waiting_threads = current_process->GetConditionVariableThreads(condition_variable_addr); // Only process up to 'target' threads, unless 'target' is less equal 0, in which case process // them all. std::size_t last = waiting_threads.size(); if (target > 0) last = std::min(waiting_threads.size(), static_cast(target)); auto& time_manager = kernel.TimeManager(); for (std::size_t index = 0; index < last; ++index) { auto& thread = waiting_threads[index]; ASSERT(thread->GetCondVarWaitAddress() == condition_variable_addr); // liberate Cond Var Thread. current_process->RemoveConditionVariableThread(thread); const std::size_t current_core = system.CurrentCoreIndex(); auto& monitor = system.Monitor(); auto& memory = system.Memory(); // Atomically read the value of the mutex. u32 mutex_val = 0; u32 update_val = 0; const VAddr mutex_address = thread->GetMutexWaitAddress(); do { monitor.SetExclusive32(current_core, mutex_address); // If the mutex is not yet acquired, acquire it. mutex_val = memory.Read32(mutex_address); if (mutex_val != 0) { update_val = mutex_val | Mutex::MutexHasWaitersFlag; } else { update_val = thread->GetWaitHandle(); } } while (!monitor.ExclusiveWrite32(current_core, mutex_address, update_val)); monitor.ClearExclusive(); if (mutex_val == 0) { // We were able to acquire the mutex, resume this thread. auto* const lock_owner = thread->GetLockOwner(); if (lock_owner != nullptr) { lock_owner->RemoveMutexWaiter(thread); } thread->SetLockOwner(nullptr); thread->SetSynchronizationResults(nullptr, RESULT_SUCCESS); thread->ResumeFromWait(); } else { // The mutex is already owned by some other thread, make this thread wait on it. const Handle owner_handle = static_cast(mutex_val & Mutex::MutexOwnerMask); const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); auto owner = handle_table.Get(owner_handle); ASSERT(owner); if (thread->GetStatus() == ThreadStatus::WaitCondVar) { thread->SetStatus(ThreadStatus::WaitMutex); } owner->AddMutexWaiter(thread); } } } static void SignalProcessWideKey32(Core::System& system, u32 condition_variable_addr, s32 target) { SignalProcessWideKey(system, condition_variable_addr, target); } // Wait for an address (via Address Arbiter) static ResultCode WaitForAddress(Core::System& system, VAddr address, u32 type, s32 value, s64 timeout) { LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, timeout={}", address, type, value, timeout); // If the passed address is a kernel virtual address, return invalid memory state. if (Core::Memory::IsKernelVirtualAddress(address)) { LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address); return ERR_INVALID_ADDRESS_STATE; } // If the address is not properly aligned to 4 bytes, return invalid address. if (!Common::IsWordAligned(address)) { LOG_ERROR(Kernel_SVC, "Address is not word aligned, address={:016X}", address); return ERR_INVALID_ADDRESS; } const auto arbitration_type = static_cast(type); auto& address_arbiter = system.Kernel().CurrentProcess()->GetAddressArbiter(); const ResultCode result = address_arbiter.WaitForAddress(address, arbitration_type, value, timeout); return result; } // Signals to an address (via Address Arbiter) static ResultCode SignalToAddress(Core::System& system, VAddr address, u32 type, s32 value, s32 num_to_wake) { LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, num_to_wake=0x{:X}", address, type, value, num_to_wake); // If the passed address is a kernel virtual address, return invalid memory state. if (Core::Memory::IsKernelVirtualAddress(address)) { LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address); return ERR_INVALID_ADDRESS_STATE; } // If the address is not properly aligned to 4 bytes, return invalid address. if (!Common::IsWordAligned(address)) { LOG_ERROR(Kernel_SVC, "Address is not word aligned, address={:016X}", address); return ERR_INVALID_ADDRESS; } const auto signal_type = static_cast(type); auto& address_arbiter = system.Kernel().CurrentProcess()->GetAddressArbiter(); return address_arbiter.SignalToAddress(address, signal_type, value, num_to_wake); } static void KernelDebug([[maybe_unused]] Core::System& system, [[maybe_unused]] u32 kernel_debug_type, [[maybe_unused]] u64 param1, [[maybe_unused]] u64 param2, [[maybe_unused]] u64 param3) { // Intentionally do nothing, as this does nothing in released kernel binaries. } static void ChangeKernelTraceState([[maybe_unused]] Core::System& system, [[maybe_unused]] u32 trace_state) { // Intentionally do nothing, as this does nothing in released kernel binaries. } /// This returns the total CPU ticks elapsed since the CPU was powered-on static u64 GetSystemTick(Core::System& system) { LOG_TRACE(Kernel_SVC, "called"); auto& core_timing = system.CoreTiming(); // Returns the value of cntpct_el0 (https://switchbrew.org/wiki/SVC#svcGetSystemTick) const u64 result{system.CoreTiming().GetClockTicks()}; return result; } /// Close a handle static ResultCode CloseHandle(Core::System& system, Handle handle) { LOG_TRACE(Kernel_SVC, "Closing handle 0x{:08X}", handle); auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); return handle_table.Close(handle); } static ResultCode CloseHandle32(Core::System& system, Handle handle) { return CloseHandle(system, handle); } /// Clears the signaled state of an event or process. static ResultCode ResetSignal(Core::System& system, Handle handle) { LOG_DEBUG(Kernel_SVC, "called handle 0x{:08X}", handle); const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); auto event = handle_table.Get(handle); if (event) { return event->Reset(); } auto process = handle_table.Get(handle); if (process) { return process->ClearSignalState(); } LOG_ERROR(Kernel_SVC, "Invalid handle (0x{:08X})", handle); return ERR_INVALID_HANDLE; } /// Creates a TransferMemory object static ResultCode CreateTransferMemory(Core::System& system, Handle* handle, VAddr addr, u64 size, u32 permissions) { std::lock_guard lock{HLE::g_hle_lock}; LOG_DEBUG(Kernel_SVC, "called addr=0x{:X}, size=0x{:X}, perms=0x{:08X}", addr, size, permissions); if (!Common::Is4KBAligned(addr)) { LOG_ERROR(Kernel_SVC, "Address ({:016X}) is not page aligned!", addr); return ERR_INVALID_ADDRESS; } if (!Common::Is4KBAligned(size) || size == 0) { LOG_ERROR(Kernel_SVC, "Size ({:016X}) is not page aligned or equal to zero!", size); return ERR_INVALID_ADDRESS; } if (!IsValidAddressRange(addr, size)) { LOG_ERROR(Kernel_SVC, "Address and size cause overflow! (address={:016X}, size={:016X})", addr, size); return ERR_INVALID_ADDRESS_STATE; } const auto perms{static_cast(permissions)}; if (perms > Memory::MemoryPermission::ReadAndWrite || perms == Memory::MemoryPermission::Write) { LOG_ERROR(Kernel_SVC, "Invalid memory permissions for transfer memory! (perms={:08X})", permissions); return ERR_INVALID_MEMORY_PERMISSIONS; } auto& kernel = system.Kernel(); auto transfer_mem_handle = TransferMemory::Create(kernel, system.Memory(), addr, size, perms); if (const auto reserve_result{transfer_mem_handle->Reserve()}; reserve_result.IsError()) { return reserve_result; } auto& handle_table = kernel.CurrentProcess()->GetHandleTable(); const auto result{handle_table.Create(std::move(transfer_mem_handle))}; if (result.Failed()) { return result.Code(); } *handle = *result; return RESULT_SUCCESS; } static ResultCode GetThreadCoreMask(Core::System& system, Handle thread_handle, u32* core, u64* mask) { LOG_TRACE(Kernel_SVC, "called, handle=0x{:08X}", thread_handle); const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); const std::shared_ptr thread = handle_table.Get(thread_handle); if (!thread) { LOG_ERROR(Kernel_SVC, "Thread handle does not exist, thread_handle=0x{:08X}", thread_handle); *core = 0; *mask = 0; return ERR_INVALID_HANDLE; } *core = thread->GetIdealCore(); *mask = thread->GetAffinityMask(); return RESULT_SUCCESS; } static ResultCode SetThreadCoreMask(Core::System& system, Handle thread_handle, u32 core, u64 affinity_mask) { LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, core=0x{:X}, affinity_mask=0x{:016X}", thread_handle, core, affinity_mask); const auto* const current_process = system.Kernel().CurrentProcess(); if (core == static_cast(THREADPROCESSORID_IDEAL)) { const u8 ideal_cpu_core = current_process->GetIdealCore(); ASSERT(ideal_cpu_core != static_cast(THREADPROCESSORID_IDEAL)); // Set the target CPU to the ideal core specified by the process. core = ideal_cpu_core; affinity_mask = 1ULL << core; } else { const u64 core_mask = current_process->GetCoreMask(); if ((core_mask | affinity_mask) != core_mask) { LOG_ERROR( Kernel_SVC, "Invalid processor ID specified (core_mask=0x{:08X}, affinity_mask=0x{:016X})", core_mask, affinity_mask); return ERR_INVALID_PROCESSOR_ID; } if (affinity_mask == 0) { LOG_ERROR(Kernel_SVC, "Specfified affinity mask is zero."); return ERR_INVALID_COMBINATION; } if (core < Core::NUM_CPU_CORES) { if ((affinity_mask & (1ULL << core)) == 0) { LOG_ERROR(Kernel_SVC, "Core is not enabled for the current mask, core={}, mask={:016X}", core, affinity_mask); return ERR_INVALID_COMBINATION; } } else if (core != static_cast(THREADPROCESSORID_DONT_CARE) && core != static_cast(THREADPROCESSORID_DONT_UPDATE)) { LOG_ERROR(Kernel_SVC, "Invalid processor ID specified (core={}).", core); return ERR_INVALID_PROCESSOR_ID; } } const auto& handle_table = current_process->GetHandleTable(); const std::shared_ptr thread = handle_table.Get(thread_handle); if (!thread) { LOG_ERROR(Kernel_SVC, "Thread handle does not exist, thread_handle=0x{:08X}", thread_handle); return ERR_INVALID_HANDLE; } return thread->SetCoreAndAffinityMask(core, affinity_mask); } static ResultCode CreateEvent(Core::System& system, Handle* write_handle, Handle* read_handle) { LOG_DEBUG(Kernel_SVC, "called"); auto& kernel = system.Kernel(); const auto [readable_event, writable_event] = WritableEvent::CreateEventPair(kernel, "CreateEvent"); HandleTable& handle_table = kernel.CurrentProcess()->GetHandleTable(); const auto write_create_result = handle_table.Create(writable_event); if (write_create_result.Failed()) { return write_create_result.Code(); } *write_handle = *write_create_result; const auto read_create_result = handle_table.Create(readable_event); if (read_create_result.Failed()) { handle_table.Close(*write_create_result); return read_create_result.Code(); } *read_handle = *read_create_result; LOG_DEBUG(Kernel_SVC, "successful. Writable event handle=0x{:08X}, Readable event handle=0x{:08X}", *write_create_result, *read_create_result); return RESULT_SUCCESS; } static ResultCode ClearEvent(Core::System& system, Handle