// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "audio_core/hle/pipe.h" #include "common/hash.h" #include "common/logging/log.h" #include "core/hle/kernel/event.h" #include "core/hle/service/dsp_dsp.h" using DspPipe = DSP::HLE::DspPipe; //////////////////////////////////////////////////////////////////////////////////////////////////// // Namespace DSP_DSP namespace DSP_DSP { static Kernel::SharedPtr semaphore_event; /// There are three types of interrupts enum class InterruptType { Zero, One, Pipe }; constexpr size_t NUM_INTERRUPT_TYPE = 3; class InterruptEvents final { public: void Signal(InterruptType type, DspPipe pipe) { Kernel::SharedPtr& event = Get(type, pipe); if (event) { event->Signal(); } } Kernel::SharedPtr& Get(InterruptType type, DspPipe dsp_pipe) { switch (type) { case InterruptType::Zero: return zero; case InterruptType::One: return one; case InterruptType::Pipe: { const size_t pipe_index = static_cast(dsp_pipe); ASSERT(pipe_index < DSP::HLE::NUM_DSP_PIPE); return pipe[pipe_index]; } } UNREACHABLE_MSG("Invalid interrupt type = %zu", static_cast(type)); } bool HasTooManyEventsRegistered() const { // Actual service implementation only has 6 'slots' for interrupts. constexpr size_t max_number_of_interrupt_events = 6; size_t number = std::count_if(pipe.begin(), pipe.end(), [](const auto& evt) { return evt != nullptr; }); if (zero != nullptr) number++; if (one != nullptr) number++; return number >= max_number_of_interrupt_events; } private: /// Currently unknown purpose Kernel::SharedPtr zero = nullptr; /// Currently unknown purpose Kernel::SharedPtr one = nullptr; /// Each DSP pipe has an associated interrupt std::array, DSP::HLE::NUM_DSP_PIPE> pipe = {{}}; }; static InterruptEvents interrupt_events; // DSP Interrupts: // The audio-pipe interrupt occurs every frame tick. Userland programs normally have a thread // that's waiting for an interrupt event. Immediately after this interrupt event, userland // normally updates the state in the next region and increments the relevant frame counter by // two. void SignalPipeInterrupt(DspPipe pipe) { interrupt_events.Signal(InterruptType::Pipe, pipe); } /** * DSP_DSP::ConvertProcessAddressFromDspDram service function * Inputs: * 1 : Address * Outputs: * 1 : Result of function, 0 on success, otherwise error code * 2 : (inaddr << 1) + 0x1FF40000 (where 0x1FF00000 is the DSP RAM address) */ static void ConvertProcessAddressFromDspDram(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 addr = cmd_buff[1]; cmd_buff[0] = IPC::MakeHeader(0xC, 2, 0); cmd_buff[1] = RESULT_SUCCESS.raw; // No error // TODO(merry): There is a per-region offset missing in this calculation (that seems to be always zero). cmd_buff[2] = (addr << 1) + (Memory::DSP_RAM_VADDR + 0x40000); LOG_DEBUG(Service_DSP, "addr=0x%08X", addr); } /** * DSP_DSP::LoadComponent service function * Inputs: * 1 : Size * 2 : Program mask (observed only half word used) * 3 : Data mask (observed only half word used) * 4 : (size << 4) | 0xA * 5 : Buffer address * Outputs: * 1 : Result of function, 0 on success, otherwise error code * 2 : Component loaded, 0 on not loaded, 1 on loaded */ static void LoadComponent(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 size = cmd_buff[1]; u32 prog_mask = cmd_buff[2]; u32 data_mask = cmd_buff[3]; u32 desc = cmd_buff[4]; u32 buffer = cmd_buff[5]; cmd_buff[0] = IPC::MakeHeader(0x11, 2, 2); cmd_buff[1] = RESULT_SUCCESS.raw; // No error cmd_buff[2] = 1; // Pretend that we actually loaded the DSP firmware cmd_buff[3] = desc; cmd_buff[4] = buffer; // TODO(bunnei): Implement real DSP firmware loading ASSERT(Memory::IsValidVirtualAddress(buffer)); std::vector component_data(size); Memory::ReadBlock(buffer, component_data.data(), component_data.size()); LOG_INFO(Service_DSP, "Firmware hash: %#" PRIx64, Common::ComputeHash64(component_data.data(), component_data.size())); // Some versions of the firmware have the location