// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include "common/alignment.h" #include "common/assert.h" #include "common/logging/log.h" #include "common/memory_hook.h" #include "core/core.h" #include "core/file_sys/program_metadata.h" #include "core/hle/kernel/errors.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/resource_limit.h" #include "core/hle/kernel/vm_manager.h" #include "core/memory.h" namespace Kernel { namespace { const char* GetMemoryStateName(MemoryState state) { static constexpr const char* names[] = { "Unmapped", "Io", "Normal", "Code", "CodeData", "Heap", "Shared", "Unknown1", "ModuleCode", "ModuleCodeData", "IpcBuffer0", "Stack", "ThreadLocal", "TransferMemoryIsolated", "TransferMemory", "ProcessMemory", "Inaccessible", "IpcBuffer1", "IpcBuffer3", "KernelStack", }; return names[ToSvcMemoryState(state)]; } // Checks if a given address range lies within a larger address range. constexpr bool IsInsideAddressRange(VAddr address, u64 size, VAddr address_range_begin, VAddr address_range_end) { const VAddr end_address = address + size - 1; return address_range_begin <= address && end_address <= address_range_end - 1; } } // Anonymous namespace bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const { ASSERT(base + size == next.base); if (permissions != next.permissions || state != next.state || attribute != next.attribute || type != next.type) { return false; } if ((attribute & MemoryAttribute::DeviceMapped) == MemoryAttribute::DeviceMapped) { // TODO: Can device mapped memory be merged sanely? // Not merging it may cause inaccuracies versus hardware when memory layout is queried. return false; } if (type == VMAType::AllocatedMemoryBlock) { return true; } if (type == VMAType::BackingMemory && backing_memory + size != next.backing_memory) { return false; } if (type == VMAType::MMIO && paddr + size != next.paddr) { return false; } return true; } VMManager::VMManager(Core::System& system) : system{system} { // Default to assuming a 39-bit address space. This way we have a sane // starting point with executables that don't provide metadata. Reset(FileSys::ProgramAddressSpaceType::Is39Bit); } VMManager::~VMManager() = default; void VMManager::Reset(FileSys::ProgramAddressSpaceType type) { Clear(); InitializeMemoryRegionRanges(type); page_table.Resize(address_space_width); // Initialize the map with a single free region covering the entire managed space. VirtualMemoryArea initial_vma; initial_vma.size = address_space_end; vma_map.emplace(initial_vma.base, initial_vma); UpdatePageTableForVMA(initial_vma); } VMManager::VMAHandle VMManager::FindVMA(VAddr target) const { if (target >= address_space_end) { return vma_map.end(); } else { return std::prev(vma_map.upper_bound(target)); } } bool VMManager::IsValidHandle(VMAHandle handle) const { return handle != vma_map.cend(); } ResultVal VMManager::MapMemoryBlock(VAddr target, std::shared_ptr block, std::size_t offset, u64 size, MemoryState state, VMAPermission perm) { ASSERT(block != nullptr); ASSERT(offset + size <= block->size()); // This is the appropriately sized VMA that will turn into our allocation. CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size)); VirtualMemoryArea& final_vma = vma_handle->second; ASSERT(final_vma.size == size); final_vma.type = VMAType::AllocatedMemoryBlock; final_vma.permissions = perm; final_vma.state = state; final_vma.backing_block = std::move(block); final_vma.offset = offset; UpdatePageTableForVMA(final_vma); return MakeResult(MergeAdjacent(vma_handle)); } ResultVal VMManager::MapBackingMemory(VAddr target, u8* memory, u64 size, MemoryState state) { ASSERT(memory != nullptr); // This is the appropriately sized VMA that will turn into our allocation. CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size)); VirtualMemoryArea& final_vma = vma_handle->second; ASSERT(final_vma.size == size); final_vma.type = VMAType::BackingMemory; final_vma.permissions = VMAPermission::ReadWrite; final_vma.state = state; final_vma.backing_memory = memory; UpdatePageTableForVMA(final_vma); return MakeResult(MergeAdjacent(vma_handle)); } ResultVal VMManager::FindFreeRegion(u64 size) const { return