handle) { LOG_TRACE(Kernel_SVC, "called, event=0x{:08X}", handle); const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); auto writable_event = handle_table.Get(handle); if (writable_event) { writable_event->Clear(); return RESULT_SUCCESS; } auto readable_event = handle_table.Get(handle); if (readable_event) { readable_event->Clear(); return RESULT_SUCCESS; } LOG_ERROR(Kernel_SVC, "Event handle does not exist, handle=0x{:08X}", handle); return ERR_INVALID_HANDLE; } static ResultCode SignalEvent(Core::System& system, Handle handle) { LOG_DEBUG(Kernel_SVC, "called. Handle=0x{:08X}", handle); HandleTable& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); auto writable_event = handle_table.Get(handle); if (!writable_event) { LOG_ERROR(Kernel_SVC, "Non-existent writable event handle used (0x{:08X})", handle); return ERR_INVALID_HANDLE; } writable_event->Signal(); return RESULT_SUCCESS; } static ResultCode GetProcessInfo(Core::System& system, u64* out, Handle process_handle, u32 type) { LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, type=0x{:X}", process_handle, type); // This function currently only allows retrieving a process' status. enum class InfoType { Status, }; const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); const auto process = handle_table.Get(process_handle); if (!process) { LOG_ERROR(Kernel_SVC, "Process handle does not exist, process_handle=0x{:08X}", process_handle); return ERR_INVALID_HANDLE; } const auto info_type = static_cast(type); if (info_type != InfoType::Status) { LOG_ERROR(Kernel_SVC, "Expected info_type to be Status but got {} instead", type); return ERR_INVALID_ENUM_VALUE; } *out = static_cast(process->GetStatus()); return RESULT_SUCCESS; } static ResultCode CreateResourceLimit(Core::System& system, Handle* out_handle) { std::lock_guard lock{HLE::g_hle_lock}; LOG_DEBUG(Kernel_SVC, "called"); auto& kernel = system.Kernel(); auto resource_limit = ResourceLimit::Create(kernel); auto* const current_process = kernel.CurrentProcess(); ASSERT(current_process != nullptr); const auto handle = current_process->GetHandleTable().Create(std::move(resource_limit)); if (handle.Failed()) { return handle.Code(); } *out_handle = *handle; return RESULT_SUCCESS; } static ResultCode GetResourceLimitLimitValue(Core::System& system, u64* out_value, Handle resource_limit, u32 resource_type) { LOG_DEBUG(Kernel_SVC, "called. Handle={:08X}, Resource type={}", resource_limit, resource_type); const auto limit_value = RetrieveResourceLimitValue(system, resource_limit, resource_type, ResourceLimitValueType::LimitValue); if (limit_value.Failed()) { return limit_value.Code(); } *out_value = static_cast(*limit_value); return RESULT_SUCCESS; } static ResultCode GetResourceLimitCurrentValue(Core::System& system, u64* out_value, Handle resource_limit, u32 resource_type) { LOG_DEBUG(Kernel_SVC, "called. Handle={:08X}, Resource type={}", resource_limit, resource_type); const auto current_value = RetrieveResourceLimitValue(system, resource_limit, resource_type, ResourceLimitValueType::CurrentValue); if (current_value.Failed()) { return current_value.Code(); } *out_value = static_cast(*current_value); return RESULT_SUCCESS; } static ResultCode SetResourceLimitLimitValue(Core::System& system, Handle resource_limit, u32 resource_type, u64 value) { LOG_DEBUG(Kernel_SVC, "called. Handle={:08X}, Resource type={}, Value={}", resource_limit, resource_type, value); const auto type = static_cast(resource_type); if (!IsValidResourceType(type)) { LOG_ERROR(Kernel_SVC, "Invalid resource limit type: '{}'", resource_type); return ERR_INVALID_ENUM_VALUE; } auto* const current_process = system.Kernel().CurrentProcess(); ASSERT(current_process != nullptr); auto resource_limit_object = current_process->GetHandleTable().Get(resource_limit); if (!resource_limit_object) { LOG_ERROR(Kernel_SVC, "Handle to non-existent resource limit instance used. Handle={:08X}", resource_limit); return ERR_INVALID_HANDLE; } const auto set_result = resource_limit_object->SetLimitValue(type, static_cast(value)); if (set_result.IsError()) { LOG_ERROR( Kernel_SVC, "Attempted to lower resource limit ({}) for category '{}' below its current value ({})", resource_limit_object->GetMaxResourceValue(type), resource_type, resource_limit_object->GetCurrentResourceValue(type)); return set_result; } return RESULT_SUCCESS; } static ResultCode GetProcessList(Core::System& system, u32* out_num_processes, VAddr out_process_ids, u32 out_process_ids_size) { LOG_DEBUG(Kernel_SVC, "called. out_process_ids=0x{:016X}, out_process_ids_size={}", out_process_ids, out_process_ids_size); // If the supplied size is negative or greater than INT32_MAX / sizeof(u64), bail. if ((out_process_ids_size & 0xF0000000) != 0) { LOG_ERROR(Kernel_SVC, "Supplied size outside [0, 0x0FFFFFFF] range. out_process_ids_size={}", out_process_ids_size); return ERR_OUT_OF_RANGE; } const auto& kernel = system.Kernel(); const auto total_copy_size = out_process_ids_size * sizeof(u64); if (out_process_ids_size > 0 && !kernel.CurrentProcess()->PageTable().IsInsideAddressSpace( out_process_ids, total_copy_size)) { LOG_ERROR(Kernel_SVC, "Address range outside address space. begin=0x{:016X}, end=0x{:016X}", out_process_ids, out_process_ids + total_copy_size); return ERR_INVALID_ADDRESS_STATE; } auto& memory = system.Memory(); const auto& process_list = kernel.GetProcessList(); const auto num_processes = process_list.size(); const auto copy_amount = std::min(std::size_t{out_process_ids_size}, num_processes); for (std::size_t i = 0; i < copy_amount; ++i) { memory.Write64(out_process_ids, process_list[i]->GetProcessID()); out_process_ids += sizeof(u64); } *out_num_processes = static_cast(num_processes); return RESULT_SUCCESS; } static ResultCode GetThreadList(Core::System& system, u32* out_num_threads, VAddr out_thread_ids, u32 out_thread_ids_size, Handle debug_handle) { // TODO: Handle this case when debug events are supported. UNIMPLEMENTED_IF(debug_handle != InvalidHandle); LOG_DEBUG(Kernel_SVC, "called. out_thread_ids=0x{:016X}, out_thread_ids_size={}", out_thread_ids, out_thread_ids_size); // If the size is negative or larger than INT32_MAX / sizeof(u64) if ((out_thread_ids_size & 0xF0000000) != 0) { LOG_ERROR(Kernel_SVC, "Supplied size outside [0, 0x0FFFFFFF] range. size={}", out_thread_ids_size); return ERR_OUT_OF_RANGE; } const auto* const current_process = system.Kernel().CurrentProcess(); const auto total_copy_size = out_thread_ids_size * sizeof(u64); if (out_thread_ids_size > 0 && !current_process->PageTable().IsInsideAddressSpace(out_thread_ids, total_copy_size)) { LOG_ERROR(Kernel_SVC, "Address range outside address space. begin=0x{:016X}, end=0x{:016X}", out_thread_ids, out_thread_ids + total_copy_size); return ERR_INVALID_ADDRESS_STATE; } auto& memory = system.Memory(); const auto& thread_list = current_process->GetThreadList(); const auto num_threads = thread_list.size(); const auto copy_amount = std::min(std::size_t{out_thread_ids_size}, num_threads); auto list_iter = thread_list.cbegin(); for (std::size_t i = 0; i < copy_amount; ++i, ++list_iter) { memory.Write64(out_thread_ids, (*list_iter)->GetThreadID()); out_thread_ids += sizeof(u64); } *out_num_threads = static_cast(num_threads); return RESULT_SUCCESS; } namespace { struct FunctionDef { using Func = void(Core::System&); u32 id; Func* func; const char* name; }; } // namespace static const FunctionDef SVC_Table_32[] = { {0x00, nullptr, "Unknown"}, {0x01, SvcWrap32, "SetHeapSize32"}, {0x02, nullptr, "Unknown"}, {0x03, nullptr, "SetMemoryAttribute32"}, {0x04, nullptr, "MapMemory32"}, {0x05, nullptr, "UnmapMemory32"}, {0x06, SvcWrap32, "QueryMemory32"}, {0x07, nullptr, "ExitProcess32"}, {0x08, nullptr, "CreateThread32"}, {0x09, nullptr, "StartThread32"}, {0x0a, nullptr, "ExitThread32"}, {0x0b, nullptr, "SleepThread32"}, {0x0c, SvcWrap32, "GetThreadPriority32"}, {0x0d, nullptr, "SetThreadPriority32"}, {0x0e, nullptr, "GetThreadCoreMask32"}, {0x0f, nullptr, "SetThreadCoreMask32"}, {0x10, nullptr, "GetCurrentProcessorNumber32"}, {0x11, nullptr, "SignalEvent32"}, {0x12, nullptr, "ClearEvent32"}, {0x13, nullptr, "MapSharedMemory32"}, {0x14, nullptr, "UnmapSharedMemory32"}, {0x15, nullptr, "CreateTransferMemory32"}, {0x16, SvcWrap32, "CloseHandle32"}, {0x17, nullptr, "ResetSignal32"}, {0x18, SvcWrap32, "WaitSynchronization32"}, {0x19, nullptr, "CancelSynchronization32"}, {0x1a, nullptr, "ArbitrateLock32"}, {0x1b, nullptr, "ArbitrateUnlock32"}, {0x1c, nullptr, "WaitProcessWideKeyAtomic32"}, {0x1d, SvcWrap32, "SignalProcessWideKey32"}, {0x1e, nullptr, "GetSystemTick32"}, {0x1f, SvcWrap32, "ConnectToNamedPort32"}, {0x20, nullptr, "Unknown"}, {0x21, SvcWrap32, "SendSyncRequest32"}, {0x22, nullptr, "SendSyncRequestWithUserBuffer32"}, {0x23, nullptr, "Unknown"}, {0x24, nullptr, "GetProcessId32"}, {0x25, SvcWrap32, "GetThreadId32"}, {0x26, nullptr, "Break32"}, {0x27, nullptr, "OutputDebugString32"}, {0x28, nullptr, "Unknown"}, {0x29, SvcWrap32, "GetInfo32"}, {0x2a, nullptr, "Unknown"}, {0x2b, nullptr, "Unknown"}, {0x2c, nullptr, "MapPhysicalMemory32"}, {0x2d, nullptr, "UnmapPhysicalMemory32"}, {0x2e, nullptr, "Unknown"}, {0x2f, nullptr, "Unknown"}, {0x30, nullptr, "Unknown"}, {0x31, nullptr, "Unknown"}, {0x32, nullptr, "SetThreadActivity32"}, {0x33, nullptr, "GetThreadContext32"}, {0x34, nullptr, "WaitForAddress32"}, {0x35, nullptr, "SignalToAddress32"}, {0x36, nullptr, "Unknown"}, {0x37, nullptr, "Unknown"}, {0x38, nullptr, "Unknown"}, {0x39, nullptr, "Unknown"}, {0x3a, nullptr, "Unknown"}, {0x3b, nullptr, "Unknown"}, {0x3c, nullptr, "Unknown"}, {0x3d, nullptr, "Unknown"}, {0x3e, nullptr, "Unknown"}, {0x3f, nullptr, "Unknown"}, {0x40, nullptr, "CreateSession32"}, {0x41, nullptr, "AcceptSession32"}, {0x42, nullptr, "Unknown"}, {0x43, nullptr, "ReplyAndReceive32"}, {0x44, nullptr, "Unknown"}, {0x45, nullptr, "CreateEvent32"}, {0x46, nullptr, "Unknown"}, {0x47, nullptr, "Unknown"}, {0x48, nullptr, "Unknown"}, {0x49, nullptr, "Unknown"}, {0x4a, nullptr, "Unknown"}, {0x4b, nullptr, "Unknown"}, {0x4c, nullptr, "Unknown"}, {0x4d, nullptr, "Unknown"}, {0x4e, nullptr, "Unknown"}, {0x4f, nullptr, "Unknown"}, {0x50, nullptr, "Unknown"}, {0x51, nullptr, "Unknown"}, {0x52, nullptr, "Unknown"}, {0x53, nullptr, "Unknown"}, {0x54, nullptr, "Unknown"}, {0x55, nullptr, "Unknown"}, {0x56, nullptr, "Unknown"}, {0x57, nullptr, "Unknown"}, {0x58, nullptr, "Unknown"}, {0x59, nullptr, "Unknown"}, {0x5a, nullptr, "Unknown"}, {0x5b, nullptr, "Unknown"}, {0x5c, nullptr, "Unknown"}, {0x5d, nullptr, "Unknown"}, {0x5e, nullptr, "Unknown"}, {0x5F, nullptr, "FlushProcessDataCache