// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include #include #include #include #include "common/alignment.h" #include "common/assert.h" #include "common/common_funcs.h" #include "common/fiber.h" #include "common/logging/log.h" #include "common/scope_exit.h" #include "core/core.h" #include "core/core_timing.h" #include "core/debugger/debugger.h" #include "core/hle/kernel/k_client_port.h" #include "core/hle/kernel/k_client_session.h" #include "core/hle/kernel/k_code_memory.h" #include "core/hle/kernel/k_event.h" #include "core/hle/kernel/k_handle_table.h" #include "core/hle/kernel/k_memory_block.h" #include "core/hle/kernel/k_memory_layout.h" #include "core/hle/kernel/k_page_table.h" #include "core/hle/kernel/k_process.h" #include "core/hle/kernel/k_readable_event.h" #include "core/hle/kernel/k_resource_limit.h" #include "core/hle/kernel/k_scheduler.h" #include "core/hle/kernel/k_scoped_resource_reservation.h" #include "core/hle/kernel/k_session.h" #include "core/hle/kernel/k_shared_memory.h" #include "core/hle/kernel/k_synchronization_object.h" #include "core/hle/kernel/k_thread.h" #include "core/hle/kernel/k_thread_queue.h" #include "core/hle/kernel/k_transfer_memory.h" #include "core/hle/kernel/kernel.h" #include "core/hle/kernel/physical_core.h" #include "core/hle/kernel/svc.h" #include "core/hle/kernel/svc_results.h" #include "core/hle/kernel/svc_types.h" #include "core/hle/kernel/svc_wrap.h" #include "core/hle/result.h" #include "core/memory.h" #include "core/reporter.h" namespace Kernel::Svc { namespace { // Checks if address + size is greater than the given address // This can return false if the size causes an overflow of a 64-bit type // or if the given size is zero. constexpr bool IsValidAddressRange(VAddr address, u64 size) { return address + size > address; } // Helper function that performs the common sanity checks for svcMapMemory // and svcUnmapMemory. This is doable, as both functions perform their sanitizing // in the same order. Result MapUnmapMemorySanityChecks(const KPageTable& manager, VAddr dst_addr, VAddr src_addr, u64 size) { if (!Common::Is4KBAligned(dst_addr)) { LOG_ERROR(Kernel_SVC, "Destination address is not aligned to 4KB, 0x{:016X}", dst_addr); return ResultInvalidAddress; } if (!Common::Is4KBAligned(src_addr)) { LOG_ERROR(Kernel_SVC, "Source address is not aligned to 4KB, 0x{:016X}", src_addr); return ResultInvalidSize; } if (size == 0) { LOG_ERROR(Kernel_SVC, "Size is 0"); return ResultInvalidSize; } if (!Common::Is4KBAligned(size)) { LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:016X}", size); return ResultInvalidSize; } if (!IsValidAddressRange(dst_addr, size)) { LOG_ERROR(Kernel_SVC, "Destination is not a valid address range, addr=0x{:016X}, size=0x{:016X}", dst_addr, size); return ResultInvalidCurrentMemory; } if (!IsValidAddressRange(src_addr, size)) { LOG_ERROR(Kernel_SVC, "Source is not a valid address range, addr=0x{:016X}, size=0x{:016X}", src_addr, size); return ResultInvalidCurrentMemory; } if (!manager.IsInsideAddressSpace(src_addr, size)) { LOG_ERROR(Kernel_SVC, "Source is not within the address space, addr=0x{:016X}, size=0x{:016X}", src_addr, size); return ResultInvalidCurrentMemory; } if (manager.IsOutsideStackRegion(dst_addr, size)) { LOG_ERROR(Kernel_SVC, "Destination is not within the stack region, addr=0x{:016X}, size=0x{:016X}", dst_addr, size); return ResultInvalidMemoryRegion; } if (manager.IsInsideHeapRegion(dst_addr, size)) { LOG_ERROR(Kernel_SVC, "Destination does not fit within the heap region, addr=0x{:016X}, " "size=0x{:016X}", dst_addr, size); return ResultInvalidMemoryRegion; } if (manager.IsInsideAliasRegion(dst_addr, size)) { LOG_ERROR(Kernel_SVC, "Destination does not fit within the map region, addr=0x{:016X}, " "size=0x{:016X}", dst_addr, size); return ResultInvalidMemoryRegion; } return ResultSuccess; } enum class ResourceLimitValueType { CurrentValue, LimitValue, PeakValue, }; } // Anonymous namespace /// Set the process heap to a given Size. It can both extend and shrink the heap. static Result SetHeapSize(Core::System& system, VAddr* out_address, u64 size) { LOG_TRACE(Kernel_SVC, "called, heap_size=0x{:X}", size); // Validate size. R_UNLESS(Common::IsAligned(size, HeapSizeAlignment), ResultInvalidSize); R_UNLESS(size < MainMemorySizeMax, ResultInvalidSize); // Set the heap size. R_TRY(system.Kernel().CurrentProcess()->PageTable().SetHeapSize(out_address, size)); return ResultSuccess; } static Result SetHeapSize32(Core::System& system, u32* heap_addr, u32 heap_size) { VAddr temp_heap_addr{}; const Result result{SetHeapSize(system, &temp_heap_addr, heap_size)}; *heap_addr = static_cast(temp_heap_addr); return result; } constexpr bool IsValidSetMemoryPermission(MemoryPermission perm) { switch (perm) { case MemoryPermission::None: case MemoryPermission::Read: case MemoryPermission::ReadWrite: return true; default: return false; } } static Result SetMemoryPermission(Core::System& system, VAddr address, u64 size, MemoryPermission perm) { LOG_DEBUG(Kernel_SVC, "called, address=0x{:016X}, size=0x{:X}, perm=0x{:08X", address, size, perm); // Validate address / size. R_UNLESS(Common::IsAligned(address, PageSize), ResultInvalidAddress); R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize); R_UNLESS(size > 0, ResultInvalidSize); R_UNLESS((address < address + size), ResultInvalidCurrentMemory); // Validate the permission. R_UNLESS(IsValidSetMemoryPermission(perm), ResultInvalidNewMemoryPermission); // Validate that the region is in range for the current process. auto& page_table = system.Kernel().CurrentProcess()->PageTable(); R_UNLESS(page_table.Contains(address, size), ResultInvalidCurrentMemory); // Set the memory attribute. return page_table.SetMemoryPermission(address, size, perm); } static Result SetMemoryAttribute(Core::System& system, VAddr address, u64 size, u32 mask, u32 attr) { LOG_DEBUG(Kernel_SVC, "called, address=0x{:016X}, size=0x{:X}, mask=0x{:08X}, attribute=0x{:08X}", address, size, mask, attr); // Validate address / size. R_UNLESS(Common::IsAligned(address, PageSize), ResultInvalidAddress); R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize); R_UNLESS(size > 0, ResultInvalidSize); R_UNLESS((address < address + size), ResultInvalidCurrentMemory); // Validate the attribute and mask. constexpr u32 SupportedMask = static_cast(MemoryAttribute::Uncached); R_UNLESS((mask | attr) == mask, ResultInvalidCombination); R_UNLESS((mask | attr | SupportedMask) == SupportedMask, ResultInvalidCombination); // Validate that the region is in range for the current process. auto& page_table{system.Kernel().CurrentProcess()->PageTable()}; R_UNLESS(page_table.Contains(address, size), ResultInvalidCurrentMemory); // Set the memory attribute. return page_table.SetMemoryAttribute(address, size, mask, attr); } static Result SetMemoryAttribute32(Core::System& system, u32 address, u32 size, u32 mask, u32 attr) { return SetMemoryAttribute(system, address, size, mask, attr); } /// Maps a memory range into a different range. static Result MapMemory(Core::System& system, VAddr dst_addr, VAddr src_addr, u64 size) { LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr, src_addr, size); auto& page_table{system.Kernel().CurrentProcess()->PageTable()}; if (const Result result{MapUnmapMemorySanityChecks(page_table, dst_addr, src_addr, size)}; result.IsError()) { return result; } return page_table.MapMemory(dst_addr, src_addr, size); } static Result MapMemory32(Core::System& system, u32 dst_addr, u32 src_addr, u32 size) { return MapMemory(system, dst_addr, src_addr, size); } /// Unmaps a region that was previously mapped with svcMapMemory static Result UnmapMemory(Core::System& system, VAddr dst_addr, VAddr src_addr, u64 size) { LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr, src_addr, size); auto& page_table{system.Kernel().CurrentProcess()->PageTable()}; if (const Result result{MapUnmapMemorySanityChecks(page_table, dst_addr, src_addr, size)}; result.IsError()) { return result; } return page_table.UnmapMemory(dst_addr, src_addr, size); } static Result UnmapMemory32(Core::System& system, u32 dst_addr, u32 src_addr, u32 size) { return UnmapMemory(system, dst_addr, src_addr, size); } template Result CreateSession(Core::System& system, Handle* out_server, Handle* out_client, u64 name) { auto& process = *system.CurrentProcess(); auto& handle_table = process.GetHandleTable(); // Declare the session we're going to allocate. T* session; // Reserve a new session from the process resource limit. // FIXME: LimitableResource_SessionCountMax KScopedResourceReservation session_reservation(&process, LimitableResource::Sessions); if (session_reservation.Succeeded()) { session = T::Create(system.Kernel()); } else { return ResultLimitReached; // // We couldn't reserve a session. Check that we support dynamically expanding the // // resource limit. // R_UNLESS(process.GetResourceLimit() == // &system.Kernel().GetSystemResourceLimit(), ResultLimitReached); // R_UNLESS(KTargetSystem::IsDynamicResourceLimitsEnabled(), ResultLimitReached()); // // Try to allocate a session from unused slab memory. // session = T::CreateFromUnusedSlabMemory(); // R_UNLESS(session != nullptr, ResultLimitReached); // ON_RESULT_FAILURE { session->Close(); }; // // If we're creating a KSession, we want to add two KSessionRequests to the heap, to // // prevent request exhaustion. // // NOTE: Nintendo checks if session->DynamicCast() != nullptr, but there's // // no reason to not do this statically. // if constexpr (std::same_as) { // for (size_t i = 0; i < 2; i++) { // KSessionRequest* request = KSessionRequest::CreateFromUnusedSlabMemory(); // R_UNLESS(request != nullptr, ResultLimitReached); // request->Close(); // } // } // We successfully allocated a session, so add the object we allocated to the resource // limit. // system.Kernel().GetSystemResourceLimit().Reserve(LimitableResource::Sessions, 1); } // Check that we successfully created a session. R_UNLESS(session != nullptr, ResultOutOfResource); // Initialize the session. session->Initialize(nullptr, fmt::format("{}", name)); // Commit the session reservation. session_reservation.Commit(); // Ensure that we clean up the session (and its only references are handle table) on function // end. SCOPE_EXIT({ session->GetClientSession().Close(); session->GetServerSession().Close(); }); // Register the session. T::Register(system.Kernel(), session); // Add the server session to the handle table. R_TRY(handle_table.Add(out_server, &session->GetServerSession())); // Add the client session to the handle table. const auto result = handle_table.Add(out_client, &session->GetClientSession()); if (!R_SUCCEEDED(result)) { // Ensure that we maintaing a clean handle state on exit. handle_table.Remove(*out_server); } return result; } static Result CreateSession(Core::System& system, Handle* out_server, Handle* out_client, u32 is_light, u64 name) { if (is_light) { // return CreateSession(system, out_server, out_client, name); return ResultUnknown; } else { return CreateSession(system, out_server, out_client, name); } } /// Connect to an OS service given the port name, returns the handle to the port to out static Result ConnectToNamedPort(Core::System& system, Handle* out, VAddr port_name_address) { auto& memory = system.Memory(); if (!memory.IsValidVirtualAddress(port_name_address)) { LOG_ERROR(Kernel_SVC, "Port Name Address is not a valid virtual address, port_name_address=0x{:016X}", port_name_address); return ResultNotFound; } static constexpr std::size_t PortNameMaxLength = 11; // Read 1 char beyond the max allowed port name to detect names that are too long. const std::string port_name = memory.ReadCString(port_name_address, PortNameMaxLength + 1); if (port_name.size() > PortNameMaxLength) { LOG_ERROR(Kernel_SVC, "Port name is too long, expected {} but got {}", PortNameMaxLength, port_name.size()); return ResultOutOfRange; } LOG_TRACE(Kernel_SVC, "called port_name={}", port_name); // Get the current handle table. auto& kernel = system.Kernel(); auto& handle_table = kernel.CurrentProcess()->GetHandleTable(); // Find the client port. auto port = kernel.CreateNamedServicePort(port_name); if (!port) { LOG_ERROR(Kernel_SVC, "tried to connect to unknown port: {}", port_name); return ResultNotFound; } // Reserve a handle for the port. // NOTE: Nintendo really does write directly to the output handle here. R_TRY(handle_table.Reserve(out)); auto handle_guard = SCOPE_GUARD({ handle_table.Unreserve(*out); }); // Create a session. KClientSession* session{}; R_TRY(port->CreateSession(std::addressof(session), std::make_shared(kernel))); port->Close(); // Register the session in the table, close the extra reference. handle_table.Register(*out, session); session->Close(); // We succeeded. handle_guard.Cancel(); return ResultSuccess; } static Result ConnectToNamedPort32(Core::System& system, Handle* out_handle, u32 