FindFreeRegion(GetASLRRegionBaseAddress(), GetASLRRegionEndAddress(), size); } ResultVal VMManager::FindFreeRegion(VAddr begin, VAddr end, u64 size) const { ASSERT(begin < end); ASSERT(size <= end - begin); const VMAHandle vma_handle = std::find_if(vma_map.begin(), vma_map.end(), [begin, end, size](const auto& vma) { if (vma.second.type != VMAType::Free) { return false; } const VAddr vma_base = vma.second.base; const VAddr vma_end = vma_base + vma.second.size; const VAddr assumed_base = (begin < vma_base) ? vma_base : begin; const VAddr used_range = assumed_base + size; return vma_base <= assumed_base && assumed_base < used_range && used_range < end && used_range <= vma_end; }); if (vma_handle == vma_map.cend()) { // TODO(Subv): Find the correct error code here. return RESULT_UNKNOWN; } const VAddr target = std::max(begin, vma_handle->second.base); return MakeResult(target); } ResultVal VMManager::MapMMIO(VAddr target, PAddr paddr, u64 size, MemoryState state, Common::MemoryHookPointer mmio_handler) { // This is the appropriately sized VMA that will turn into our allocation. CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size)); VirtualMemoryArea& final_vma = vma_handle->second; ASSERT(final_vma.size == size); final_vma.type = VMAType::MMIO; final_vma.permissions = VMAPermission::ReadWrite; final_vma.state = state; final_vma.paddr = paddr; final_vma.mmio_handler = std::move(mmio_handler); UpdatePageTableForVMA(final_vma); return MakeResult(MergeAdjacent(vma_handle)); } VMManager::VMAIter VMManager::Unmap(VMAIter vma_handle) { VirtualMemoryArea& vma = vma_handle->second; vma.type = VMAType::Free; vma.permissions = VMAPermission::None; vma.state = MemoryState::Unmapped; vma.attribute = MemoryAttribute::None; vma.backing_block = nullptr; vma.offset = 0; vma.backing_memory = nullptr; vma.paddr = 0; UpdatePageTableForVMA(vma); return MergeAdjacent(vma_handle); } ResultCode VMManager::UnmapRange(VAddr target, u64 size) { CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size)); const VAddr target_end = target + size; const VMAIter end = vma_map.end(); // The comparison against the end of the range must be done using addresses since VMAs can be // merged during this process, causing invalidation of the iterators. while (vma != end && vma->second.base < target_end) { vma = std::next(Unmap(vma)); } ASSERT(FindVMA(target)->second.size >= size); return RESULT_SUCCESS; } VMManager::VMAHandle VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) { VMAIter iter = StripIterConstness(vma_handle); VirtualMemoryArea& vma = iter->second; vma.permissions = new_perms; UpdatePageTableForVMA(vma); return MergeAdjacent(iter); } ResultCode VMManager::ReprotectRange(VAddr target, u64 size, VMAPermission new_perms) { CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size)); const VAddr target_end = target + size; const VMAIter end = vma_map.end(); // The comparison against the end of the range must be done using addresses since VMAs can be // merged during this process, causing invalidation of the iterators. while (vma != end && vma->second.base < target_end) { vma = std::next(StripIterConstness(Reprotect(vma, new_perms))); } return RESULT_SUCCESS; } ResultVal VMManager::SetHeapSize(u64 size) { if (size > GetHeapRegionSize()) { return ERR_OUT_OF_MEMORY; } // No need to do any additional work if the heap is already the given size. if (size == GetCurrentHeapSize()) { return MakeResult(heap_region_base); } if (heap_memory == nullptr) { // Initialize heap heap_memory = std::make_shared(size); heap_end = heap_region_base + size; } else { UnmapRange(heap_region_base, GetCurrentHeapSize()); } // If necessary, expand backing vector to cover new heap extents in // the case of allocating. Otherwise, shrink the backing memory, // if a smaller heap has been requested. heap_memory->resize(size); heap_memory->shrink_to_fit(); RefreshMemoryBlockMappings(heap_memory.get()); heap_end = heap_region_base + size; ASSERT(GetCurrentHeapSize() == heap_memory->size()); const auto mapping_result = MapMemoryBlock(heap_region_base, heap_memory, 0, size, MemoryState::Heap); if (mapping_result.Failed()) { return mapping_result.Code(); } return MakeResult(heap_region_base); } ResultCode VMManager::MapPhysicalMemory(VAddr