32"}, {0x60, nullptr, "Unknown"}, {0x61, nullptr, "Unknown"}, {0x62, nullptr, "Unknown"}, {0x63, nullptr, "Unknown"}, {0x64, nullptr, "Unknown"}, {0x65, nullptr, "GetProcessList32"}, {0x66, nullptr, "Unknown"}, {0x67, nullptr, "Unknown"}, {0x68, nullptr, "Unknown"}, {0x69, nullptr, "Unknown"}, {0x6A, nullptr, "Unknown"}, {0x6B, nullptr, "Unknown"}, {0x6C, nullptr, "Unknown"}, {0x6D, nullptr, "Unknown"}, {0x6E, nullptr, "Unknown"}, {0x6f, nullptr, "GetSystemInfo32"}, {0x70, nullptr, "CreatePort32"}, {0x71, nullptr, "ManageNamedPort32"}, {0x72, nullptr, "ConnectToPort32"}, {0x73, nullptr, "SetProcessMemoryPermission32"}, {0x74, nullptr, "Unknown"}, {0x75, nullptr, "Unknown"}, {0x76, nullptr, "Unknown"}, {0x77, nullptr, "MapProcessCodeMemory32"}, {0x78, nullptr, "UnmapProcessCodeMemory32"}, {0x79, nullptr, "Unknown"}, {0x7A, nullptr, "Unknown"}, {0x7B, nullptr, "TerminateProcess32"}, }; static const FunctionDef SVC_Table_64[] = { {0x00, nullptr, "Unknown"}, {0x01, SvcWrap64, "SetHeapSize"}, {0x02, nullptr, "SetMemoryPermission"}, {0x03, SvcWrap64, "SetMemoryAttribute"}, {0x04, SvcWrap64, "MapMemory"}, {0x05, SvcWrap64, "UnmapMemory"}, {0x06, SvcWrap64, "QueryMemory"}, {0x07, SvcWrap64, "ExitProcess"}, {0x08, SvcWrap64, "CreateThread"}, {0x09, SvcWrap64, "StartThread"}, {0x0A, SvcWrap64, "ExitThread"}, {0x0B, SvcWrap64, "SleepThread"}, {0x0C, SvcWrap64, "GetThreadPriority"}, {0x0D, SvcWrap64, "SetThreadPriority"}, {0x0E, SvcWrap64, "GetThreadCoreMask"}, {0x0F, SvcWrap64, "SetThreadCoreMask"}, {0x10, SvcWrap64, "GetCurrentProcessorNumber"}, {0x11, SvcWrap64, "SignalEvent"}, {0x12, SvcWrap64, "ClearEvent"}, {0x13, SvcWrap64, "MapSharedMemory"}, {0x14, nullptr, "UnmapSharedMemory"}, {0x15, SvcWrap64, "CreateTransferMemory"}, {0x16, SvcWrap64, "CloseHandle"}, {0x17, SvcWrap64, "ResetSignal"}, {0x18, SvcWrap64, "WaitSynchronization"}, {0x19, SvcWrap64, "CancelSynchronization"}, {0x1A, SvcWrap64, "ArbitrateLock"}, {0x1B, SvcWrap64, "ArbitrateUnlock"}, {0x1C, SvcWrap64, "WaitProcessWideKeyAtomic"}, {0x1D, SvcWrap64, "SignalProcessWideKey"}, {0x1E, SvcWrap64, "GetSystemTick"}, {0x1F, SvcWrap64, "ConnectToNamedPort"}, {0x20, nullptr, "SendSyncRequestLight"}, {0x21, SvcWrap64, "SendSyncRequest"}, {0x22, nullptr, "SendSyncRequestWithUserBuffer"}, {0x23, nullptr, "SendAsyncRequestWithUserBuffer"}, {0x24, SvcWrap64, "GetProcessId"}, {0x25, SvcWrap64, "GetThreadId"}, {0x26, SvcWrap64, "Break"}, {0x27, SvcWrap64, "OutputDebugString"}, {0x28, nullptr, "ReturnFromException"}, {0x29, SvcWrap64, "GetInfo"}, {0x2A, nullptr, "FlushEntireDataCache"}, {0x2B, nullptr, "FlushDataCache"}, {0x2C, SvcWrap64, "MapPhysicalMemory"}, {0x2D, SvcWrap64, "UnmapPhysicalMemory"}, {0x2E, nullptr, "GetFutureThreadInfo"}, {0x2F, nullptr, "GetLastThreadInfo"}, {0x30, SvcWrap64, "GetResourceLimitLimitValue"}, {0x31, SvcWrap64, "GetResourceLimitCurrentValue"}, {0x32, SvcWrap64, "SetThreadActivity"}, {0x33, SvcWrap64, "GetThreadContext"}, {0x34, SvcWrap64, "WaitForAddress"}, {0x35, SvcWrap64, "SignalToAddress"}, {0x36, nullptr, "SynchronizePreemptionState"}, {0x37, nullptr, "Unknown"}, {0x38, nullptr, "Unknown"}, {0x39, nullptr, "Unknown"}, {0x3A, nullptr, "Unknown"}, {0x3B, nullptr, "Unknown"}, {0x3C, SvcWrap64, "KernelDebug"}, {0x3D, SvcWrap64, "ChangeKernelTraceState"}, {0x3E, nullptr, "Unknown"}, {0x3F, nullptr, "Unknown"}, {0x40, nullptr, "CreateSession"}, {0x41, nullptr, "AcceptSession"}, {0x42, nullptr, "ReplyAndReceiveLight"}, {0x43, nullptr, "ReplyAndReceive"}, {0x44, nullptr, "ReplyAndReceiveWithUserBuffer"}, {0x45, SvcWrap64, "CreateEvent"}, {0x46, nullptr, "Unknown"}, {0x47, nullptr, "Unknown"}, {0x48, nullptr, "MapPhysicalMemoryUnsafe"}, {0x49, nullptr, "UnmapPhysicalMemoryUnsafe"}, {0x4A, nullptr, "SetUnsafeLimit"}, {0x4B, nullptr, "CreateCodeMemory"}, {0x4C, nullptr, "ControlCodeMemory"}, {0x4D, nullptr, "SleepSystem"}, {0x4E, nullptr, "ReadWriteRegister"}, {0x4F, nullptr, "SetProcessActivity"}, {0x50, nullptr, "CreateSharedMemory"}, {0x51, nullptr, "MapTransferMemory"}, {0x52, nullptr, "UnmapTransferMemory"}, {0x53, nullptr, "CreateInterruptEvent"}, {0x54, nullptr, "QueryPhysicalAddress"}, {0x55, nullptr, "QueryIoMapping"}, {0x56, nullptr, "CreateDeviceAddressSpace"}, {0x57, nullptr, "AttachDeviceAddressSpace"}, {0x58, nullptr, "DetachDeviceAddressSpace"}, {0x59, nullptr, "MapDeviceAddressSpaceByForce"}, {0x5A, nullptr, "MapDeviceAddressSpaceAligned"}, {0x5B, nullptr, "MapDeviceAddressSpace"}, {0x5C, nullptr, "UnmapDeviceAddressSpace"}, {0x5D, nullptr, "InvalidateProcessDataCache"}, {0x5E, nullptr, "StoreProcessDataCache"}, {0x5F, nullptr, "FlushProcessDataCache"}, {0x60, nullptr, "DebugActiveProcess"}, {0x61, nullptr, "BreakDebugProcess"}, {0x62, nullptr, "TerminateDebugProcess"}, {0x63, nullptr, "GetDebugEvent"}, {0x64, nullptr, "ContinueDebugEvent"}, {0x65, SvcWrap64, "GetProcessList"}, {0x66, SvcWrap64, "GetThreadList"}, {0x67, nullptr, "GetDebugThreadContext"}, {0x68, nullptr, "SetDebugThreadContext"}, {0x69, nullptr, "QueryDebugProcessMemory"}, {0x6A, nullptr, "ReadDebugProcessMemory"}, {0x6B, nullptr, "WriteDebugProcessMemory"}, {0x6C, nullptr, "SetHardwareBreakPoint"}, {0x6D, nullptr, "GetDebugThreadParam"}, {0x6E, nullptr, "Unknown"}, {0x6F, nullptr, "GetSystemInfo"}, {0x70, nullptr, "CreatePort"}, {0x71, nullptr, "ManageNamedPort"}, {0x72, nullptr, "ConnectToPort"}, {0x73, nullptr, "SetProcessMemoryPermission"}, {0x74, nullptr, "MapProcessMemory"}, {0x75, nullptr, "UnmapProcessMemory"}, {0x76, SvcWrap64, "QueryProcessMemory"}, {0x77, SvcWrap64, "MapProcessCodeMemory"}, {0x78, SvcWrap64, "UnmapProcessCodeMemory"}, {0x79, nullptr, "CreateProcess"}, {0x7A, nullptr, "StartProcess"}, {0x7B, nullptr, "TerminateProcess"}, {0x7C, SvcWrap64, "GetProcessInfo"}, {0x7D, SvcWrap64, "CreateResourceLimit"}, {0x7E, SvcWrap64, "SetResourceLimitLimitValue"}, {0x7F, nullptr, "CallSecureMonitor"}, }; static const FunctionDef* GetSVCInfo32(u32 func_num) { if (func_num >= std::size(SVC_Table_32)) { LOG_ERROR(Kernel_SVC, "Unknown svc=0x{:02X}", func_num); return nullptr; } return &SVC_Table_32[func_num]; } static const FunctionDef* GetSVCInfo64(u32 func_num) { if (func_num >= std::size(SVC_Table_64)) { LOG_ERROR(Kernel_SVC, "Unknown svc=0x{:02X}", func_num); return nullptr; } return &SVC_Table_64[func_num]; } void Call(Core::System& system, u32 immediate) { system.ExitDynarmicProfile(); auto& kernel = system.Kernel(); kernel.EnterSVCProfile(); auto* thread = system.CurrentScheduler().GetCurrentThread(); thread->SetContinuousOnSVC(true); const FunctionDef* info = system.CurrentProcess()->Is64BitProcess() ? GetSVCInfo64(immediate) : GetSVCInfo32(immediate); if (info) { if (info->func) { info->func(system); } else { LOG_CRITICAL(Kernel_SVC, "Unimplemented SVC function {}(..)", info->name); } } else { LOG_CRITICAL(Kernel_SVC, "Unknown SVC function 0x{:X}", immediate); } kernel.ExitSVCProfile(); if (!thread->IsContinuousOnSVC()) { auto* host_context = thread->GetHostContext().get(); host_context->Rewind(); } system.EnterDynarmicProfile(); } } // namespace Kernel::Svc