port_name_address) { return ConnectToNamedPort(system, out_handle, port_name_address); } /// Makes a blocking IPC call to a service. static Result SendSyncRequest(Core::System& system, Handle handle) { auto& kernel = system.Kernel(); // Create the wait queue. KThreadQueue wait_queue(kernel); // Get the client session from its handle. KScopedAutoObject session = kernel.CurrentProcess()->GetHandleTable().GetObject(handle); R_UNLESS(session.IsNotNull(), ResultInvalidHandle); LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({})", handle, session->GetName()); return session->SendSyncRequest(); } static Result SendSyncRequest32(Core::System& system, Handle handle) { return SendSyncRequest(system, handle); } static Result ReplyAndReceive(Core::System& system, s32* out_index, Handle* handles, s32 num_handles, Handle reply_target, s64 timeout_ns) { auto& kernel = system.Kernel(); auto& handle_table = GetCurrentThread(kernel).GetOwnerProcess()->GetHandleTable(); // Convert handle list to object table. std::vector objs(num_handles); R_UNLESS( handle_table.GetMultipleObjects(objs.data(), handles, num_handles), ResultInvalidHandle); // Ensure handles are closed when we're done. SCOPE_EXIT({ for (auto i = 0; i < num_handles; ++i) { objs[i]->Close(); } }); // Reply to the target, if one is specified. if (reply_target != InvalidHandle) { KScopedAutoObject session = handle_table.GetObject(reply_target); R_UNLESS(session.IsNotNull(), ResultInvalidHandle); // If we fail to reply, we want to set the output index to -1. // ON_RESULT_FAILURE { *out_index = -1; }; // Send the reply. // R_TRY(session->SendReply()); Result rc = session->SendReply(); if (!R_SUCCEEDED(rc)) { *out_index = -1; return rc; } } // Wait for a message. while (true) { // Wait for an object. s32 index; Result result = KSynchronizationObject::Wait(kernel, &index, objs.data(), static_cast(objs.size()), timeout_ns); if (result == ResultTimedOut) { return result; } // Receive the request. if (R_SUCCEEDED(result)) { KServerSession* session = objs[index]->DynamicCast(); if (session != nullptr) { result = session->ReceiveRequest(); if (result == ResultNotFound) { continue; } } } *out_index = index; return result; } } /// Get the ID for the specified thread. static Result GetThreadId(Core::System& system, u64* out_thread_id, Handle thread_handle) { // Get the thread from its handle. KScopedAutoObject thread = system.Kernel().CurrentProcess()->GetHandleTable().GetObject(thread_handle); R_UNLESS(thread.IsNotNull(), ResultInvalidHandle); // Get the thread's id. *out_thread_id = thread->GetId(); return ResultSuccess; } static Result GetThreadId32(Core::System& system, u32* out_thread_id_low, u32* out_thread_id_high, Handle thread_handle) { u64 out_thread_id{}; const Result result{GetThreadId(system, &out_thread_id, thread_handle)}; *out_thread_id_low = static_cast(out_thread_id >> 32); *out_thread_id_high = static_cast(out_thread_id & std::numeric_limits::max()); return result; } /// Gets the ID of the specified process or a specified thread's owning process. static Result GetProcessId(Core::System& system, u64* out_process_id, Handle handle) { LOG_DEBUG(Kernel_SVC, "called handle=0x{:08X}", handle); // Get the object from the handle table. KScopedAutoObject obj = system.Kernel().CurrentProcess()->GetHandleTable().GetObject( static_cast(handle)); R_UNLESS(obj.IsNotNull(), ResultInvalidHandle); // Get the process from the object. KProcess* process = nullptr; if (KProcess* p = obj->DynamicCast(); p != nullptr) { // The object is a process, so we can use it directly. process = p; } else if (KThread* t = obj->DynamicCast(); t != nullptr) { // The object is a thread, so we want to use its parent. process = reinterpret_cast(obj.GetPointerUnsafe())->GetOwnerProcess(); } else { // TODO(bunnei): This should also handle debug objects before returning. UNIMPLEMENTED_MSG("Debug objects not implemented"); } // Make sure the target process exists. R_UNLESS(process != nullptr, ResultInvalidHandle); // Get the process id. *out_process_id = process->GetId(); return ResultSuccess; } static Result GetProcessId32(Core::System& system, u32* out_process_id_low, u32* out_process_id_high, Handle handle) { u64 out_process_id{}; const auto result = GetProcessId(system, &out_process_id, handle); *out_process_id_low = static_cast(out_process_id); *out_process_id_high = static_cast(out_process_id >> 32); return result; } /// Wait for the given handles to synchronize, timeout after the specified nanoseconds static Result WaitSynchronization(Core::System& system, s32* index, VAddr handles_address, s32 num_handles, s64 nano_seconds) { LOG_TRACE(Kernel_SVC, "called handles_address=0x{:X}, num_handles={}, nano_seconds={}", handles_address, num_handles, nano_seconds); // Ensure number of handles is valid. R_UNLESS(0 <= num_handles && num_handles <= ArgumentHandleCountMax, ResultOutOfRange); auto& kernel = system.Kernel(); std::vector objs(num_handles); const auto& handle_table = kernel.CurrentProcess()->GetHandleTable(); Handle* handles = system.Memory().GetPointer(handles_address); // Copy user handles. if (num_handles > 0) { // Convert the handles to objects. R_UNLESS(handle_table.GetMultipleObjects(objs.data(), handles, num_handles), ResultInvalidHandle); for (const auto& obj : objs) { kernel.RegisterInUseObject(obj); } } // Ensure handles are closed when we're done. SCOPE_EXIT({ for (s32 i = 0; i < num_handles; ++i) { kernel.UnregisterInUseObject(objs[i]); objs[i]->Close(); } }); return KSynchronizationObject::Wait(kernel, index, objs.data(), static_cast(objs.size()), nano_seconds); } static Result WaitSynchronization32(Core::System& system, u32 timeout_low, u32 handles_address, s32 num_handles, u32 timeout_high, s32* index) { const s64 nano_seconds{(static_cast(timeout_high) << 32) | static_cast(timeout_low)}; return WaitSynchronization(system, index, handles_address, num_handles, nano_seconds); } /// Resumes a thread waiting on WaitSynchronization static Result CancelSynchronization(Core::System& system, Handle handle) { LOG_TRACE(Kernel_SVC, "called handle=0x{:X}", handle); // Get the thread from its handle. KScopedAutoObject thread = system.Kernel().CurrentProcess()->GetHandleTable().GetObject(handle); R_UNLESS(thread.IsNotNull(), ResultInvalidHandle); // Cancel the thread's wait. thread->WaitCancel(); return ResultSuccess; } static Result CancelSynchronization32(Core::System& system, Handle handle) { return CancelSynchronization(system, handle); } /// Attempts to locks a mutex static Result ArbitrateLock(Core::System& system, Handle thread_handle, VAddr address, u32 tag) { LOG_TRACE(Kernel_SVC, "called thread_handle=0x{:08X}, address=0x{:X}, tag=0x{:08X}", thread_handle, address, tag); // Validate the input address. if (IsKernelAddress(address)) { LOG_ERROR(Kernel_SVC, "Attempting to arbitrate a lock on a kernel address (address={:08X})", address); return ResultInvalidCurrentMemory; } if (!Common::IsAligned(address, sizeof(u32))) { LOG_ERROR(Kernel_SVC, "Input address must be 4 byte aligned (address: {:08X})", address); return ResultInvalidAddress; } return system.Kernel().CurrentProcess()->WaitForAddress(thread_handle, address, tag); } static Result ArbitrateLock32(Core::System& system, Handle thread_handle, u32 address, u32 tag) { return ArbitrateLock(system, thread_handle, address, tag); } /// Unlock a mutex static Result ArbitrateUnlock(Core::System& system, VAddr address) { LOG_TRACE(Kernel_SVC, "called address=0x{:X}", address); // Validate the input address. if (IsKernelAddress(address)) { LOG_ERROR(Kernel_SVC, "Attempting to arbitrate an unlock on a kernel address (address={:08X})", address); return ResultInvalidCurrentMemory; } if (!Common::IsAligned(address, sizeof(u32))) { LOG_ERROR(Kernel_SVC, "Input address must be 4 byte aligned (address: {:08X})", address); return ResultInvalidAddress; } return system.Kernel().CurrentProcess()->SignalToAddress(address); } static Result ArbitrateUnlock32(Core::System& system, u32 address) { return ArbitrateUnlock(system, address); } enum class BreakType : u32 { Panic = 0, AssertionFailed = 1, PreNROLoad = 3, PostNROLoad = 4, PreNROUnload = 5, PostNROUnload = 6, CppException = 7, }; struct BreakReason { union { u32 raw; BitField<0, 30, BreakType> break_type; BitField<31, 1, u32> signal_debugger; }; }; /// Break program execution static void Break(Core::System& system, u32 reason, u64 info1, u64 info2) { BreakReason break_reason{reason}; bool has_dumped_buffer{}; std::vector debug_buffer; const auto handle_debug_buffer = [&](VAddr addr, u64 sz) { if (sz == 0 || addr == 0 || has_dumped_buffer) { return; } auto& memory = system.Memory(); // This typically is an error code so we're going to assume this is the case if (sz == sizeof(u32)) { LOG_CRITICAL(Debug_Emulated, "debug_buffer_err_code={:X}", memory.Read32(addr)); } else { // We don't know what's in here so we'll hexdump it debug_buffer.resize(sz); memory.ReadBlock(addr, debug_buffer.data(), sz); std::string hexdump; for (std::size_t i = 0; i < debug_buffer.size(); i++) { hexdump += fmt::format("{:02X} ", debug_buffer[i]); if (i != 0 && i % 16 == 0) { hexdump += '\n'; } } LOG_CRITICAL(Debug_Emulated, "debug_buffer=\n{}", hexdump); } has_dumped_buffer = true; }; switch (break_reason.break_type) { case BreakType::Panic: LOG_CRITICAL(Debug_Emulated, "Signalling debugger, PANIC! info1=0x{:016X}, info2=0x{:016X}", info1, info2); handle_debug_buffer(info1, info2); break; case BreakType::AssertionFailed: LOG_CRITICAL(Debug_Emulated, "Signalling debugger, Assertion failed! info1=0x{:016X}, info2=0x{:016X}", info1, info2); handle_debug_buffer(info1, info2); break; case BreakType::PreNROLoad: LOG_WARNING( Debug_Emulated, "Signalling debugger, Attempting to load an NRO at 0x{:016X} with size 0x{:016X}", info1, info2); break; case BreakType::PostNROLoad: LOG_WARNING(Debug_Emulated, "Signalling debugger, Loaded an NRO at 0x{:016X} with size 0x{:016X}", info1, info2); break; case BreakType::PreNROUnload: LOG_WARNING( Debug_Emulated, "Signalling debugger, Attempting to unload an NRO at 0x{:016X} with size 0x{:016X}", info1, info2); break; case BreakType::PostNROUnload: LOG_WARNING(Debug_Emulated, "Signalling debugger, Unloaded an NRO at 0x{:016X} with size 0x{:016X}", info1, info2); break; case BreakType::CppException: LOG_CRITICAL(Debug_Emulated, "Signalling debugger. Uncaught C++ exception encountered."); break; default: LOG_WARNING( Debug_Emulated, "Signalling debugger, Unknown break reason {}, info1=0x{:016X}, info2=0x{:016X}", static_cast(break_reason.break_type.Value()), info1, info2); handle_debug_buffer(info1, info2); break; } system.GetReporter().SaveSvcBreakReport( static_cast(break_reason.break_type.Value()), break_reason.signal_debugger.As(), info1, info2, has_dumped_buffer ? std::make_optional(debug_buffer) : std::nullopt); if (!break_reason.signal_debugger) { LOG_CRITICAL( Debug_Emulated, "Emulated program broke execution! reason=0x{:016X}, info1=0x{:016X}, info2=0x{:016X}", reason, info1, info2); handle_debug_buffer(info1, info2); auto* const current_thread = GetCurrentThreadPointer(system.Kernel()); const auto thread_processor_id = current_thread->GetActiveCore(); system.ArmInterface(static_cast(thread_processor_id)).LogBacktrace(); } if (system.DebuggerEnabled()) { auto* thread = system.Kernel().GetCurrentEmuThread(); system.GetDebugger().NotifyThreadStopped(thread); thread->RequestSuspend(Kernel::SuspendType::Debug); } } static void Break32(Core::System& system, u32 reason, u32 info1, u32 info2) { Break(system, reason, info1, info2); } /// Used to output a message on a debug hardware unit - does nothing on a retail unit static void OutputDebugString(Core::System& system, VAddr address, u64 len) { if (len == 0) { return; } std::string str(len, '\0'); system.Memory().ReadBlock(address, str.data(), str.size()); LOG_DEBUG(Debug_Emulated, "{}", str); } static void OutputDebugString32(Core::System& system, u32 address, u32 len) { OutputDebugString(system, address, len); } /// Gets system/memory information for the current process static Result GetInfo(Core::System& system, u64* result, u64 info_id, Handle handle, u64 info_sub_id) { LOG_TRACE(Kernel_SVC, "called info_id=0x{:X}, info_sub_id=0x{:X}, handle=0x{:08X}", info_id, info_sub_id, handle); enum class GetInfoType : u64 { // 1.0.0+ AllowedCPUCoreMask = 0, AllowedThreadPriorityMask = 1, MapRegionBaseAddr = 2, MapRegionSize = 3, HeapRegionBaseAddr = 4, HeapRegionSize = 5, TotalPhysicalMemoryAvailable = 6, TotalPhysicalMemoryUsed = 7, IsCurrentProcessBeingDebugged = 8, RegisterResourceLimit = 9, IdleTickCount = 10, RandomEntropy = 11, ThreadTickCount = 0xF0000002, // 2.0.0+ ASLRRegionBaseAddr = 12, ASLRRegionSize = 13, StackRegionBaseAddr = 14, StackRegionSize = 15, // 3.0.0+ SystemResourceSize = 16, SystemResourceUsage = 17, TitleId = 18, // 4.0.0+ PrivilegedProcessId = 19, // 