target, u64 size) { // Check how much memory we've already mapped. const auto mapped_size_result = SizeOfAllocatedVMAsInRange(target, size); if (mapped_size_result.Failed()) { return mapped_size_result.Code(); } // If we've already mapped the desired amount, return early. const std::size_t mapped_size = *mapped_size_result; if (mapped_size == size) { return RESULT_SUCCESS; } // Check that we can map the memory we want. const auto res_limit = system.CurrentProcess()->GetResourceLimit(); const u64 physmem_remaining = res_limit->GetMaxResourceValue(ResourceType::PhysicalMemory) - res_limit->GetCurrentResourceValue(ResourceType::PhysicalMemory); if (physmem_remaining < (size - mapped_size)) { return ERR_RESOURCE_LIMIT_EXCEEDED; } // Keep track of the memory regions we unmap. std::vector> mapped_regions; ResultCode result = RESULT_SUCCESS; // Iterate, trying to map memory. { const auto end_addr = target + size; const auto last_addr = end_addr - 1; VAddr cur_addr = target; auto iter = FindVMA(target); ASSERT(iter != vma_map.end()); while (true) { const auto& vma = iter->second; const auto vma_start = vma.base; const auto vma_end = vma_start + vma.size; const auto vma_last = vma_end - 1; // Map the memory block const auto map_size = std::min(end_addr - cur_addr, vma_end - cur_addr); if (vma.state == MemoryState::Unmapped) { const auto map_res = MapMemoryBlock(cur_addr, std::make_shared(map_size), 0, map_size, MemoryState::Heap, VMAPermission::ReadWrite); result = map_res.Code(); if (result.IsError()) { break; } mapped_regions.emplace_back(cur_addr, map_size); } // Break once we hit the end of the range. if (last_addr <= vma_last) { break; } // Advance to the next block. cur_addr = vma_end; iter = FindVMA(cur_addr); ASSERT(iter != vma_map.end()); } } // If we failed, unmap memory. if (result.IsError()) { for (const auto [unmap_address, unmap_size] : mapped_regions) { ASSERT_MSG(UnmapRange(unmap_address, unmap_size).IsSuccess(), "Failed to unmap memory range."); } return result; } // Update amount of mapped physical memory. physical_memory_mapped += size - mapped_size; return RESULT_SUCCESS; } ResultCode VMManager::UnmapPhysicalMemory(VAddr target, u64 size) { // Check how much memory is currently mapped. const auto mapped_size_result = SizeOfUnmappablePhysicalMemoryInRange(target, size); if (mapped_size_result.Failed()) { return mapped_size_result.Code(); } // If we've already unmapped all the memory, return early. const std::size_t mapped_size = *mapped_size_result; if (mapped_size == 0) { return RESULT_SUCCESS; } // Keep track of the memory regions we unmap. std::vector> unmapped_regions; ResultCode result = RESULT_SUCCESS; // Try to unmap regions. { const auto end_addr = target + size; const auto last_addr = end_addr - 1; VAddr cur_addr = target; auto iter = FindVMA(target); ASSERT(iter != vma_map.end()); while (true) { const auto& vma = iter->second; const auto vma_start = vma.base; const auto vma_end = vma_start + vma.size; const auto vma_last = vma_end - 1; // Unmap the memory block const auto unmap_size = std::min(end_addr - cur_addr, vma_end - cur_addr); if (vma.state == MemoryState::Heap) { result = UnmapRange(cur_addr, unmap_size); if (result.IsError()) { break; } unmapped_regions.emplace_back(cur_addr, unmap_size); } // Break once we hit the end of the range. if (last_addr <= vma_last) { break; } // Advance to the next block. cur_addr = vma_end; iter = FindVMA(cur_addr); ASSERT(iter != vma_map.end()); } } // If we failed, re-map regions. // TODO: Preserve memory contents? if (result.IsError()) { for (const auto [map_address, map_size] : unmapped_regions) { const auto remap_res = MapMemoryBlock(map_address, std::make_shared(map_size), 0, map_size, MemoryState::Heap, VMAPermission::None); ASSERT_MSG(remap_res.Succeeded(), "Failed to remap a memory block."); } return result; } // Update mapped amount physical_memory_mapped -= mapped_size; return RESULT_SUCCESS; } ResultCode VMManager::MapCodeMemory(VAddr dst_address, VAddr src_address, u64 size) { constexpr auto ignore_attribute = MemoryAttribute::LockedForIPC | MemoryAttribute::DeviceMapped; const auto src_check_result = CheckRangeState( src_address, size, MemoryState::All, MemoryState::Heap, VMAPermission::All, VMAPermission::ReadWrite, MemoryAttribute::Mask, MemoryAttribute::None, ignore_attribute); if (src_check_result.Failed()) { return src_check_result.Code(); } const auto mirror_result = MirrorMemory(dst_address, src_address, size, MemoryState::ModuleCode); if (mirror_result.IsError()) { return mirror_result; } // Ensure we lock the source memory region. const auto src_vma_result = CarveVMARange(src_address, size); if (src_vma_result.Failed()) { return src_vma_result.Code(); } auto src_vma_iter = *src_vma_result; src_vma_iter->second.attribute = MemoryAttribute::Locked; Reprotect(src_vma_iter, VMAPermission::Read); // The destination memory region is fine as is, however we need to make it read-only. return ReprotectRange(dst_address, size, VMAPermission::Read); } ResultCode VMManager::UnmapCodeMemory(VAddr dst_address, VAddr src_address, u64 size) { constexpr auto ignore_attribute = MemoryAttribute::LockedForIPC | MemoryAttribute::DeviceMapped; const auto src_check_result = CheckRangeState( src_address, size, MemoryState::All, MemoryState::Heap, VMAPermission::None, VMAPermission::None, MemoryAttribute::Mask, MemoryAttribute::Locked, ignore_attribute); if (src_check_result.Failed()) { return src_check_result.Code(); } // Yes, the kernel only checks the first page of the region. const auto dst_check_result = CheckRangeState(dst_address, Memory::PAGE_SIZE, MemoryState::FlagModule, MemoryState::FlagModule, VMAPermission::None, VMAPermission::None, MemoryAttribute::Mask, MemoryAttribute::None, ignore_attribute); if (dst_check_result.Failed()) { return dst_check_result.Code(); } const auto dst_memory_state = std::get(*dst_check_result); const auto dst_contiguous_check_result = CheckRangeState( dst_address, size, MemoryState::All, dst_memory_state, VMAPermission::None, VMAPermission::None, MemoryAttribute::Mask, MemoryAttribute::None, ignore_attribute); if (dst_contiguous_check_result.Failed()) { return dst_contiguous_check_result.Code(); } const auto unmap_result = UnmapRange(dst_address, size); if (unmap_result.IsError()) { return unmap_result; } // With the mirrored portion unmapped, restore the original region's traits. const auto src_vma_result = CarveVMARange(src_address, size); if (src_vma_result.Failed()) { return src_vma_result.Code(); } auto src_vma_iter = *src_vma_result; src_vma_iter->second.state = MemoryState::Heap; src_vma_iter->second.attribute = MemoryAttribute::None; Reprotect(src_vma_iter, VMAPermission::ReadWrite); if (dst_memory_state == MemoryState::ModuleCode) { system.InvalidateCpuInstructionCaches(); } return unmap_result; } MemoryInfo VMManager::QueryMemory(VAddr address) const { const auto vma = FindVMA(address); MemoryInfo memory_info{}; if (IsValidHandle(vma)) { memory_info.base_address = vma->second.base; memory_info.attributes = ToSvcMemoryAttribute(vma->second.attribute); memory_info.permission = static_cast(vma->second.permissions); memory_info.size = vma->second.size; memory_info.state = ToSvcMemoryState(vma->second.state); } else { memory_info.base_address = address_space_end; memory_info.permission = static_cast(VMAPermission::None); memory_info.size = 0 - address_space_end; memory_info.state = static_cast(MemoryState::Inaccessible); } return memory_info; } ResultCode VMManager::SetMemoryAttribute(VAddr address, u64 size, MemoryAttribute mask, MemoryAttribute attribute) { constexpr auto ignore_mask = MemoryAttribute::Uncached | MemoryAttribute::DeviceMapped | MemoryAttribute::Locked; constexpr auto attribute_mask = ~ignore_mask; const auto result = CheckRangeState( address, size, MemoryState::FlagUncached, MemoryState::FlagUncached, VMAPermission::None, VMAPermission::None, attribute_mask, MemoryAttribute::None, ignore_mask); if (result.Failed()) { return result.Code(); } const auto [prev_state, prev_permissions, prev_attributes] = *result; const auto new_attribute = (prev_attributes & ~mask) | (mask & attribute); const auto carve_result = CarveVMARange(address, size); if (carve_result.Failed()) { return carve_result.Code(); } auto vma_iter = *carve_result; vma_iter->second.attribute = new_attribute; MergeAdjacent(vma_iter); return RESULT_SUCCESS; } ResultCode