5.0.0+ UserExceptionContextAddr = 20, // 6.0.0+ TotalPhysicalMemoryAvailableWithoutSystemResource = 21, TotalPhysicalMemoryUsedWithoutSystemResource = 22, // Homebrew only MesosphereCurrentProcess = 65001, }; const auto info_id_type = static_cast(info_id); switch (info_id_type) { case GetInfoType::AllowedCPUCoreMask: case GetInfoType::AllowedThreadPriorityMask: case GetInfoType::MapRegionBaseAddr: case GetInfoType::MapRegionSize: case GetInfoType::HeapRegionBaseAddr: case GetInfoType::HeapRegionSize: case GetInfoType::ASLRRegionBaseAddr: case GetInfoType::ASLRRegionSize: case GetInfoType::StackRegionBaseAddr: case GetInfoType::StackRegionSize: case GetInfoType::TotalPhysicalMemoryAvailable: case GetInfoType::TotalPhysicalMemoryUsed: case GetInfoType::SystemResourceSize: case GetInfoType::SystemResourceUsage: case GetInfoType::TitleId: case GetInfoType::UserExceptionContextAddr: case GetInfoType::TotalPhysicalMemoryAvailableWithoutSystemResource: case GetInfoType::TotalPhysicalMemoryUsedWithoutSystemResource: { if (info_sub_id != 0) { LOG_ERROR(Kernel_SVC, "Info sub id is non zero! info_id={}, info_sub_id={}", info_id, info_sub_id); return ResultInvalidEnumValue; } const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); KScopedAutoObject process = handle_table.GetObject(handle); if (process.IsNull()) { LOG_ERROR(Kernel_SVC, "Process is not valid! info_id={}, info_sub_id={}, handle={:08X}", info_id, info_sub_id, handle); return ResultInvalidHandle; } switch (info_id_type) { case GetInfoType::AllowedCPUCoreMask: *result = process->GetCoreMask(); return ResultSuccess; case GetInfoType::AllowedThreadPriorityMask: *result = process->GetPriorityMask(); return ResultSuccess; case GetInfoType::MapRegionBaseAddr: *result = process->PageTable().GetAliasRegionStart(); return ResultSuccess; case GetInfoType::MapRegionSize: *result = process->PageTable().GetAliasRegionSize(); return ResultSuccess; case GetInfoType::HeapRegionBaseAddr: *result = process->PageTable().GetHeapRegionStart(); return ResultSuccess; case GetInfoType::HeapRegionSize: *result = process->PageTable().GetHeapRegionSize(); return ResultSuccess; case GetInfoType::ASLRRegionBaseAddr: *result = process->PageTable().GetAliasCodeRegionStart(); return ResultSuccess; case GetInfoType::ASLRRegionSize: *result = process->PageTable().GetAliasCodeRegionSize(); return ResultSuccess; case GetInfoType::StackRegionBaseAddr: *result = process->PageTable().GetStackRegionStart(); return ResultSuccess; case GetInfoType::StackRegionSize: *result = process->PageTable().GetStackRegionSize(); return ResultSuccess; case GetInfoType::TotalPhysicalMemoryAvailable: *result = process->GetTotalPhysicalMemoryAvailable(); return ResultSuccess; case GetInfoType::TotalPhysicalMemoryUsed: *result = process->GetTotalPhysicalMemoryUsed(); return ResultSuccess; case GetInfoType::SystemResourceSize: *result = process->GetSystemResourceSize(); return ResultSuccess; case GetInfoType::SystemResourceUsage: LOG_WARNING(Kernel_SVC, "(STUBBED) Attempted to query system resource usage"); *result = process->GetSystemResourceUsage(); return ResultSuccess; case GetInfoType::TitleId: *result = process->GetProgramID(); return ResultSuccess; case GetInfoType::UserExceptionContextAddr: *result = process->GetProcessLocalRegionAddress(); return ResultSuccess; case GetInfoType::TotalPhysicalMemoryAvailableWithoutSystemResource: *result = process->GetTotalPhysicalMemoryAvailableWithoutSystemResource(); return ResultSuccess; case GetInfoType::TotalPhysicalMemoryUsedWithoutSystemResource: *result = process->GetTotalPhysicalMemoryUsedWithoutSystemResource(); return ResultSuccess; default: break; } LOG_ERROR(Kernel_SVC, "Unimplemented svcGetInfo id=0x{:016X}", info_id); return ResultInvalidEnumValue; } case GetInfoType::IsCurrentProcessBeingDebugged: *result = 0; return ResultSuccess; case GetInfoType::RegisterResourceLimit: { if (handle != 0) { LOG_ERROR(Kernel, "Handle is non zero! handle={:08X}", handle); return ResultInvalidHandle; } if (info_sub_id != 0) { LOG_ERROR(Kernel, "Info sub id is non zero! info_id={}, info_sub_id={}", info_id, info_sub_id); return ResultInvalidCombination; } KProcess* const current_process = system.Kernel().CurrentProcess(); KHandleTable& handle_table = current_process->GetHandleTable(); const auto resource_limit = current_process->GetResourceLimit(); if (!resource_limit) { *result = Svc::InvalidHandle; // Yes, the kernel considers this a successful operation. return ResultSuccess; } Handle resource_handle{}; R_TRY(handle_table.Add(&resource_handle, resource_limit)); *result = resource_handle; return ResultSuccess; } case GetInfoType::RandomEntropy: if (handle != 0) { LOG_ERROR(Kernel_SVC, "Process Handle is non zero, expected 0 result but got {:016X}", handle); return ResultInvalidHandle; } if (info_sub_id >= KProcess::RANDOM_ENTROPY_SIZE) { LOG_ERROR(Kernel_SVC, "Entropy size is out of range, expected {} but got {}", KProcess::RANDOM_ENTROPY_SIZE, info_sub_id); return ResultInvalidCombination; } *result = system.Kernel().CurrentProcess()->GetRandomEntropy(info_sub_id); return ResultSuccess; case GetInfoType::PrivilegedProcessId: LOG_WARNING(Kernel_SVC, "(STUBBED) Attempted to query privileged process id bounds, returned 0"); *result = 0; return ResultSuccess; case GetInfoType::ThreadTickCount: { constexpr u64 num_cpus = 4; if (info_sub_id != 0xFFFFFFFFFFFFFFFF && info_sub_id >= num_cpus) { LOG_ERROR(Kernel_SVC, "Core count is out of range, expected {} but got {}", num_cpus, info_sub_id); return ResultInvalidCombination; } KScopedAutoObject thread = system.Kernel().CurrentProcess()->GetHandleTable().GetObject( static_cast(handle)); if (thread.IsNull()) { LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", static_cast(handle)); return ResultInvalidHandle; } const auto& core_timing = system.CoreTiming(); const auto& scheduler = *system.Kernel().CurrentScheduler(); const auto* const current_thread = GetCurrentThreadPointer(system.Kernel()); const bool same_thread = current_thread == thread.GetPointerUnsafe(); const u64 prev_ctx_ticks = scheduler.GetLastContextSwitchTime(); u64 out_ticks = 0; if (same_thread && info_sub_id == 0xFFFFFFFFFFFFFFFF) { const u64 thread_ticks = current_thread->GetCpuTime(); out_ticks = thread_ticks + (core_timing.GetCPUTicks() - prev_ctx_ticks); } else if (same_thread && info_sub_id == system.Kernel().CurrentPhysicalCoreIndex()) { out_ticks = core_timing.GetCPUTicks() - prev_ctx_ticks; } *result = out_ticks; return ResultSuccess; } case GetInfoType::IdleTickCount: { // Verify the input handle is invalid. R_UNLESS(handle == InvalidHandle, ResultInvalidHandle); // Verify the requested core is valid. const bool core_valid = (info_sub_id == 0xFFFFFFFFFFFFFFFF) || (info_sub_id == static_cast(system.Kernel().CurrentPhysicalCoreIndex())); R_UNLESS(core_valid, ResultInvalidCombination); // Get the idle tick count. *result = system.Kernel().CurrentScheduler()->GetIdleThread()->GetCpuTime(); return ResultSuccess; } case GetInfoType::MesosphereCurrentProcess: { // Verify the input handle is invalid. R_UNLESS(handle == InvalidHandle, ResultInvalidHandle); // Verify the sub-type is valid. R_UNLESS(info_sub_id == 0, ResultInvalidCombination); // Get the handle table. KProcess* current_process = system.Kernel().CurrentProcess(); KHandleTable& handle_table = current_process->GetHandleTable(); // Get a new handle for the current process. Handle tmp; R_TRY(handle_table.Add(&tmp, current_process)); // Set the output. *result = tmp; // We succeeded. return ResultSuccess; } default: LOG_ERROR(Kernel_SVC, "Unimplemented svcGetInfo id=0x{:016X}", info_id); return ResultInvalidEnumValue; } } static Result GetInfo32(Core::System& system, u32* result_low, u32* result_high, u32 sub_id_low, u32 info_id, u32 handle, u32 sub_id_high) { const u64 sub_id{u64{sub_id_low} | (u64{sub_id_high} << 32)}; u64 res_value{}; const Result result{GetInfo(system, &res_value, info_id, handle, sub_id)}; *result_high = static_cast(res_value >> 32); *result_low = static_cast(res_value & std::numeric_limits::max()); return result; } /// Maps memory at a desired address static Result MapPhysicalMemory(Core::System& system, VAddr addr, u64 size) { LOG_DEBUG(Kernel_SVC, "called, addr=0x{:016X}, size=0x{:X}", addr, size); if (!Common::Is4KBAligned(addr)) { LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, 0x{:016X}", addr); return ResultInvalidAddress; } if (!Common::Is4KBAligned(size)) { LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:X}", size); return ResultInvalidSize; } if (size == 0) { LOG_ERROR(Kernel_SVC, "Size is zero"); return ResultInvalidSize; } if (!(addr < addr + size)) { LOG_ERROR(Kernel_SVC, "Size causes 64-bit overflow of address"); return ResultInvalidMemoryRegion; } KProcess* const current_process{system.Kernel().CurrentProcess()}; auto& page_table{current_process->PageTable()}; if (current_process->GetSystemResourceSize() == 0) { LOG_ERROR(Kernel_SVC, "System Resource Size is zero"); return ResultInvalidState; } if (!page_table.IsInsideAddressSpace(addr, size)) { LOG_ERROR(Kernel_SVC, "Address is not within the address space, addr=0x{:016X}, size=0x{:016X}", addr, size); return ResultInvalidMemoryRegion; } if (page_table.IsOutsideAliasRegion(addr, size)) { LOG_ERROR(Kernel_SVC, "Address is not within the alias region, addr=0x{:016X}, size=0x{:016X}", addr, size); return ResultInvalidMemoryRegion; } return page_table.MapPhysicalMemory(addr, size); } static Result MapPhysicalMemory32(Core::System& system, u32 addr, u32 size) { return MapPhysicalMemory(system, addr, size); } /// Unmaps memory previously mapped via MapPhysicalMemory static Result UnmapPhysicalMemory(Core::System& system, VAddr addr, u64 size) { LOG_DEBUG(Kernel_SVC, "called, addr=0x{:016X}, size=0x{:X}", addr, size); if (!Common::Is4KBAligned(addr)) { LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, 0x{:016X}", addr); return ResultInvalidAddress; } if (!Common::Is4KBAligned(size)) { LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:X}", size); return ResultInvalidSize; } if (size == 0) { LOG_ERROR(Kernel_SVC, "Size is zero"); return ResultInvalidSize; } if (!(addr < addr + size)) { LOG_ERROR(Kernel_SVC, "Size causes 64-bit overflow of address"); return ResultInvalidMemoryRegion; } KProcess* const current_process{system.Kernel().CurrentProcess()}; auto& page_table{current_process->PageTable()}; if (current_process->GetSystemResourceSize() == 0) { LOG_ERROR(Kernel_SVC, "System Resource Size is zero"); return ResultInvalidState; } if (!page_table.IsInsideAddressSpace(addr, size)) { LOG_ERROR(Kernel_SVC, "Address is not within the address space, addr=0x{:016X}, size=0x{:016X}", addr, size); return ResultInvalidMemoryRegion; } if (page_table.IsOutsideAliasRegion(addr, size)) { LOG_ERROR(Kernel_SVC, "Address is not within the alias region, addr=0x{:016X}, size=0x{:016X}", addr, size); return ResultInvalidMemoryRegion; } return page_table.UnmapPhysicalMemory(addr, size); } static Result UnmapPhysicalMemory32(Core::System& system, u32 addr, u32 size) { return UnmapPhysicalMemory(system, addr, size); } /// Sets the thread activity static Result SetThreadActivity(Core::System& system, Handle thread_handle, ThreadActivity thread_activity) { LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, activity=0x{:08X}", thread_handle, thread_activity); // Validate the activity. constexpr auto IsValidThreadActivity = [](ThreadActivity activity) { return activity == ThreadActivity::Runnable || activity == ThreadActivity::Paused; }; R_UNLESS(IsValidThreadActivity(thread_activity), ResultInvalidEnumValue); // Get the thread from its handle. KScopedAutoObject thread = system.Kernel().CurrentProcess()->GetHandleTable().GetObject(thread_handle); R_UNLESS(thread.IsNotNull(), ResultInvalidHandle); // Check that the activity is being set on a non-current thread for the current process. R_UNLESS(thread->GetOwnerProcess() == system.Kernel().CurrentProcess(), ResultInvalidHandle); R_UNLESS(thread.GetPointerUnsafe() != GetCurrentThreadPointer(system.Kernel()), ResultBusy); // Set the activity. R_TRY(thread->SetActivity(thread_activity)); return ResultSuccess; } static Result SetThreadActivity32(Core::System& system, Handle thread_handle, Svc::ThreadActivity thread_activity) { return SetThreadActivity(system, thread_handle, thread_activity); } /// Gets the thread context static Result GetThreadContext(Core::System& system, VAddr out_context, Handle thread_handle) { LOG_DEBUG(Kernel_SVC, "called, out_context=0x{:08X}, thread_handle=0x{:X}", out_context, thread_handle); auto& kernel = system.Kernel(); // Get the thread from its handle. KScopedAutoObject thread = kernel.CurrentProcess()->GetHandleTable().GetObject(thread_handle); R_UNLESS(thread.IsNotNull(), ResultInvalidHandle); // Require the handle be to a non-current thread in the current process. const auto* current_process = kernel.CurrentProcess(); R_UNLESS(current_process == thread->GetOwnerProcess(), ResultInvalidId); // Verify that the thread isn't terminated. R_UNLESS(thread->GetState() != ThreadState::Terminated, ResultTerminationRequested); /// Check that the thread is not the current one. /// NOTE: Nintendo does not check this, and thus the following loop will deadlock. R_UNLESS(thread.GetPointerUnsafe() != GetCurrentThreadPointer(kernel), ResultInvalidId); // Try to get the thread context until the thread isn't current on any core. while (true) { KScopedSchedulerLock sl{kernel}; // TODO(bunnei): Enforce that thread is suspended for debug here. // If the thread's raw state isn't runnable, check if it's current on some core. if (thread->GetRawState() != ThreadState::Runnable) { bool current = false; for (auto i = 0; i < static_cast(Core::Hardware::NUM_CPU_CORES); ++i) { if (thread.GetPointerUnsafe() == kernel.Scheduler(i).GetSchedulerCurrentThread()) { current = true; break; } } // If the thread is current, retry until it isn't. if (current) { continue; } } // Get the thread context. std::vector context; R_TRY(thread->GetThreadContext3(context)); // Copy the thread context to user space. system.Memory().WriteBlock(out_context, context.data(), context.size()); return ResultSuccess; } return ResultSuccess; } static Result GetThreadContext32(Core::System& system, u32 out_context, Handle thread_handle) { return GetThreadContext(system, out_context, thread_handle); } /// Gets the priority for the specified thread static Result GetThreadPriority(Core::System& system, u32* out_priority, Handle handle) { LOG_TRACE(Kernel_SVC, "called"); // Get the thread from its handle. KScopedAutoObject thread = system.Kernel().CurrentProcess()->GetHandleTable().GetObject(handle); R_UNLESS(thread.IsNotNull(), ResultInvalidHandle); // Get the thread's priority. *out_priority = thread->GetPriority(); return ResultSuccess; } static Result GetThreadPriority32(Core::System& system, u32* out_priority, Handle handle) { return GetThreadPriority(system, out_priority, handle); } /// Sets the priority for the specified thread static Result SetThreadPriority(Core::System& system, Handle thread_handle, u32 priority) { // Get the current process. KProcess& process = *system.Kernel().CurrentProcess(); // Validate the priority. R_UNLESS(HighestThreadPriority <= priority && priority <= LowestThreadPriority, ResultInvalidPriority); R_UNLESS(process.CheckThreadPriority(priority), ResultInvalidPriority); // Get the thread from its handle. KScopedAutoObject thread = process.GetHandleTable().GetObject(thread_handle); R_UNLESS(thread.IsNotNull(), ResultInvalidHandle); // Set the thread priority. thread->SetBasePriority(priority); return ResultSuccess; } static Result SetThreadPriority32(Core::System& system, Handle thread_handle, u32 priority) { return SetThreadPriority(system, thread_handle, priority); } /// Get which CPU core is executing the current thread static u32 GetCurrentProcessorNumber(Core::System& system) { LOG_TRACE(Kernel_SVC, "called"); return static_cast(system.CurrentPhysicalCore().CoreIndex()); } static u32 GetCurrentProcessorNumber32(Core::System& system) { return GetCurrentProcessorNumber(system); } namespace { constexpr bool IsValidSharedMemoryPermission(Svc::MemoryPermission perm) { switch (perm) { case Svc::MemoryPermission::Read: case Svc::MemoryPermission::ReadWrite: return true; default: return false; } } [[maybe_unused]] constexpr bool IsValidRemoteSharedMemoryPermission(Svc::MemoryPermission perm) { return IsValidSharedMemoryPermission(perm) || perm == Svc::MemoryPermission::DontCare; } constexpr bool IsValidProcessMemoryPermission(Svc::MemoryPermission perm) { switch (perm) { case Svc::MemoryPermission::None: case Svc::MemoryPermission::Read: case Svc::MemoryPermission::ReadWrite: case Svc::MemoryPermission::ReadExecute: return true; default: return false; } } constexpr bool IsValidMapCodeMemoryPermission(Svc::MemoryPermission perm) { return perm == Svc::MemoryPermission::ReadWrite; } constexpr bool IsValidMapToOwnerCodeMemoryPermission(Svc::MemoryPermission perm) { return perm == Svc::MemoryPermission::Read || perm == Svc::MemoryPermission::ReadExecute; } constexpr bool IsValidUnmapCodeMemoryPermission(Svc::MemoryPermission perm) { return perm == Svc::MemoryPermission::None; } constexpr bool IsValidUnmapFromOwnerCodeMemoryPermission(Svc::MemoryPermission perm) { return perm == Svc::MemoryPermission::None; } } // Anonymous namespace static Result MapSharedMemory(Core::System& system, Handle shmem_handle, VAddr address, u64 size, Svc::MemoryPermission map_perm) { LOG_TRACE(Kernel_SVC, "called, shared_memory_handle=0x{:X}, addr=0x{:X}, size=0x{:X}, permissions=0x{:08X}", shmem_handle, address, size, map_perm); // Validate the address/size. R_UNLESS(Common::IsAligned(address, PageSize), ResultInvalidAddress); R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize); R_UNLESS(size > 0, ResultInvalidSize); R_UNLESS((address < address + size), ResultInvalidCurrentMemory); // Validate the permission. R_UNLESS(IsValidSharedMemoryPermission(map_perm), ResultInvalidNewMemoryPermission); // Get the current process. auto& process = *system.Kernel().CurrentProcess(); auto& page_table = process.PageTable(); // Get the shared memory. KScopedAutoObject shmem = process.GetHandleTable().GetObject(shmem_handle); R_UNLESS(shmem.IsNotNull(), ResultInvalidHandle); // Verify that the mapping is in range. R_UNLESS(page_table.CanContain(address, size, KMemoryState::Shared), ResultInvalidMemoryRegion); // Add the shared memory to the process. R_TRY(process.AddSharedMemory(shmem.GetPointerUnsafe(), address, size)); // Ensure that we clean up the shared memory if we fail to map it. auto guard = SCOPE_GUARD({ process.RemoveSharedMemory(shmem.GetPointerUnsafe(), address, size); }); // Map the shared memory. R_TRY(shmem->Map(process, address, size, map_perm)); // We succeeded. guard.Cancel(); return ResultSuccess; } static Result MapSharedMemory32(Core::System& system, Handle shmem_handle, u32 address, u32 size, Svc::MemoryPermission map_perm) { return MapSharedMemory(system, shmem_handle, address, size, map_perm); } static Result UnmapSharedMemory(Core::System& system, Handle shmem_handle, VAddr address, u64 size) { // Validate the address/size. R_UNLESS(Common::IsAligned(address, PageSize), ResultInvalidAddress); R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize); R_UNLESS(size > 0, ResultInvalidSize); R_UNLESS((address < address + size), ResultInvalidCurrentMemory); // Get the current process. auto& process = *system.Kernel().CurrentProcess(); auto& page_table = process.PageTable(); // Get the shared memory. KScopedAutoObject shmem = process.GetHandleTable().GetObject(shmem_handle); R_UNLESS(shmem.IsNotNull(), ResultInvalidHandle); // Verify that the mapping is in range. R_UNLESS(page_table.CanContain(address, size, KMemoryState::Shared), ResultInvalidMemoryRegion); // Unmap the shared memory. R_TRY(shmem->Unmap(process, address, size)); // Remove the shared memory from the process. process.RemoveSharedMemory(shmem.GetPointerUnsafe(), address, size); return ResultSuccess; } static Result UnmapSharedMemory32(Core::System& system, Handle shmem_handle, u32 address, u32 size) { return UnmapSharedMemory(system, shmem_handle, address, size); } static Result SetProcessMemoryPermission(Core::System& system, Handle process_handle, VAddr address, u64 size, Svc::MemoryPermission perm) { LOG_TRACE(Kernel_SVC, "called, process_handle=0x{:X}, addr=0x{:X}, size=0x{:X}, permissions=0x{:08X}", process_handle, address, size, perm); // Validate the address/size. R_UNLESS(Common::IsAligned(address, PageSize), ResultInvalidAddress); R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize); R_UNLESS(size > 0, ResultInvalidSize); R_UNLESS((address < address + size), ResultInvalidCurrentMemory); R_UNLESS(address == static_cast(address), ResultInvalidCurrentMemory); R_UNLESS(size == static_cast(size), ResultInvalidCurrentMemory); // Validate the memory permission. R_UNLESS(IsValidProcessMemoryPermission(perm), ResultInvalidNewMemoryPermission); // Get the process from its handle. KScopedAutoObject process = system.CurrentProcess()->GetHandleTable().GetObject(process_handle); R_UNLESS(process.IsNotNull(), ResultInvalidHandle); // Validate that the address is in range. auto& page_table = process->PageTable(); R_UNLESS(page_table.Contains(address, size), ResultInvalidCurrentMemory); // Set the memory permission. return page_table.SetProcessMemoryPermission(address, size, perm); } static Result MapProcessMemory(Core::System& system, VAddr dst_address, Handle process_handle, VAddr src_address, u64 size) { LOG_TRACE(Kernel_SVC, "called, dst_address=0x{:X}, process_handle=0x{:X}, src_address=0x{:X}, size=0x{:X}", dst_address, process_handle, src_address, size); // Validate the address/size. R_UNLESS(Common::IsAligned(dst_address, PageSize), ResultInvalidAddress); R_UNLESS(Common::IsAligned(src_address, PageSize), ResultInvalidAddress); R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize); R_UNLESS(size > 0, ResultInvalidSize); R_UNLESS((dst_address < dst_address + size), ResultInvalidCurrentMemory); R_UNLESS((src_address < src_address + size), ResultInvalidCurrentMemory); // Get the processes. KProcess* dst_process = system.CurrentProcess(); KScopedAutoObject src_process = dst_process->GetHandleTable().GetObjectWithoutPseudoHandle(process_handle); R_UNLESS(src_process.IsNotNull(), ResultInvalidHandle); // Get the page tables. auto& dst_pt = dst_process->PageTable(); auto& src_pt = src_process->PageTable(); // Validate that the mapping is in range. R_UNLESS(src_pt.Contains(src_address, size), ResultInvalidCurrentMemory); R_UNLESS(dst_pt.CanContain(dst_address, size, KMemoryState::SharedCode), ResultInvalidMemoryRegion); // Create a new page group. KPageGroup pg; R_TRY(src_pt.MakeAndOpenPageGroup( std::addressof(pg), src_address, size / PageSize, KMemoryState::FlagCanMapProcess, KMemoryState::FlagCanMapProcess, KMemoryPermission::None, KMemoryPermission::None, KMemoryAttribute::All, KMemoryAttribute::None)); // Map the group. R_TRY(dst_pt.MapPages(dst_address, pg, KMemoryState::SharedCode, KMemoryPermission::UserReadWrite)); return ResultSuccess; } static Result UnmapProcessMemory(Core::System& system, VAddr dst_address, Handle process_handle, VAddr src_address, u64 size) { LOG_TRACE(Kernel_SVC, "called, dst_address=0x{:X}, process_handle=0x{:X}, src_address=0x{:X}, size=0x{:X}", dst_address, process_handle, src_address, size); // Validate the address/size. R_UNLESS(Common::IsAligned(dst_address, PageSize), ResultInvalidAddress); R_UNLESS(Common::IsAligned(src_address, PageSize), ResultInvalidAddress); R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize); R_UNLESS(size > 0, ResultInvalidSize); R_UNLESS((dst_address < dst_address + size), ResultInvalidCurrentMemory); R_UNLESS((src_address < src_address + size), ResultInvalidCurrentMemory); // Get the processes. KProcess* dst_process = system.CurrentProcess(); KScopedAutoObject src_process = dst_process->GetHandleTable().GetObjectWithoutPseudoHandle(process_handle); R_UNLESS(src_process.IsNotNull(), ResultInvalidHandle); // Get the page tables. auto& dst_pt = dst_process->PageTable(); auto& src_pt = src_process->PageTable(); // Validate that the mapping is in range. R_UNLESS(src_pt.Contains(src_address, size), ResultInvalidCurrentMemory); R_UNLESS(dst_pt.CanContain(dst_address, size, KMemoryState::SharedCode), ResultInvalidMemoryRegion); // Unmap the memory. R_TRY(dst_pt.UnmapProcessMemory(dst_address, size, src_pt, src_address)); return ResultSuccess; } static Result CreateCodeMemory(Core::System& system, Handle* out, VAddr address, size_t size) { LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, size=0x{:X}", address, size); // Get kernel instance. auto& kernel = system.Kernel(); // Validate address / size. R_UNLESS(Common::IsAligned(address, PageSize), ResultInvalidAddress); R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize); R_UNLESS(size > 0, ResultInvalidSize); R_UNLESS((address < address + size), ResultInvalidCurrentMemory); // Create the code memory. KCodeMemory* code_mem = KCodeMemory::Create(kernel); R_UNLESS(code_mem != nullptr, ResultOutOfResource); // Verify that the region is in range. R_UNLESS(system.CurrentProcess()->PageTable().Contains(address, size), ResultInvalidCurrentMemory); // Initialize the code memory. R_TRY(code_mem->Initialize(system.DeviceMemory(), address, size)); // Register the code memory. KCodeMemory::Register(kernel, code_mem); // Add the code memory to the handle table. R_TRY(system.CurrentProcess()->GetHandleTable().Add(out, code_mem)); code_mem->Close(); return ResultSuccess; } static Result CreateCodeMemory32(Core::System& system, Handle* out, u32 address, u32 size) { return CreateCodeMemory(system, out, address, size); } static Result ControlCodeMemory(Core::System& system, Handle code_memory_handle, u32 operation, VAddr address, size_t size, Svc::MemoryPermission perm) { LOG_TRACE(Kernel_SVC, "called, code_memory_handle=0x{:X}, operation=0x{:X}, address=0x{:X}, size=0x{:X}, " "permission=0x{:X}", code_memory_handle, operation, address, size, perm); // Validate the address / size. R_UNLESS(Common::IsAligned(address, PageSize), ResultInvalidAddress); R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize); R_UNLESS(size > 0, ResultInvalidSize); R_UNLESS((address < address + size), ResultInvalidCurrentMemory); // Get the code memory from its handle. KScopedAutoObject code_mem = system.CurrentProcess()->GetHandleTable().GetObject(code_memory_handle); R_UNLESS(code_mem.IsNotNull(), ResultInvalidHandle); // NOTE: Here, Atmosphere extends the SVC to allow code memory operations on one's own process. // This enables homebrew usage of these SVCs for JIT. // Perform the operation. switch (static_cast(operation)) { case CodeMemoryOperation::Map: { // Check that the region is in range. R_UNLESS( system.CurrentProcess()->PageTable().CanContain(address, size, KMemoryState::CodeOut), ResultInvalidMemoryRegion); // Check the memory permission. R_UNLESS(IsValidMapCodeMemoryPermission(perm), ResultInvalidNewMemoryPermission); // Map the memory. R_TRY(code_mem->Map(address, size)); } break; case CodeMemoryOperation::Unmap: { // Check that the region is in range. R_UNLESS( system.CurrentProcess()->PageTable().CanContain(address, size, KMemoryState::CodeOut), ResultInvalidMemoryRegion); // Check the memory permission. R_UNLESS(IsValidUnmapCodeMemoryPermission(perm), ResultInvalidNewMemoryPermission); // Unmap the memory. R_TRY(code_mem->Unmap(address, size)); } break; case CodeMemoryOperation::MapToOwner: { // Check that the region is in range. R_UNLESS(code_mem->GetOwner()->PageTable().CanContain(address, size, KMemoryState::GeneratedCode), ResultInvalidMemoryRegion); // Check the memory permission. R_UNLESS(IsValidMapToOwnerCodeMemoryPermission(perm), ResultInvalidNewMemoryPermission); // Map the memory to its owner. R_TRY(code_mem->MapToOwner(address, size, perm)); } break; case CodeMemoryOperation::UnmapFromOwner: { // Check that the region is in range. R_UNLESS(code_mem->GetOwner()->PageTable().CanContain(address, size, KMemoryState::GeneratedCode), ResultInvalidMemoryRegion); // Check the memory permission. R_UNLESS(IsValidUnmapFromOwnerCodeMemoryPermission(perm), ResultInvalidNewMemoryPermission); // Unmap the memory from its owner. R_TRY(code_mem->UnmapFromOwner(address, size)); } break; default: return ResultInvalidEnumValue; } return ResultSuccess; } static Result ControlCodeMemory32(Core::System& system, Handle code_memory_handle, u32 operation, u64 address, u64 size, Svc::MemoryPermission perm) { return ControlCodeMemory(system, code_memory_handle, operation, address, size, perm); } static Result QueryProcessMemory(Core::System& system, VAddr memory_info_address, VAddr page_info_address, Handle process_handle, VAddr address) { LOG_TRACE(Kernel_SVC, "called process=0x{:08X} address={:X}", process_handle, address); const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); KScopedAutoObject process = handle_table.GetObject(process_handle); if (process.IsNull()) { LOG_ERROR(Kernel_SVC, "Process handle does not exist, process_handle=0x{:08X}", process_handle); return ResultInvalidHandle; } auto& memory{system.Memory()}; const auto memory_info{process->PageTable().QueryInfo(address).GetSvcMemoryInfo()}; memory.Write64(memory_info_address + 0x00, memory_info.addr); memory.Write64(memory_info_address + 0x08, memory_info.size); memory.Write32(memory_info_address + 0x10, static_cast(memory_info.state) & 0xff); memory.Write32(memory_info_address + 0x14, static_cast(memory_info.attr)); memory.Write32(memory_info_address + 0x18, static_cast(memory_info.perm)); memory.Write32(memory_info_address + 0x1c, memory_info.ipc_refcount); memory.Write32(memory_info_address + 0x20, memory_info.device_refcount); memory.Write32(memory_info_address + 0x24, 0); // Page info appears to be currently unused by the kernel and is always set to zero. memory.Write32(page_info_address, 0); return ResultSuccess; } static Result QueryMemory(Core::System& system, VAddr memory_info_address, VAddr page_info_address, VAddr query_address) { LOG_TRACE(Kernel_SVC, "called, memory_info_address=0x{:016X}, page_info_address=0x{:016X}, " "query_address=0x{:016X}", memory_info_address, page_info_address, query_address); return QueryProcessMemory(system, memory_info_address, page_info_address, CurrentProcess, query_address); } static Result QueryMemory32(Core::System& system, u32 memory_info_address, u32 page_info_address, u32 query_address) { return QueryMemory(system, memory_info_address, page_info_address, query_address); } static Result MapProcessCodeMemory(Core::System& system, Handle process_handle, u64 dst_address, u64 src_address, u64 size) { LOG_DEBUG(Kernel_SVC, "called. process_handle=0x{:08X}, dst_address=0x{:016X}, " "src_address=0x{:016X}, size=0x{:016X}", process_handle, dst_address, src_address, size); if (!Common::Is4KBAligned(src_address)) { LOG_ERROR(Kernel_SVC, "src_address is not page-aligned (src_address=0x{:016X}).", src_address); return ResultInvalidAddress; } if (!Common::Is4KBAligned(dst_address)) { LOG_ERROR(Kernel_SVC, "dst_address is not page-aligned (dst_address=0x{:016X}).", dst_address); return ResultInvalidAddress; } if (size == 0 || !Common::Is4KBAligned(size)) { LOG_ERROR(Kernel_SVC, "Size is zero or not page-aligned (size=0x{:016X})", size); return ResultInvalidSize; } if (!IsValidAddressRange(dst_address, size)) { LOG_ERROR(Kernel_SVC, "Destination address range overflows the address space (dst_address=0x{:016X}, " "size=0x{:016X}).", dst_address, size); return ResultInvalidCurrentMemory; } if (!IsValidAddressRange(src_address, size)) { LOG_ERROR(Kernel_SVC, "Source address range overflows the address space (src_address=0x{:016X}, " "size=0x{:016X}).", src_address, size); return ResultInvalidCurrentMemory; } const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); KScopedAutoObject process = handle_table.GetObject(process_handle); if (process.IsNull()) { LOG_ERROR(Kernel_SVC, "Invalid process handle specified (handle=0x{:08X}).", process_handle); return ResultInvalidHandle; } auto& page_table = process->PageTable(); if (!page_table.IsInsideAddressSpace(src_address, size)) { LOG_ERROR(Kernel_SVC, "Source address range is not within the address space (src_address=0x{:016X}, " "size=0x{:016X}).", src_address, size); return ResultInvalidCurrentMemory; } if (!page_table.IsInsideASLRRegion(dst_address, size)) { LOG_ERROR(Kernel_SVC, "Destination address range is not within the ASLR region (dst_address=0x{:016X}, " "size=0x{:016X}).", dst_address, size); return ResultInvalidMemoryRegion; } return page_table.MapCodeMemory(dst_address, src_address, size); } static Result UnmapProcessCodeMemory(Core::System& system, Handle process_handle, u64 dst_address, u64 src_address, u64 size) { LOG_DEBUG(Kernel_SVC, "called. process_handle=0x{:08X}, dst_address=0x{:016X}, src_address=0x{:016X}, " "size=0x{:016X}", process_handle, dst_address, src_address, size); if (!Common::Is4KBAligned(dst_address)) { LOG_ERROR(Kernel_SVC, "dst_address is not page-aligned (dst_address=0x{:016X}).", dst_address); return ResultInvalidAddress; } if (!Common::Is4KBAligned(src_address)) { LOG_ERROR(Kernel_SVC, "src_address is not page-aligned (src_address=0x{:016X}).", src_address); return ResultInvalidAddress; } if (size == 0 || !Common::Is4KBAligned(size)) { LOG_ERROR(Kernel_SVC, "Size is zero or not page-aligned (size=0x{:016X}).", size); return ResultInvalidSize; } if (!IsValidAddressRange(dst_address, size)) { LOG_ERROR(Kernel_SVC, "Destination address range overflows the address space (dst_address=0x{:016X}, " "size=0x{:016X}).", dst_address, size); return ResultInvalidCurrentMemory; } if (!IsValidAddressRange(src_address, size)) { LOG_ERROR(Kernel_SVC, "Source address range overflows the address space (src_address=0x{:016X}, " "size=0x{:016X}).", src_address, size); return ResultInvalidCurrentMemory; } const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); KScopedAutoObject process = handle_table.GetObject(process_handle); if (process.IsNull()) { LOG_ERROR(Kernel_SVC, "Invalid process handle specified (handle=0x{:08X}).", process_handle); return ResultInvalidHandle; } auto& page_table = process->PageTable(); if (!page_table.IsInsideAddressSpace(src_address, size)) { LOG_ERROR(Kernel_SVC, "Source address range is not within the address space (src_address=0x{:016X}, " "size=0x{:016X}).", src_address, size); return ResultInvalidCurrentMemory; } if (!page_table.IsInsideASLRRegion(dst_address, size)) { LOG_ERROR(Kernel_SVC, "Destination address range is not within the ASLR region (dst_address=0x{:016X}, " "size=0x{:016X}).", dst_address, size); return ResultInvalidMemoryRegion; } return page_table.UnmapCodeMemory(dst_address, src_address, size, KPageTable::ICacheInvalidationStrategy::InvalidateAll); } /// Exits the current process static void ExitProcess(Core::System& system) { auto* current_process = system.Kernel().CurrentProcess(); LOG_INFO(Kernel_SVC, "Process {} exiting", current_process->GetProcessID()); ASSERT_MSG(current_process->GetState() == KProcess::State::Running, "Process has already exited"); system.Exit(); } static void ExitProcess32(Core::System& system) { ExitProcess(system); } namespace { constexpr bool IsValidVirtualCoreId(int32_t core_id) { return (0 <= core_id && core_id < static_cast(Core::Hardware::NUM_CPU_CORES)); } } // Anonymous namespace /// Creates a new thread static Result CreateThread(Core::System& system, Handle* out_handle, VAddr entry_point, u64 arg, VAddr stack_bottom, u32 priority, s32 core_id) { LOG_DEBUG(Kernel_SVC, "called entry_point=0x{:08X}, arg=0x{:08X}, stack_bottom=0x{:08X}, " "priority=0x{:08X}, core_id=0x{:08X}", entry_point, arg, stack_bottom, priority, core_id); // Adjust core id, if it's the default magic. auto& kernel = system.Kernel(); auto& process = *kernel.CurrentProcess(); if (core_id == IdealCoreUseProcessValue) { core_id = process.GetIdealCoreId(); } // Validate arguments. if (!IsValidVirtualCoreId(core_id)) { LOG_ERROR(Kernel_SVC, "Invalid Core ID specified (id={})", core_id); return ResultInvalidCoreId; } if (((1ULL << core_id) & process.GetCoreMask()) == 0) { LOG_ERROR(Kernel_SVC, "Core ID doesn't fall within allowable cores (id={})", core_id); return ResultInvalidCoreId; } if (HighestThreadPriority > priority || priority > LowestThreadPriority) { LOG_ERROR(Kernel_SVC, "Invalid priority specified (priority={})", priority); return ResultInvalidPriority; } if (!process.CheckThreadPriority(priority)) { LOG_ERROR(Kernel_SVC, "Invalid allowable thread priority (priority={})", priority); return ResultInvalidPriority; } // Reserve a new thread from the process resource limit (waiting up to 100ms). KScopedResourceReservation thread_reservation( kernel.CurrentProcess(), LimitableResource::Threads, 1, system.CoreTiming().GetGlobalTimeNs().count() + 100000000); if (!thread_reservation.Succeeded()) { LOG_ERROR(Kernel_SVC, "Could not reserve a new thread"); return ResultLimitReached; } // Create the thread. KThread* thread = KThread::Create(kernel); if (!thread) { LOG_ERROR(Kernel_SVC, "Unable to create new threads. Thread creation limit reached."); return ResultOutOfResource; } SCOPE_EXIT({ thread->Close(); }); // Initialize the thread. { KScopedLightLock lk{process.GetStateLock()}; R_TRY(KThread::InitializeUserThread(system, thread, entry_point, arg, stack_bottom, priority, core_id, &process)); } // Set the thread name for debugging purposes. thread->SetName(fmt::format("thread[entry_point={:X}, handle={:X}]", entry_point, *out_handle)); // Commit the thread reservation. thread_reservation.Commit(); // Register the new thread. KThread::Register(kernel, thread); // Add the thread to the handle table. R_TRY(process.GetHandleTable().Add(out_handle, thread)); return ResultSuccess; } static Result CreateThread32(Core::System& system, Handle* out_handle, u32 priority, u32 entry_point, u32 arg, u32 stack_top, s32 processor_id) { return CreateThread(system, out_handle, entry_point, arg, stack_top, priority, processor_id); } /// Starts the thread for the provided handle static Result StartThread(Core::System& system, Handle thread_handle) { LOG_DEBUG(Kernel_SVC, "called thread=0x{:08X}", thread_handle); // Get the thread from its handle. KScopedAutoObject thread = system.Kernel().CurrentProcess()->GetHandleTable().GetObject(thread_handle); R_UNLESS(thread.IsNotNull(), ResultInvalidHandle); // Try to start the thread. R_TRY(thread->Run()); // If we succeeded, persist a reference to the thread. thread->Open(); system.Kernel().RegisterInUseObject(thread.GetPointerUnsafe()); return