VMManager::MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size, MemoryState state) { const auto vma = FindVMA(src_addr); ASSERT_MSG(vma != vma_map.end(), "Invalid memory address"); ASSERT_MSG(vma->second.backing_block, "Backing block doesn't exist for address"); // The returned VMA might be a bigger one encompassing the desired address. const auto vma_offset = src_addr - vma->first; ASSERT_MSG(vma_offset + size <= vma->second.size, "Shared memory exceeds bounds of mapped block"); const std::shared_ptr& backing_block = vma->second.backing_block; const std::size_t backing_block_offset = vma->second.offset + vma_offset; CASCADE_RESULT(auto new_vma, MapMemoryBlock(dst_addr, backing_block, backing_block_offset, size, state)); // Protect mirror with permissions from old region Reprotect(new_vma, vma->second.permissions); // Remove permissions from old region ReprotectRange(src_addr, size, VMAPermission::None); return RESULT_SUCCESS; } void VMManager::RefreshMemoryBlockMappings(const PhysicalMemory* block) { // If this ever proves to have a noticeable performance impact, allow users of the function to // specify a specific range of addresses to limit the scan to. for (const auto& p : vma_map) { const VirtualMemoryArea& vma = p.second; if (block == vma.backing_block.get()) { UpdatePageTableForVMA(vma); } } } void VMManager::LogLayout() const { for (const auto& p : vma_map) { const VirtualMemoryArea& vma = p.second; LOG_DEBUG(Kernel, "{:016X} - {:016X} size: {:016X} {}{}{} {}", vma.base, vma.base + vma.size, vma.size, (u8)vma.permissions & (u8)VMAPermission::Read ? 'R' : '-', (u8)vma.permissions & (u8)VMAPermission::Write ? 'W' : '-', (u8)vma.permissions & (u8)VMAPermission::Execute ? 'X' : '-', GetMemoryStateName(vma.state)); } } VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle& iter) { // This uses a neat C++ trick to convert a const_iterator to a regular iterator, given // non-const access to its container. return vma_map.erase(iter, iter); // Erases an empty range of elements } ResultVal VMManager::CarveVMA(VAddr base, u64 size) { ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x{:016X}", size); ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x{:016X}", base); VMAIter vma_handle = StripIterConstness(FindVMA(base)); if (vma_handle == vma_map.end()) { // Target address is outside the range managed by the kernel return ERR_INVALID_ADDRESS; } const VirtualMemoryArea& vma = vma_handle->second; if (vma.type != VMAType::Free) { // Region is already allocated return ERR_INVALID_ADDRESS_STATE; } const VAddr start_in_vma = base - vma.base; const VAddr end_in_vma = start_in_vma + size; if (end_in_vma > vma.size) { // Requested allocation doesn't fit inside VMA return ERR_INVALID_ADDRESS_STATE; } if (end_in_vma != vma.size) { // Split VMA at the end of the allocated region SplitVMA(vma_handle, end_in_vma); } if (start_in_vma != 0) { // Split VMA at the start of the allocated region vma_handle = SplitVMA(vma_handle, start_in_vma); } return MakeResult(vma_handle); } ResultVal VMManager::CarveVMARange(VAddr target, u64 size) { ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x{:016X}", size); ASSERT_MSG((target & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x{:016X}", target); const VAddr target_end = target + size; ASSERT(target_end >= target); ASSERT(target_end <= address_space_end); ASSERT(size > 0); VMAIter begin_vma = StripIterConstness(FindVMA(target)); const VMAIter i_end = vma_map.lower_bound(target_end); if (std::any_of(begin_vma, i_end, [](const auto& entry) { return entry.second.type == VMAType::Free; })) { return ERR_INVALID_ADDRESS_STATE; } if (target != begin_vma->second.base) { begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base); } VMAIter end_vma = StripIterConstness(FindVMA(target_end)); if (end_vma != vma_map.end() && target_end != end_vma->second.base) { end_vma = SplitVMA(end_vma, target_end - end_vma->second.base); } return MakeResult(begin_vma); } VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) { VirtualMemoryArea& old_vma = vma_handle->second; VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA // For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably // a bug. This restriction might be removed later. ASSERT(offset_in_vma < old_vma.size); ASSERT(offset_in_vma > 0); old_vma.size = offset_in_vma; new_vma.base += offset_in_vma; new_vma.size -= offset_in_vma; switch (new_vma.type) { case VMAType::Free: break; case VMAType::AllocatedMemoryBlock: new_vma.offset += offset_in_vma; break; case VMAType::BackingMemory: new_vma.backing_memory += offset_in_vma; break; case VMAType::MMIO: new_vma.paddr += offset_in_vma; break; } ASSERT(old_vma.CanBeMergedWith(new_vma)); return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma); } VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) { const VMAIter next_vma = std::next(iter); if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) { MergeAdjacentVMA(iter->second, next_vma->second); vma_map.erase(next_vma); } if (iter != vma_map.begin()) { VMAIter prev_vma = std::prev(iter); if (prev_vma->second.CanBeMergedWith(iter->second)) { MergeAdjacentVMA(prev_vma->second, iter->second); vma_map.erase(iter); iter = prev_vma; } } return iter; } void VMManager::MergeAdjacentVMA(VirtualMemoryArea& left, const VirtualMemoryArea& right) { ASSERT(left.CanBeMergedWith(right)); // Always merge allocated memory blocks, even when they don't share the same backing block. if (left.type == VMAType::AllocatedMemoryBlock && (left.backing_block != right.backing_block || left.offset + left.size != right.offset)) { // Check if we can save work. if (left.offset == 0 && left.size == left.backing_block->size()) { // Fast case: left is an entire backing block. left.backing_block->resize(left.size + right.size); std::memcpy(left.backing_block->data() + left.size, right.backing_block->data() + right.offset, right.size); } else { // Slow case: make a new memory block for left and right. auto new_memory = std::make_shared(); new_memory->resize(left.size + right.size); std::memcpy(new_memory->data(), left.backing_block->data() + left.offset, left.size); std::memcpy(new_memory->data() + left.size, right.backing_block->data() + right.offset, right.size); left.backing_block = std::move(new_memory); left.offset = 0; } // Page table update is needed, because backing memory changed. left.size += right.size; UpdatePageTableForVMA(left); } else { // Just update the size. left.size += right.size; } } void VMManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) { auto& memory = system.Memory(); switch (vma.type) { case VMAType::Free: memory.UnmapRegion(page_table, vma.base, vma.size); break; case VMAType::AllocatedMemoryBlock: memory.MapMemoryRegion(page_table, vma.base, vma.size, *vma.backing_block, vma.offset); break; case VMAType::BackingMemory: memory.MapMemoryRegion(page_table, vma.base, vma.size, vma.backing_memory); break; case VMAType::MMIO: memory.MapIoRegion(page_table, vma.base, vma.size, vma.mmio_handler); break; } } void VMManager::InitializeMemoryRegionRanges(FileSys::ProgramAddressSpaceType type) { u64 map_region_size = 0; u64 heap_region_size = 0; u64 stack_region_size = 0; u64 tls_io_region_size = 0; u64 stack_and_tls_io_end = 0; switch (type) { case FileSys::ProgramAddressSpaceType::Is32Bit: case FileSys::ProgramAddressSpaceType::Is32BitNoMap: address_space_width = 32; code_region_base = 0x200000; code_region_end = code_region_base + 0x3FE00000; aslr_region_base = 0x200000; aslr_region_end = aslr_region_base + 0xFFE00000; if (type == FileSys::ProgramAddressSpaceType::Is32Bit) { map_region_size = 0x40000000; heap_region_size = 0x40000000; } else { map_region_size = 0; heap_region_size = 0x80000000; } stack_and_tls_io_end = 0x40000000; break; case FileSys::ProgramAddressSpaceType::Is36Bit: address_space_width = 36; code_region_base = 0x8000000; code_region_end = code_region_base + 0x78000000; aslr_region_base = 0x8000000; aslr_region_end = aslr_region_base + 0xFF8000000; map_region_size = 0x180000000; heap_region_size = 0x180000000; stack_and_tls_io_end = 0x80000000; break; case FileSys::ProgramAddressSpaceType::Is39Bit: address_space_width = 39; code_region_base = 0x8000000; code_region_end = code_region_base + 0x80000000; aslr_region_base = 0x8000000; aslr_region_end = aslr_region_base + 0x7FF8000000; map_region_size = 0x1000000000; heap_region_size = 0x180000000; stack_region_size = 0x80000000; tls_io_region_size = 0x1000000000; break; default: UNREACHABLE_MSG("Invalid address space type specified: {}", static_cast(type)); return; } const u64 stack_and_tls_io_begin = aslr_region_base; address_space_base = 0; address_space_end = 1ULL << address_space_width; map_region_base = code_region_end; map_region_end = map_region_base + map_region_size; heap_region_base = map_region_end; heap_region_end = heap_region_base + heap_region_size; heap_end = heap_region_base; stack_region_base = heap_region_end; stack_region_end = stack_region_base + stack_region_size; tls_io_region_base = stack_region_end; tls_io_region_end = tls_io_region_base + tls_io_region_size; if (stack_region_size == 0) { stack_region_base = stack_and_tls_io_begin; stack_region_end = stack_and_tls_io_end; } if (tls_io_region_size == 0) { tls_io_region_base = stack_and_tls_io_begin; tls_io_region_end = stack_and_tls_io_end; } } void VMManager::Clear() { ClearVMAMap(); ClearPageTable(); } void VMManager::ClearVMAMap() { vma_map.clear(); } void VMManager::ClearPageTable() { std::fill(page_table.pointers.begin(), page_table.pointers.end(), nullptr); page_table.special_regions.clear(); std::fill(page_table.attributes.begin(), page_table.attributes.end(), Common::PageType::Unmapped); } VMManager::CheckResults VMManager::CheckRangeState(VAddr address, u64 size, MemoryState state_mask, MemoryState state, VMAPermission permission_mask, VMAPermission permissions, MemoryAttribute attribute_mask, MemoryAttribute attribute, MemoryAttribute ignore_mask) const { auto iter = FindVMA(address); // If we don't have a valid VMA handle at this point, then it means this is // being called with an address outside of the address space, which is definitely // indicative of a bug, as this function only operates on mapped memory regions. DEBUG_ASSERT(IsValidHandle(iter)); const VAddr end_address = address + size - 1; const MemoryAttribute initial_attributes = iter->second.attribute; const VMAPermission initial_permissions = iter->second.permissions; const MemoryState initial_state = iter->second.state; while (true) { // The iterator should be valid throughout the traversal. Hitting the end of // the mapped VMA regions is unquestionably indicative of a bug. DEBUG_ASSERT(IsValidHandle(iter)); const auto& vma = iter->second; if (vma.state != initial_state) { return ERR_INVALID_ADDRESS_STATE; } if ((vma.state & state_mask) != state) { return ERR_INVALID_ADDRESS_STATE; } if (vma.permissions != initial_permissions) { return ERR_INVALID_ADDRESS_STATE; } if ((vma.permissions & permission_mask) != permissions) { return ERR_INVALID_ADDRESS_STATE; } if ((vma.attribute | ignore_mask) != (initial_attributes | ignore_mask)) { return ERR_INVALID_ADDRESS_STATE; } if ((vma.attribute & attribute_mask) != attribute) { return ERR_INVALID_ADDRESS_STATE; } if (end_address <= vma.EndAddress()) { break; } ++iter; } return MakeResult( std::make_tuple(initial_state, initial_permissions, initial_attributes & ~ignore_mask)); } ResultVal VMManager::SizeOfAllocatedVMAsInRange(VAddr address, std::size_t size) const { const VAddr end_addr = address + size; const VAddr last_addr = end_addr - 1; std::size_t mapped_size = 0; VAddr cur_addr = address; auto iter = FindVMA(cur_addr); ASSERT(iter != vma_map.end()); while (true) { const auto& vma = iter->second; const VAddr vma_start = vma.base; const VAddr vma_end = vma_start + vma.size; const VAddr vma_last = vma_end - 1; // Add size if relevant. if (vma.state != MemoryState::Unmapped) { mapped_size += std::min(end_addr - cur_addr, vma_end - cur_addr); } // Break once we hit the end of the range. if (last_addr <= vma_last) { break; } // Advance to the next block. cur_addr = vma_end; iter = std::next(iter); ASSERT(iter != vma_map.end()); } return MakeResult(mapped_size); } ResultVal VMManager::SizeOfUnmappablePhysicalMemoryInRange(VAddr address, std::size_t size) const { const VAddr end_addr = address + size; const VAddr last_addr = end_addr - 1; std::size_t mapped_size = 0; VAddr cur_addr = address; auto iter = FindVMA(cur_addr); ASSERT(iter != vma_map.end()); while (true) { const auto& vma = iter->second; const auto vma_start = vma.base; const auto vma_end = vma_start + vma.size; const auto vma_last = vma_end - 1; const auto state = vma.state; const auto attr = vma.attribute; // Memory within region must be free or mapped heap. if (!