ResultSuccess; } static Result StartThread32(Core::System& system, Handle thread_handle) { return StartThread(system, thread_handle); } /// Called when a thread exits static void ExitThread(Core::System& system) { LOG_DEBUG(Kernel_SVC, "called, pc=0x{:08X}", system.CurrentArmInterface().GetPC()); auto* const current_thread = GetCurrentThreadPointer(system.Kernel()); system.GlobalSchedulerContext().RemoveThread(current_thread); current_thread->Exit(); system.Kernel().UnregisterInUseObject(current_thread); } static void ExitThread32(Core::System& system) { ExitThread(system); } /// Sleep the current thread static void SleepThread(Core::System& system, s64 nanoseconds) { auto& kernel = system.Kernel(); const auto yield_type = static_cast(nanoseconds); LOG_TRACE(Kernel_SVC, "called nanoseconds={}", nanoseconds); // When the input tick is positive, sleep. if (nanoseconds > 0) { // Convert the timeout from nanoseconds to ticks. // NOTE: Nintendo does not use this conversion logic in WaitSynchronization... // Sleep. // NOTE: Nintendo does not check the result of this sleep. static_cast(GetCurrentThread(kernel).Sleep(nanoseconds)); } else if (yield_type == Svc::YieldType::WithoutCoreMigration) { KScheduler::YieldWithoutCoreMigration(kernel); } else if (yield_type == Svc::YieldType::WithCoreMigration) { KScheduler::YieldWithCoreMigration(kernel); } else if (yield_type == Svc::YieldType::ToAnyThread) { KScheduler::YieldToAnyThread(kernel); } else { // Nintendo does nothing at all if an otherwise invalid value is passed. ASSERT_MSG(false, "Unimplemented sleep yield type '{:016X}'!", nanoseconds); } } static void SleepThread32(Core::System& system, u32 nanoseconds_low, u32 nanoseconds_high) { const auto nanoseconds = static_cast(u64{nanoseconds_low} | (u64{nanoseconds_high} << 32)); SleepThread(system, nanoseconds); } /// Wait process wide key atomic static Result WaitProcessWideKeyAtomic(Core::System& system, VAddr address, VAddr cv_key, u32 tag, s64 timeout_ns) { LOG_TRACE(Kernel_SVC, "called address={:X}, cv_key={:X}, tag=0x{:08X}, timeout_ns={}", address, cv_key, tag, timeout_ns); // Validate input. if (IsKernelAddress(address)) { LOG_ERROR(Kernel_SVC, "Attempted to wait on kernel address (address={:08X})", address); return ResultInvalidCurrentMemory; } if (!Common::IsAligned(address, sizeof(s32))) { LOG_ERROR(Kernel_SVC, "Address must be 4 byte aligned (address={:08X})", address); return ResultInvalidAddress; } // Convert timeout from nanoseconds to ticks. s64 timeout{}; if (timeout_ns > 0) { const s64 offset_tick(timeout_ns); if (offset_tick > 0) { timeout = offset_tick + 2; if (timeout <= 0) { timeout = std::numeric_limits::max(); } } else { timeout = std::numeric_limits::max(); } } else { timeout = timeout_ns; } // Wait on the condition variable. return system.Kernel().CurrentProcess()->WaitConditionVariable( address, Common::AlignDown(cv_key, sizeof(u32)), tag, timeout); } static Result WaitProcessWideKeyAtomic32(Core::System& system, u32 address, u32 cv_key, u32 tag, u32 timeout_ns_low, u32 timeout_ns_high) { const auto timeout_ns = static_cast(timeout_ns_low | (u64{timeout_ns_high} << 32)); return WaitProcessWideKeyAtomic(system, address, cv_key, tag, timeout_ns); } /// Signal process wide key static void SignalProcessWideKey(Core::System& system, VAddr cv_key, s32 count) { LOG_TRACE(Kernel_SVC, "called, cv_key=0x{:X}, count=0x{:08X}", cv_key, count); // Signal the condition variable. return system.Kernel().CurrentProcess()->SignalConditionVariable( Common::AlignDown(cv_key, sizeof(u32)), count); } static void SignalProcessWideKey32(Core::System& system, u32 cv_key, s32 count) { SignalProcessWideKey(system, cv_key, count); } namespace { constexpr bool IsValidSignalType(Svc::SignalType type) { switch (type) { case Svc::SignalType::Signal: case Svc::SignalType::SignalAndIncrementIfEqual: case Svc::SignalType::SignalAndModifyByWaitingCountIfEqual: return true; default: return false; } } constexpr bool IsValidArbitrationType(Svc::ArbitrationType type) { switch (type) { case Svc::ArbitrationType::WaitIfLessThan: case Svc::ArbitrationType::DecrementAndWaitIfLessThan: case Svc::ArbitrationType::WaitIfEqual: return true; default: return false; } } } // namespace // Wait for an address (via Address Arbiter) static Result WaitForAddress(Core::System& system, VAddr address, Svc::ArbitrationType arb_type, s32 value, s64 timeout_ns) { LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, arb_type=0x{:X}, value=0x{:X}, timeout_ns={}", address, arb_type, value, timeout_ns); // Validate input. if (IsKernelAddress(address)) { LOG_ERROR(Kernel_SVC, "Attempting to wait on kernel address (address={:08X})", address); return ResultInvalidCurrentMemory; } if (!Common::IsAligned(address, sizeof(s32))) { LOG_ERROR(Kernel_SVC, "Wait address must be 4 byte aligned (address={:08X})", address); return ResultInvalidAddress; } if (!IsValidArbitrationType(arb_type)) { LOG_ERROR(Kernel_SVC, "Invalid arbitration type specified (type={})", arb_type); return ResultInvalidEnumValue; } // Convert timeout from nanoseconds to ticks. s64 timeout{}; if (timeout_ns > 0) { const s64 offset_tick(timeout_ns); if (offset_tick > 0) { timeout = offset_tick + 2; if (timeout <= 0) { timeout = std::numeric_limits::max(); } } else { timeout = std::numeric_limits::max(); } } else { timeout = timeout_ns; } return system.Kernel().CurrentProcess()->WaitAddressArbiter(address, arb_type, value, timeout); } static Result WaitForAddress32(Core::System& system, u32 address, Svc::ArbitrationType arb_type, s32 value, u32 timeout_ns_low, u32 timeout_ns_high) { const auto timeout = static_cast(timeout_ns_low | (u64{timeout_ns_high} << 32)); return WaitForAddress(system, address, arb_type, value, timeout); } // Signals to an address (via Address Arbiter) static Result SignalToAddress(Core::System& system, VAddr address, Svc::SignalType signal_type, s32 value, s32 count) { LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, signal_type=0x{:X}, value=0x{:X}, count=0x{:X}", address, signal_type, value, count); // Validate input. if (IsKernelAddress(address)) { LOG_ERROR(Kernel_SVC, "Attempting to signal to a kernel address (address={:08X})", address); return ResultInvalidCurrentMemory; } if (!Common::IsAligned(address, sizeof(s32))) { LOG_ERROR(Kernel_SVC, "Signaled address must be 4 byte aligned (address={:08X})", address); return ResultInvalidAddress; } if (!IsValidSignalType(signal_type)) { LOG_ERROR(Kernel_SVC, "Invalid signal type specified (type={})", signal_type); return ResultInvalidEnumValue; } return system.Kernel().CurrentProcess()->SignalAddressArbiter(address, signal_type, value, count); } static void SynchronizePreemptionState(Core::System& system) { auto& kernel = system.Kernel(); // Lock the scheduler. KScopedSchedulerLock sl{kernel}; // If the current thread is pinned, unpin it. KProcess* cur_process = system.Kernel().CurrentProcess(); const auto core_id = GetCurrentCoreId(kernel); if (cur_process->GetPinnedThread(core_id) == GetCurrentThreadPointer(kernel)) { // Clear the current thread's interrupt flag. GetCurrentThread(kernel).ClearInterruptFlag(); // Unpin the current thread. cur_process->UnpinCurrentThread(core_id); } } static Result SignalToAddress32(Core::System& system, u32 address, Svc::SignalType signal_type, s32 value, s32 count) { return SignalToAddress(system, address, signal_type, value, count); } static void KernelDebug([[maybe_unused]] Core::System& system, [[maybe_unused]] u32 kernel_debug_type, [[maybe_unused]] u64 param1, [[maybe_unused]] u64 param2, [[maybe_unused]] u64 param3) { // Intentionally do nothing, as this does nothing in released kernel binaries. } static void ChangeKernelTraceState([[maybe_unused]] Core::System& system, [[maybe_unused]] u32 trace_state) { // Intentionally do nothing, as this does nothing in released kernel binaries. } /// This returns the total CPU ticks elapsed since the CPU was powered-on static u64 GetSystemTick(Core::System& system) { LOG_TRACE(Kernel_SVC, "called"); auto& core_timing = system.CoreTiming(); // Returns the value of cntpct_el0 (https://switchbrew.org/wiki/SVC#svcGetSystemTick) const u64 result{system.CoreTiming().GetClockTicks()}; if (!system.Kernel().IsMulticore()) { core_timing.AddTicks(400U); } return result; } static void GetSystemTick32(Core::System& system, u32* time_low, u32* time_high) { const auto time = GetSystemTick(system); *time_low = static_cast(time); *time_high = static_cast(time >> 32); } /// Close a handle static Result CloseHandle(Core::System& system, Handle handle) { LOG_TRACE(Kernel_SVC, "Closing handle 0x{:08X}", handle); // Remove the handle. R_UNLESS(system.Kernel().CurrentProcess()->GetHandleTable().Remove(handle), ResultInvalidHandle); return ResultSuccess; } static Result CloseHandle32(Core::System& system, Handle handle) { return CloseHandle(system, handle); } /// Clears the signaled state of an event or process. static Result ResetSignal(Core::System& system, Handle handle) { LOG_DEBUG(Kernel_SVC, "called handle 0x{:08X}", handle); // Get the current handle table. const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); // Try to reset as readable event. { KScopedAutoObject readable_event = handle_table.GetObject(handle); if (readable_event.IsNotNull()) { return readable_event->Reset(); } } // Try to reset as process. { KScopedAutoObject process = handle_table.GetObject(handle); if (process.IsNotNull()) { return process->Reset(); } } LOG_ERROR(Kernel_SVC, "invalid handle (0x{:08X})", handle); return ResultInvalidHandle; } static Result ResetSignal32(Core::System& system, Handle handle) { return ResetSignal(system, handle); } namespace { constexpr bool IsValidTransferMemoryPermission(MemoryPermission perm) { switch (perm) { case MemoryPermission::None: case MemoryPermission::Read: case MemoryPermission::ReadWrite: return true; default: return false; } } } // Anonymous namespace /// Creates a TransferMemory object static Result CreateTransferMemory(Core::System& system, Handle* out, VAddr address, u64 size, MemoryPermission map_perm) { auto& kernel = system.Kernel(); // Validate the size. R_UNLESS(Common::IsAligned(address, PageSize), ResultInvalidAddress); R_UNLESS(Common::IsAligned(size, PageSize), ResultInvalidSize); R_UNLESS(size > 0, ResultInvalidSize); R_UNLESS((address < address + size), ResultInvalidCurrentMemory); // Validate the permissions. R_UNLESS(IsValidTransferMemoryPermission(map_perm), ResultInvalidNewMemoryPermission); // Get the current process and handle table. auto& process = *kernel.CurrentProcess(); auto& handle_table = process.GetHandleTable(); // Reserve a new transfer memory from the process resource limit. KScopedResourceReservation trmem_reservation(kernel.CurrentProcess(), LimitableResource::TransferMemory); R_UNLESS(trmem_reservation.Succeeded(), ResultLimitReached); // Create the transfer memory. KTransferMemory* trmem = KTransferMemory::Create(kernel); R_UNLESS(trmem != nullptr, ResultOutOfResource); // Ensure the only reference is in the handle table when we're done. SCOPE_EXIT({ trmem->Close(); }); // Ensure that the region is in range. R_UNLESS(process.PageTable().Contains(address, size), ResultInvalidCurrentMemory); // Initialize the transfer memory. R_TRY(trmem->Initialize(address, size, map_perm)); // Commit the reservation. trmem_reservation.Commit(); // Register the transfer memory. KTransferMemory::Register(kernel, trmem); // Add the transfer memory to the handle table. R_TRY(handle_table.Add(out, trmem)); return ResultSuccess; } static Result CreateTransferMemory32(Core::System& system, Handle* out, u32 address, u32 size, MemoryPermission map_perm) { return CreateTransferMemory(system, out, address, size, map_perm); } static Result GetThreadCoreMask(Core::System& system, Handle thread_handle, s32* out_core_id, u64* out_affinity_mask) { LOG_TRACE(Kernel_SVC, "called, handle=0x{:08X}", thread_handle); // Get the thread from its handle. KScopedAutoObject thread = system.Kernel().CurrentProcess()->GetHandleTable().GetObject(thread_handle); R_UNLESS(thread.IsNotNull(), ResultInvalidHandle); // Get the core mask. R_TRY(thread->GetCoreMask(out_core_id, out_affinity_mask)); return ResultSuccess; } static Result GetThreadCoreMask32(Core::System& system, Handle thread_handle, s32* out_core_id, u32* out_affinity_mask_low, u32* out_affinity_mask_high) { u64 out_affinity_mask{}; const auto result = GetThreadCoreMask(system, thread_handle, out_core_id, &out_affinity_mask); *out_affinity_mask_high = static_cast(out_affinity_mask >> 32); *out_affinity_mask_low = static_cast(out_affinity_mask); return result; } static Result SetThreadCoreMask(Core::System& system, Handle thread_handle, s32 core_id, u64 affinity_mask) { // Determine the core id/affinity mask. if (core_id == IdealCoreUseProcessValue) { core_id = system.Kernel().CurrentProcess()->GetIdealCoreId(); affinity_mask = (1ULL << core_id); } else { // Validate the affinity mask. const u64 process_core_mask = system.Kernel().CurrentProcess()->GetCoreMask(); R_UNLESS((affinity_mask | process_core_mask) == process_core_mask, ResultInvalidCoreId); R_UNLESS(affinity_mask != 0, ResultInvalidCombination); // Validate the core id. if (IsValidVirtualCoreId(core_id)) { R_UNLESS(((1ULL << core_id) & affinity_mask) != 0, ResultInvalidCombination); } else { R_UNLESS(core_id == IdealCoreNoUpdate || core_id == IdealCoreDontCare, ResultInvalidCoreId); } } // Get the thread from its handle. KScopedAutoObject thread = system.Kernel().CurrentProcess()->GetHandleTable().GetObject(thread_handle); R_UNLESS(thread.IsNotNull(), ResultInvalidHandle); // Set the core mask. R_TRY(thread->SetCoreMask(core_id, affinity_mask)); return ResultSuccess; } static Result SetThreadCoreMask32(Core::System& system, Handle thread_handle, s32 core_id, u32 affinity_mask_low, u32 affinity_mask_high) { const auto affinity_mask = u64{affinity_mask_low} | (u64{affinity_mask_high} << 32); return SetThreadCoreMask(system, thread_handle, core_id, affinity_mask); } static Result SignalEvent(Core::System& system, Handle event_handle) { LOG_DEBUG(Kernel_SVC, "called, event_handle=0x{:08X}", event_handle); // Get the current handle table. const KHandleTable& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); // Get the event. KScopedAutoObject event = handle_table.GetObject(event_handle); R_UNLESS(event.IsNotNull(), ResultInvalidHandle); return event->Signal(); } static Result SignalEvent32(Core::System& system, Handle event_handle) { return SignalEvent(system, event_handle); } static Result ClearEvent(Core::System& system, Handle event_handle) { LOG_TRACE(Kernel_SVC, "called, event_handle=0x{:08X}", event_handle); // Get the current handle table. const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); // Try to clear the writable event. { KScopedAutoObject event = handle_table.GetObject(event_handle); if (event.IsNotNull()) { return event->Clear(); } } // Try to clear the readable event. { KScopedAutoObject readable_event = handle_table.GetObject(event_handle); if (readable_event.IsNotNull()) { return readable_event->Clear(); } } LOG_ERROR(Kernel_SVC, "Event handle does not exist, event_handle=0x{:08X}", event_handle); return ResultInvalidHandle; } static Result ClearEvent32(Core::System& system, Handle event_handle) { return ClearEvent(system, event_handle); } static Result CreateEvent(Core::System& system, Handle* out_write, Handle* out_read) { LOG_DEBUG(Kernel_SVC, "called"); // Get the kernel reference and handle table. auto& kernel = system.Kernel(); auto& handle_table = kernel.CurrentProcess()->GetHandleTable(); // Reserve a new event from the process resource limit KScopedResourceReservation event_reservation(kernel.CurrentProcess(), LimitableResource::Events); R_UNLESS(event_reservation.Succeeded(), ResultLimitReached); // Create a new event. KEvent* event = KEvent::Create(kernel); R_UNLESS(event != nullptr, ResultOutOfResource); // Initialize the event. event->Initialize(kernel.CurrentProcess()); // Commit the thread reservation. event_reservation.Commit(); // Ensure that we clean up the event (and its only references are handle table) on function end. SCOPE_EXIT({ event->GetReadableEvent().Close(); event->Close(); }); // Register the event. KEvent::Register(kernel, event); // Add the event to the handle table. R_TRY(handle_table.Add(out_write, event)); // Ensure that we maintaing a clean handle state on exit. auto handle_guard = SCOPE_GUARD({ handle_table.Remove(*out_write); }); // Add the readable event to the handle table. R_TRY(handle_table.Add(out_read, std::addressof(event->GetReadableEvent()))); // We succeeded. handle_guard.Cancel(); return ResultSuccess; } static Result CreateEvent32(Core::System& system, Handle* out_write, Handle* out_read) { return CreateEvent(system, out_write, out_read); } static Result GetProcessInfo(Core::System& system, u64* out, Handle process_handle, u32 type) { LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, type=0x{:X}", process_handle, type); // This function currently only allows retrieving a process' status. enum class InfoType { Status, }; const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable(); KScopedAutoObject process = handle_table.GetObject(process_handle); if (process.IsNull()) { LOG_ERROR(Kernel_SVC, "Process handle does not exist, process_handle=0x{:08X}", process_handle); return ResultInvalidHandle; } const auto info_type = static_cast(type); if (info_type != InfoType::Status) { LOG_ERROR(Kernel_SVC, "Expected info_type to be Status but got {} instead", type); return ResultInvalidEnumValue; } *out = static_cast(process->GetState()); return ResultSuccess; } static Result CreateResourceLimit(Core::System& system, Handle* out_handle) { LOG_DEBUG(Kernel_SVC, "called"); // Create a new resource limit. auto& kernel = system.Kernel(); KResourceLimit* resource_limit = KResourceLimit::Create(kernel); R_UNLESS(resource_limit != nullptr, ResultOutOfResource); // Ensure we don't leak a reference to the limit. SCOPE_EXIT({ resource_limit->Close(); }); // Initialize the resource limit. resource_limit->Initialize(&system.CoreTiming()); // Register the limit. KResourceLimit::Register(kernel, resource_limit); // Add the limit to the handle table. R_TRY(kernel.CurrentProcess()->GetHandleTable().Add(out_handle, resource_limit)); return ResultSuccess; } static Result GetResourceLimitLimitValue(Core::System& system, u64* out_limit_value, Handle resource_limit_handle, LimitableResource which) { LOG_DEBUG(Kernel_SVC, "called, resource_limit_handle={:08X}, which={}", resource_limit_handle, which); // Validate the resource. R_UNLESS(IsValidResourceType(which), ResultInvalidEnumValue); // Get the resource limit. auto& kernel = system.Kernel(); KScopedAutoObject resource_limit = kernel.CurrentProcess()->GetHandleTable().GetObject(resource_limit_handle); R_UNLESS(resource_limit.IsNotNull(), ResultInvalidHandle); // Get the limit value. *out_limit_value = resource_limit->GetLimitValue(which); return ResultSuccess; } static Result GetResourceLimitCurrentValue(Core::System& system, u64* out_current_value, Handle resource_limit_handle, LimitableResource which) { LOG_DEBUG(Kernel_SVC, "called, resource_limit_handle={:08X}, which={}", resource_limit_handle, which); // Validate the resource. R_UNLESS(IsValidResourceType(which), ResultInvalidEnumValue); // Get the resource limit. auto& kernel = system.Kernel(); KScopedAutoObject resource_limit = kernel.CurrentProcess()->GetHandleTable().GetObject(resource_limit_handle); R_UNLESS(resource_limit.IsNotNull(), ResultInvalidHandle); // Get the current value. *out_current_value = resource_limit->GetCurrentValue(which); return ResultSuccess; } static Result SetResourceLimitLimitValue(Core::System& system, Handle resource_limit_handle, LimitableResource which, u64 limit_value) { LOG_DEBUG(Kernel_SVC, "called, resource_limit_handle={:08X}, which={}, limit_value={}", resource_limit_handle, which, limit_value); // Validate the resource. R_UNLESS(IsValidResourceType(which), ResultInvalidEnumValue); // Get the resource limit. auto& kernel = system.Kernel(); KScopedAutoObject resource_limit = kernel.CurrentProcess()->GetHandleTable().GetObject(resource_limit_handle); R_UNLESS(resource_limit.IsNotNull(), ResultInvalidHandle); // Set the limit value. R_TRY(resource_limit->SetLimitValue(which, limit_value)); return ResultSuccess; } static Result GetProcessList(Core::System& system, u32* out_num_processes, VAddr out_process_ids, u32 out_process_ids_size) { LOG_DEBUG(Kernel_SVC, "called. out_process_ids=0x{:016X}, out_process_ids_size={}", out_process_ids, out_process_ids_size); // If the supplied size is negative or greater than INT32_MAX / sizeof(u64), bail. if ((out_process_ids_size & 0xF0000000) != 0) { LOG_ERROR(Kernel_SVC, "Supplied size outside [0, 0x0FFFFFFF] range. out_process_ids_size={}", out_process_ids_size); return ResultOutOfRange; } const auto& kernel = system.Kernel(); const auto total_copy_size = out_process_ids_size * sizeof(u64); if (out_process_ids_size > 0 && !kernel.CurrentProcess()->PageTable().IsInsideAddressSpace( out_process_ids, total_copy_size)) { LOG_ERROR(Kernel_SVC, "Address range outside address space. begin=0x{:016X}, end=0x{:016X}", out_process_ids, out_process_ids + total_copy_size); return ResultInvalidCurrentMemory; } auto& memory = system.Memory(); const auto& process_list = kernel.GetProcessList(); const auto num_processes = process_list.size(); const auto copy_amount = std::min(std::size_t{out_process_ids_size}, num_processes); for (std::size_t i = 0; i < copy_amount; ++i) { memory.Write64(out_process_ids, process_list[i]->GetProcessID()); out_process_ids += sizeof(u64); } *out_num_processes = static_cast(num_processes); return ResultSuccess; } static Result GetThreadList(Core::System& system, u32* out_num_threads, VAddr out_thread_ids, u32 out_thread_ids_size, Handle debug_handle) { // TODO: Handle this case when debug events are supported. UNIMPLEMENTED_IF(debug_handle != InvalidHandle); LOG_DEBUG(Kernel_SVC, "called. out_thread_ids=0x{:016X}, out_thread_ids_size={}", out_thread_ids, out_thread_ids_size); // If the size is negative or larger than INT32_MAX / sizeof(u64) if ((out_thread_ids_size & 0xF0000000) != 0) { LOG_ERROR(Kernel_SVC, "Supplied size outside [0, 0x0FFFFFFF] range. size={}", out_thread_ids_size); return ResultOutOfRange; } auto* const current_process = system.Kernel().CurrentProcess(); const auto total_copy_size = out_thread_ids_size * sizeof(u64); if (out_thread_ids_size > 0 && !current_process->PageTable().IsInsideAddressSpace(out_thread_ids, total_copy_size)) { LOG_ERROR(Kernel_SVC, "Address range outside address space. begin=0x{:016X}, end=0x{:016X}", out_thread_ids, out_thread_ids + total_copy_size); return ResultInvalidCurrentMemory; } auto& memory = system.Memory(); const auto& thread_list = current_process->GetThreadList(); const auto num_threads = thread_list.size(); const auto copy_amount = std::min(std::size_t{out_thread_ids_size}, num_threads); auto list_iter = thread_list.cbegin(); for (std::size_t i = 0; i < copy_amount; ++i, ++list_iter) { memory.Write64(out_thread_ids, (*list_iter)->GetThreadID()); out_thread_ids += sizeof(u64); } *out_num_threads = static_cast(num_threads); return ResultSuccess; } static Result FlushProcessDataCache32([[maybe_unused]] Core::System& system, [[maybe_unused]] Handle handle, [[maybe_unused]] u32 address, [[maybe_unused]] u32 size) { // Note(Blinkhawk): For emulation purposes of the data cache this is mostly a no-op, // as all emulation is done in the same cache level in host architecture, thus data cache // does not need flushing. LOG_DEBUG(Kernel_SVC, "called"); return ResultSuccess; } namespace { struct FunctionDef { using Func = void(Core::System&); u32 id; Func* func; const char* name; }; } // namespace static const FunctionDef SVC_Table_32[] = { {0x00, nullptr, "Unknown0"}, {0x01, SvcWrap32, "SetHeapSize32"}, {0x02, nullptr, "SetMemoryPermission32"}, {0x03, SvcWrap32, "SetMemoryAttribute32"}, {0x04, SvcWrap32, "MapMemory32"}, {0x05, SvcWrap32, "UnmapMemory32"}, {0x06, SvcWrap32, "QueryMemory32"}, {0x07, SvcWrap32, "ExitProcess32"}, {0x08, SvcWrap32, "CreateThread32"}, {0x09, SvcWrap32, "StartThread32"}, {0x0a, SvcWrap32, "ExitThread32"}, {0x0b, SvcWrap32, "SleepThread32"}, {0x0c, SvcWrap32, "GetThreadPriority32"}, {0x0d, SvcWrap32, "SetThreadPriority32"}, {0x0e, SvcWrap32, "GetThreadCoreMask32"}, {0x0f, SvcWrap32, "SetThreadCoreMask32"}, {0x10, SvcWrap32, "GetCurrentProcessorNumber32"}, {0x11, SvcWrap32, "SignalEvent32"}, {0x12, SvcWrap32, "ClearEvent32"}, {0x13, SvcWrap32, "MapSharedMemory32"}, {0x14, SvcWrap32, "UnmapSharedMemory32"}, {0x15, SvcWrap32, "CreateTransferMemory32"}, {0x16, SvcWrap32, "CloseHandle32"}, {0x17, SvcWrap32, "ResetSignal32"}, {0x18, SvcWrap32, "WaitSynchronization32"}, {0x19, SvcWrap32, "CancelSynchronization32"}, {0x1a, SvcWrap32, "ArbitrateLock32"}, {0x1b, SvcWrap32, "ArbitrateUnlock32"}, {0x1c, SvcWrap32, "WaitProcessWideKeyAtomic32"}, {0x1d, SvcWrap32, "SignalProcessWideKey32"}, {0x1e, SvcWrap32, "GetSystemTick32"}, {0x1f, SvcWrap32, "ConnectToNamedPort32"}, {0x20, nullptr, "SendSyncRequestLight32"}, {0x21, SvcWrap32, "SendSyncRequest32"}, {0x22, nullptr, "SendSyncRequestWithUserBuffer32"}, {0x23, nullptr, "SendAsyncRequestWithUserBuffer32"}, {0x24, SvcWrap32, "GetProcessId32"}, {0x25, SvcWrap32, "GetThreadId32"}, {0x26, SvcWrap32, "Break32"}, {0x27, SvcWrap32, "OutputDebugString32"}, {0x28, nullptr, "ReturnFromException32"}, {0x29, SvcWrap32, "GetInfo32"}, {0x2a, nullptr, "FlushEntireDataCache32"}, {0x2b, nullptr, "FlushDataCache32"}, {0x2c, SvcWrap32, "MapPhysicalMemory32"}, {0x2d, SvcWrap32, "UnmapPhysicalMemory32"}, {0x2e, nullptr, "GetDebugFutureThreadInfo32"}, {0x2f, nullptr, "GetLastThreadInfo32"}, {0x30, nullptr, "GetResourceLimitLimitValue32"}, {0x31, nullptr, "GetResourceLimitCurrentValue32"}, {0x32, SvcWrap32, "SetThreadActivity32"}, {0x33, SvcWrap32, "GetThreadContext32"}, {0x34, SvcWrap32, "WaitForAddress32"}, {0x35, SvcWrap32, "SignalToAddress32"}, {0x36, SvcWrap32, "SynchronizePreemptionState32"}, {0x37, nullptr, "GetResourceLimitPeakValue32"}, {0x38, nullptr, "Unknown38"}, {0x39, nullptr, "CreateIoPool32"}, {0x3a, nullptr, "CreateIoRegion32"}, {0x3b, nullptr, "Unknown3b"}, {0x3c, nullptr, "KernelDebug32"}, {0x3d, nullptr, "ChangeKernelTraceState32"}, {0x3e, nullptr, "Unknown3e"}, {0x3f, nullptr, "Unknown3f"}, {0x40, nullptr, "CreateSession32"}, {0x41, nullptr, "AcceptSession32"}, {0x42, nullptr, "ReplyAndReceiveLight32"}, {0x43, nullptr, "ReplyAndReceive32"}, {0x44, nullptr, "ReplyAndReceiveWithUserBuffer32"}, {0x45, SvcWrap32, "CreateEvent32"}, {0x46, nullptr, "MapIoRegion32"}, {0x47, nullptr, "UnmapIoRegion32"}, {0x48, nullptr, "MapPhysicalMemoryUnsafe32"}, {0x49, nullptr, "UnmapPhysicalMemoryUnsafe32"}, {0x4a, nullptr, "SetUnsafeLimit32"}, {0x4b, SvcWrap32, "CreateCodeMemory32"}, {0x4c, SvcWrap32, "ControlCodeMemory32"}, {0x4d, nullptr, "SleepSystem32"}, {0x4e, nullptr, "ReadWriteRegister32"}, {0x4f, nullptr, "SetProcessActivity32"}, {0x50, nullptr, "CreateSharedMemory32"}, {0x51, nullptr, "MapTransferMemory32"}, {0x52, nullptr, "UnmapTransferMemory32"}, {0x53, nullptr, "CreateInterruptEvent32"}, {0x54, nullptr, "QueryPhysicalAddress32"}, {0x55, nullptr, "QueryIoMapping32"}, {0x56, nullptr, "CreateDeviceAddressSpace32"}, {0x57, nullptr, "AttachDeviceAddressSpace32"}, {0x58, nullptr, "DetachDeviceAddressSpace32"}, {0x59, nullptr, "MapDeviceAddressSpaceByForce32"}, {0x5a, nullptr, "MapDeviceAddressSpaceAligned32"}, {0x5b, nullptr, "MapDeviceAddressSpace32"}, {0x5c, nullptr, "UnmapDeviceAddressSpace32"}, {0x5d, nullptr, "InvalidateProcessDataCache32"}, {0x5e, nullptr, "StoreProcessDataCache32"}, {0x5F, SvcWrap32, "FlushProcessDataCache32"}, {0x60, nullptr, "StoreProcessDataCache32"}, {0x61, nullptr, "BreakDebugProcess32"}, {0x62, nullptr, "TerminateDebugProcess32"}, {0x63, nullptr, "GetDebugEvent32"}, {0x64, nullptr, "ContinueDebugEvent32"}, {0x65, nullptr, "GetProcessList32"}, {0x66, nullptr, "GetThreadList"}, {0x67, nullptr, "GetDebugThreadContext32"}, {0x68, nullptr, "SetDebugThreadContext32"}, {0x69, nullptr, "QueryDebugProcessMemory32"}, {0x6A, nullptr, "ReadDebugProcessMemory32"}, {0x6B, nullptr, "WriteDebugProcessMemory32"}, {0x6C, nullptr, "SetHardwareBreakPoint32"}, {0x6D, nullptr, "GetDebugThreadParam32"}, {0x6E, nullptr, "Unknown6E"}, {0x6f, nullptr, "GetSystemInfo32"}, {0x70, nullptr, "CreatePort32"}, {0x71, nullptr, "ManageNamedPort32"}, {0x72, nullptr, "ConnectToPort32"}, {0x73, nullptr, "SetProcessMemoryPermission32"}, {0x74, nullptr, "MapProcessMemory32"}, {0x75, nullptr, "UnmapProcessMemory32"}, {0x76, nullptr, "QueryProcessMemory32"}, {0x77, nullptr, "MapProcessCodeMemory32"}, {0x78, nullptr, "UnmapProcessCodeMemory32"}, {0x79, nullptr, "CreateProcess32"}, {0x7A, nullptr, "StartProcess32"}, {0x7B, nullptr, "TerminateProcess32"}, {0x7C, nullptr, "GetProcessInfo32"}, {0x7D, nullptr, "CreateResourceLimit32"}, {0x7E, nullptr, "SetResourceLimitLimitValue32"}, {0x7F, nullptr, "CallSecureMonitor32"}, {0x80, nullptr, "Unknown"}, {0x81, nullptr, "Unknown"}, {0x82, nullptr, "Unknown"}, {0x83, nullptr, "Unknown"}, {0x84, nullptr, "Unknown"}, {0x85, nullptr, "Unknown"}, {0x86, nullptr, "Unknown"}, {0x87, nullptr, "Unknown"}, {0x88, nullptr, "Unknown"}, {0x89, nullptr, "Unknown"}, {0x8A, nullptr, "Unknown"}, {0x8B, nullptr, "Unknown"}, {0x8C, nullptr, "Unknown"}, {0x8D, nullptr, "Unknown"}, {0x8E, nullptr, "Unknown"}, {0x8F, nullptr, "Unknown"}, {0x90, nullptr, "Unknown"}, {0x91, nullptr, "Unknown"}, {0x92, nullptr, "Unknown"}, {0x93, nullptr, "Unknown"}, {0x94, nullptr, "Unknown"}, {0x95, nullptr, "Unknown"}, {0x96, nullptr, "Unknown"}, {0x97, nullptr, "Unknown"}, {0x98, nullptr, "Unknown"}, {0x99, nullptr, "Unknown"}, {0x9A, nullptr, "Unknown"}, {0x9B, nullptr, "Unknown"}, {0x9C, nullptr, "Unknown"}, {0x9D, nullptr, "Unknown"}, {0x9E, nullptr, "Unknown"}, {0x9F, nullptr, "Unknown"}, {0xA0, nullptr, "Unknown"}, {0xA1, nullptr, "Unknown"}, {0xA2, nullptr, "Unknown"}, {0xA3, nullptr, "Unknown"}, {0xA4, nullptr, "Unknown"}, {0xA5, nullptr, "Unknown"}, {0xA6, nullptr, "Unknown"}, {0xA7, nullptr, "Unknown"}, {0xA8, nullptr, "Unknown"}, {0xA9, nullptr, "Unknown"}, {0xAA, nullptr, "Unknown"}, {0xAB, nullptr, "Unknown"}, {0xAC, nullptr, "Unknown"}, {0xAD, nullptr, "Unknown"}, {0xAE, nullptr, "Unknown"}, {0xAF, nullptr, "Unknown"}, {0xB0, nullptr, "Unknown"}, {0xB1, nullptr, "Unknown"}, {0xB2, nullptr, "Unknown"}, {0xB3, nullptr, "Unknown"}, {0xB4, nullptr, "Unknown"}, {0xB5, nullptr, "Unknown"}, {0xB6, nullptr, "Unknown"}, {0xB7, nullptr, "Unknown"}, {0xB8, nullptr, "Unknown"}, {0xB9, nullptr, "Unknown"}, {0xBA, nullptr, "Unknown"}, {0xBB, nullptr, "Unknown"}, {0xBC, nullptr, "Unknown"}, {0xBD, nullptr, "Unknown"}, {0xBE, nullptr, "Unknown"}, {0xBF, nullptr, "Unknown"}, }; static const FunctionDef SVC_Table_64[] = { {0x00, nullptr, "Unknown0"}, {0x01, SvcWrap64, "SetHeapSize"}, {0x02, SvcWrap64, "SetMemoryPermission"}, {0x03, SvcWrap64, "SetMemoryAttribute"}, {0x04, SvcWrap64, "MapMemory"}, {0x05, SvcWrap64, "UnmapMemory"}, {0x06, SvcWrap64, "QueryMemory"}, {0x07, SvcWrap64, "ExitProcess"}, {0x08, SvcWrap64, "CreateThread"}, {0x09, SvcWrap64, "StartThread"}, {0x0A, SvcWrap64, "ExitThread"}, {0x0B, SvcWrap64, "SleepThread"}, {0x0C, SvcWrap64, "GetThreadPriority"}, {0x0D, SvcWrap64, "SetThreadPriority"}, {0x0E, SvcWrap64, "GetThreadCoreMask"}, {0x0F, SvcWrap64, "SetThreadCoreMask"}, {0x10, SvcWrap64, "GetCurrentProcessorNumber"}, {0x11, SvcWrap64, "SignalEvent"}, {0x12, SvcWrap64, "ClearEvent"}, {0x13, SvcWrap64, "MapSharedMemory"}, {0x14, SvcWrap64, "UnmapSharedMemory"}, {0x15, SvcWrap64, "CreateTransferMemory"}, {0x16, SvcWrap64, "CloseHandle"}, {0x17, SvcWrap64, "ResetSignal"}, {0x18, SvcWrap64, "WaitSynchronization"}, {0x19, SvcWrap64, "CancelSynchronization"}, {0x1A, SvcWrap64, "ArbitrateLock"}, {0x1B, SvcWrap64, "ArbitrateUnlock"}, {0x1C, SvcWrap64, "WaitProcessWideKeyAtomic"}, {0x1D, SvcWrap64, "SignalProcessWideKey"}, {0x1E, SvcWrap64, "GetSystemTick"}, {0x1F, SvcWrap64, "ConnectToNamedPort"}, {0x20, nullptr, "SendSyncRequestLight"}, {0x21, SvcWrap64, "SendSyncRequest"}, {0x22, nullptr, "SendSyncRequestWithUserBuffer"}, {0x23, nullptr, "SendAsyncRequestWithUserBuffer"}, {0x24, SvcWrap64, "GetProcessId"}, {0x25, SvcWrap64, "GetThreadId"}, {0x26, SvcWrap64, "Break"}, {0x27, SvcWrap64, "OutputDebugString"}, {0x28, nullptr, "ReturnFromException"}, {0x29, SvcWrap64, "GetInfo"}, {0x2A, nullptr, "FlushEntireDataCache"}, {0x2B, nullptr, "FlushDataCache"}, {0x2C, SvcWrap64, "MapPhysicalMemory"}, {0x2D, SvcWrap64, "UnmapPhysicalMemory"}, {0x2E, nullptr, "GetFutureThreadInfo"}, {0x2F, nullptr, "GetLastThreadInfo"}, {0x30, SvcWrap64, "GetResourceLimitLimitValue"}, {0x31, SvcWrap64, "GetResourceLimitCurrentValue"}, {0x32, SvcWrap64, "SetThreadActivity"}, {0x33, SvcWrap64, "GetThreadContext"}, {0x34, SvcWrap64, "WaitForAddress"}, {0x35, SvcWrap64, "SignalToAddress"}, {0x36, SvcWrap64, "SynchronizePreemptionState"}, {0x37, nullptr, "GetResourceLimitPeakValue"}, {0x38, nullptr, "Unknown38"}, {0x39, nullptr, "CreateIoPool"}, {0x3A, nullptr, "CreateIoRegion"}, {0x3B, nullptr, "Unknown3B"}, {0x3C, SvcWrap64, "KernelDebug"}, {0x3D, SvcWrap64, "ChangeKernelTraceState"}, {0x3E, nullptr, "Unknown3e"}, {0x3F, nullptr, "Unknown3f"}, {0x40, SvcWrap64, "CreateSession"}, {0x41, nullptr, "AcceptSession"}, {0x42, nullptr, "ReplyAndReceiveLight"}, {0x43, SvcWrap64, "ReplyAndReceive"}, {0x44, nullptr, "ReplyAndReceiveWithUserBuffer"}, {0x45, SvcWrap64, "CreateEvent"}, {0x46, nullptr, "MapIoRegion"}, {0x47, nullptr, "UnmapIoRegion"}, {0x48, nullptr, "MapPhysicalMemoryUnsafe"}, {0x49, nullptr, "UnmapPhysicalMemoryUnsafe"}, {0x4A, nullptr, "SetUnsafeLimit"}, {0x4B, SvcWrap64, "CreateCodeMemory"}, {0x4C, SvcWrap64, "ControlCodeMemory"}, {0x4D, nullptr, "SleepSystem"}, {0x4E, nullptr, "ReadWriteRegister"}, {0x4F, nullptr, "SetProcessActivity"}, {0x50, nullptr, "CreateSharedMemory"}, {0x51, nullptr, "MapTransferMemory"}, {0x52, nullptr, "UnmapTransferMemory"}, {0x53, nullptr, "CreateInterruptEvent"}, {0x54, nullptr, "QueryPhysicalAddress"}, {0x55, nullptr, "QueryIoMapping"}, {0x56, nullptr, "CreateDeviceAddressSpace"}, {0x57, nullptr, "AttachDeviceAddressSpace"}, {0x58, nullptr, "DetachDeviceAddressSpace"}, {0x59, nullptr, "MapDeviceAddressSpaceByForce"}, {0x5A, nullptr, "MapDeviceAddressSpaceAligned"}, {0x5B, nullptr, "MapDeviceAddressSpace"}, {0x5C, nullptr, "UnmapDeviceAddressSpace"}, {0x5D, nullptr, "InvalidateProcessDataCache"}, {0x5E, nullptr, "StoreProcessDataCache"}, {0x5F, nullptr, "FlushProcessDataCache"}, {0x60, nullptr, "DebugActiveProcess"}, {0x61, nullptr, "BreakDebugProcess"}, {0x62, nullptr, "TerminateDebugProcess"}, {0x63, nullptr, "GetDebugEvent"}, {0x64, nullptr, "ContinueDebugEvent"}, {0x65, SvcWrap64, "GetProcessList"}, {0x66, SvcWrap64, "GetThreadList"}, {0x67, nullptr, "GetDebugThreadContext"}, {0x68, nullptr, "SetDebugThreadContext"}, {0x69, nullptr, "QueryDebugProcessMemory"}, {0x6A, nullptr, "ReadDebugProcessMemory"}, {0x6B, nullptr, "WriteDebugProcessMemory"}, {0x6C, nullptr, "SetHardwareBreakPoint"}, {0x6D, nullptr, "GetDebugThreadParam"}, {0x6E, nullptr, "Unknown6E"}, {0x6F, nullptr, "GetSystemInfo"}, {0x70, nullptr, "CreatePort"}, {0x71, nullptr, "ManageNamedPort"}, {0x72, nullptr, "ConnectToPort"}, {0x73, SvcWrap64, "SetProcessMemoryPermission"}, {0x74, SvcWrap64, "MapProcessMemory"}, {0x75, SvcWrap64, "UnmapProcessMemory"}, {0x76, SvcWrap64, "QueryProcessMemory"}, {0x77, SvcWrap64, "MapProcessCodeMemory"}, {0x78, SvcWrap64, "UnmapProcessCodeMemory"}, {0x79, nullptr, "CreateProcess"}, {0x7A, nullptr, "StartProcess"}, {0x7B, nullptr, "TerminateProcess"}, {0x7C, SvcWrap64, "GetProcessInfo"}, {0x7D, SvcWrap64, "CreateResourceLimit"}, {0x7E, SvcWrap64, "SetResourceLimitLimitValue"}, {0x7F, nullptr, "CallSecureMonitor"}, {0x80, nullptr, "Unknown"}, {0x81, nullptr, "Unknown"}, {0x82, nullptr, "Unknown"}, {0x83, nullptr, "Unknown"}, {0x84, nullptr, "Unknown"}, {0x85, nullptr, "Unknown"}, {0x86, nullptr, "Unknown"}, {0x87, nullptr, "Unknown"}, {0x88, nullptr, "Unknown"}, {0x89, nullptr, "Unknown"}, {0x8A, nullptr, "Unknown"}, {0x8B, nullptr, "Unknown"}, {0x8C, nullptr, "Unknown"}, {0x8D, nullptr, "Unknown"}, {0x8E, nullptr, "Unknown"}, {0x8F, nullptr, "Unknown"}, {0x90, nullptr, "Unknown"}, {0x91, nullptr, "Unknown"}, {0x92, nullptr, "Unknown"}, {0x93, nullptr, "Unknown"}, {0x94, nullptr, "Unknown"}, {0x95, nullptr, "Unknown"}, {0x96, nullptr, "Unknown"}, {0x97, nullptr, "Unknown"}, {0x98, nullptr, "Unknown"}, {0x99, nullptr, "Unknown"}, {0x9A, nullptr, "Unknown"}, {0x9B, nullptr, "Unknown"}, {0x9C, nullptr, "Unknown"}, {0x9D, nullptr, "Unknown"}, {0x9E, nullptr, "Unknown"}, {0x9F, nullptr, "Unknown"}, {0xA0, nullptr, "Unknown"}, {0xA1, nullptr, "Unknown"}, {0xA2, nullptr, "Unknown"}, {0xA3, nullptr, "Unknown"}, {0xA4, nullptr, "Unknown"}, {0xA5, nullptr, "Unknown"}, {0xA6, nullptr, "Unknown"}, {0xA7, nullptr, "Unknown"}, {0xA8, nullptr, "Unknown"}, {0xA9, nullptr, "Unknown"}, {0xAA, nullptr, "Unknown"}, {0xAB, nullptr, "Unknown"}, {0xAC, nullptr, "Unknown"}, {0xAD, nullptr, "Unknown"}, {0xAE, nullptr, "Unknown"}, {0xAF, nullptr, "Unknown"}, {0xB0, nullptr, "Unknown"}, {0xB1, nullptr, "Unknown"}, {0xB2, nullptr, "Unknown"}, {0xB3, nullptr, "Unknown"}, {0xB4, nullptr, "Unknown"}, {0xB5, nullptr, "Unknown"}, {0xB6, nullptr, "Unknown"}, {0xB7, nullptr, "Unknown"}, {0xB8, nullptr, "Unknown"}, {0xB9, nullptr, "Unknown"}, {0xBA, nullptr, "Unknown"}, {0xBB, nullptr, "Unknown"}, {0xBC, nullptr, "Unknown"}, {0xBD, nullptr, "Unknown"}, {0xBE, nullptr, "Unknown"}, {0xBF, nullptr, "Unknown"}, }; static const FunctionDef* GetSVCInfo32(u32 func_num) { if (func_num >= std::size(SVC_Table_32)) { LOG_ERROR(Kernel_SVC, "Unknown svc=0x{:02X}", func_num); return nullptr; } return &SVC_Table_32[func_num]; } static const FunctionDef* GetSVCInfo64(u32 func_num) { if (func_num >= std::size(SVC_Table_64)) { LOG_ERROR(Kernel_SVC, "Unknown svc=0x{:02X}", func_num); return nullptr; } return &SVC_Table_64[func_num]; } void Call(Core::System& system, u32 immediate) { auto& kernel = system.Kernel(); kernel.EnterSVCProfile(); auto* thread = GetCurrentThreadPointer(kernel); thread->SetIsCallingSvc(); const FunctionDef* info = system.CurrentProcess()->Is64BitProcess() ? GetSVCInfo64(immediate) : GetSVCInfo32(immediate); if (info) { if (info->func) { info->func(system); } else { LOG_CRITICAL(Kernel_SVC, "Unimplemented SVC function {}(..)", info->name); } } else { LOG_CRITICAL(Kernel_SVC, "Unknown SVC function 0x{:X}", immediate); } kernel.ExitSVCProfile(); } } // namespace Kernel::Svc