((state == MemoryState::Heap && attr == MemoryAttribute::None) || (state == MemoryState::Unmapped))) { return ERR_INVALID_ADDRESS_STATE; } // Add size if relevant. if (state != MemoryState::Unmapped) { mapped_size += std::min(end_addr - cur_addr, vma_end - cur_addr); } // Break once we hit the end of the range. if (last_addr <= vma_last) { break; } // Advance to the next block. cur_addr = vma_end; iter = std::next(iter); ASSERT(iter != vma_map.end()); } return MakeResult(mapped_size); } u64 VMManager::GetTotalPhysicalMemoryAvailable() const { LOG_WARNING(Kernel, "(STUBBED) called"); return 0xF8000000; } VAddr VMManager::GetAddressSpaceBaseAddress() const { return address_space_base; } VAddr VMManager::GetAddressSpaceEndAddress() const { return address_space_end; } u64 VMManager::GetAddressSpaceSize() const { return address_space_end - address_space_base; } u64 VMManager::GetAddressSpaceWidth() const { return address_space_width; } bool VMManager::IsWithinAddressSpace(VAddr address, u64 size) const { return IsInsideAddressRange(address, size, GetAddressSpaceBaseAddress(), GetAddressSpaceEndAddress()); } VAddr VMManager::GetASLRRegionBaseAddress() const { return aslr_region_base; } VAddr VMManager::GetASLRRegionEndAddress() const { return aslr_region_end; } u64 VMManager::GetASLRRegionSize() const { return aslr_region_end - aslr_region_base; } bool VMManager::IsWithinASLRRegion(VAddr begin, u64 size) const { const VAddr range_end = begin + size; const VAddr aslr_start = GetASLRRegionBaseAddress(); const VAddr aslr_end = GetASLRRegionEndAddress(); if (aslr_start > begin || begin > range_end || range_end - 1 > aslr_end - 1) { return false; } if (range_end > heap_region_base && heap_region_end > begin) { return false; } if (range_end > map_region_base && map_region_end > begin) { return false; } return true; } VAddr VMManager::GetCodeRegionBaseAddress() const { return code_region_base; } VAddr VMManager::GetCodeRegionEndAddress() const { return code_region_end; } u64 VMManager::GetCodeRegionSize() const { return code_region_end - code_region_base; } bool VMManager::IsWithinCodeRegion(VAddr address, u64 size) const { return IsInsideAddressRange(address, size, GetCodeRegionBaseAddress(), GetCodeRegionEndAddress()); } VAddr VMManager::GetHeapRegionBaseAddress() const { return heap_region_base; } VAddr VMManager::GetHeapRegionEndAddress() const { return heap_region_end; } u64 VMManager::GetHeapRegionSize() const { return heap_region_end - heap_region_base; } u64 VMManager::GetCurrentHeapSize() const { return heap_end - heap_region_base; } bool VMManager::IsWithinHeapRegion(VAddr address, u64 size) const { return IsInsideAddressRange(address, size, GetHeapRegionBaseAddress(), GetHeapRegionEndAddress()); } VAddr VMManager::GetMapRegionBaseAddress() const { return map_region_base; } VAddr VMManager::GetMapRegionEndAddress() const { return map_region_end; } u64 VMManager::GetMapRegionSize() const { return map_region_end - map_region_base; } bool VMManager::IsWithinMapRegion(VAddr address, u64 size) const { return IsInsideAddressRange(address, size, GetMapRegionBaseAddress(), GetMapRegionEndAddress()); } VAddr VMManager::GetStackRegionBaseAddress() const { return stack_region_base; } VAddr VMManager::GetStackRegionEndAddress() const { return stack_region_end; } u64 VMManager::GetStackRegionSize() const { return stack_region_end - stack_region_base; } bool VMManager::IsWithinStackRegion(VAddr address, u64 size) const { return IsInsideAddressRange(address, size, GetStackRegionBaseAddress(), GetStackRegionEndAddress()); } VAddr VMManager::GetTLSIORegionBaseAddress() const { return tls_io_region_base; } VAddr VMManager::GetTLSIORegionEndAddress() const { return tls_io_region_end; } u64 VMManager::GetTLSIORegionSize() const { return tls_io_region_end - tls_io_region_base; } bool VMManager::IsWithinTLSIORegion(VAddr address, u64 size) const { return IsInsideAddressRange(address, size, GetTLSIORegionBaseAddress(), GetTLSIORegionEndAddress()); } } // namespace Kernel