of DSP structures listed here. ASSERT(size > 0x37C); LOG_INFO(Service_DSP, "Structures hash: %#" PRIx64, Common::ComputeHash64(component_data.data() + 0x340, 60)); LOG_WARNING(Service_DSP, "(STUBBED) called size=0x%X, prog_mask=0x%08X, data_mask=0x%08X, buffer=0x%08X", size, prog_mask, data_mask, buffer); } /** * DSP_DSP::GetSemaphoreEventHandle service function * Outputs: * 1 : Result of function, 0 on success, otherwise error code * 3 : Semaphore event handle */ static void GetSemaphoreEventHandle(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); cmd_buff[0] = IPC::MakeHeader(0x16, 1, 2); cmd_buff[1] = RESULT_SUCCESS.raw; // No error // cmd_buff[2] not set cmd_buff[3] = Kernel::g_handle_table.Create(semaphore_event).MoveFrom(); // Event handle LOG_WARNING(Service_DSP, "(STUBBED) called"); } /** * DSP_DSP::FlushDataCache service function * * This Function is a no-op, We aren't emulating the CPU cache any time soon. * * Inputs: * 1 : Address * 2 : Size * 3 : Value 0, some descriptor for the KProcess Handle * 4 : KProcess handle * Outputs: * 1 : Result of function, 0 on success, otherwise error code */ static void FlushDataCache(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 address = cmd_buff[1]; u32 size = cmd_buff[2]; u32 process = cmd_buff[4]; cmd_buff[0] = IPC::MakeHeader(0x13, 1, 0); cmd_buff[1] = RESULT_SUCCESS.raw; // No error LOG_TRACE(Service_DSP, "called address=0x%08X, size=0x%X, process=0x%08X", address, size, process); } /** * DSP_DSP::RegisterInterruptEvents service function * Inputs: * 1 : Interrupt Type * 2 : Pipe Number * 4 : Interrupt event handle * Outputs: * 1 : Result of function, 0 on success, otherwise error code */ static void RegisterInterruptEvents(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 type_index = cmd_buff[1]; u32 pipe_index = cmd_buff[2]; u32 event_handle = cmd_buff[4]; ASSERT_MSG(type_index < NUM_INTERRUPT_TYPE && pipe_index < DSP::HLE::NUM_DSP_PIPE, "Invalid type or pipe: type = %u, pipe = %u", type_index, pipe_index); InterruptType type = static_cast(cmd_buff[1]); DspPipe pipe = static_cast(cmd_buff[2]); cmd_buff[0] = IPC::MakeHeader(0x15, 1, 0); if (event_handle) { auto evt = Kernel::g_handle_table.Get(cmd_buff[4]); if (!evt) { LOG_INFO(Service_DSP, "Invalid event handle! type=%u, pipe=%u, event_handle=0x%08X", type_index, pipe_index, event_handle); ASSERT(false); // TODO: This should really be handled at an IPC translation layer. } if (interrupt_events.HasTooManyEventsRegistered()) { LOG_INFO(Service_DSP, "Ran out of space to register interrupts (Attempted to register type=%u, pipe=%u, event_handle=0x%08X)", type_index, pipe_index, event_handle); cmd_buff[1] = ResultCode(ErrorDescription::InvalidResultValue, ErrorModule::DSP, ErrorSummary::OutOfResource, ErrorLevel::Status).raw; return; } interrupt_events.Get(type, pipe) = evt; LOG_INFO(Service_DSP, "Registered type=%u, pipe=%u, event_handle=0x%08X", type_index, pipe_index, event_handle); cmd_buff[1] = RESULT_SUCCESS.raw; } else { interrupt_events.Get(type, pipe) = nullptr; LOG_INFO(Service_DSP, "Unregistered interrupt=%u, channel=%u, event_handle=0x%08X", type_index, pipe_index, event_handle); cmd_buff[1] = RESULT_SUCCESS.raw; } } /** * DSP_DSP::SetSemaphore service function * Inputs: * 1 : Unknown (observed only half word used) * Outputs: * 1 : Result of function, 0 on success, otherwise error code */ static void SetSemaphore(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); cmd_buff[0] = IPC::MakeHeader(0x7, 1, 0); cmd_buff[1] = RESULT_SUCCESS.raw; // No error LOG_WARNING(Service_DSP, "(STUBBED) called"); } /** * DSP_DSP::WriteProcessPipe service function * Inputs: * 1 : Pipe Number * 2 : Size * 3 : (size << 14) | 0x402 * 4 : Buffer * Outputs: * 0 : Return header * 1 : Result of function, 0 on success, otherwise error code */ static void WriteProcessPipe(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 pipe_index = cmd_buff[1]; u32 size = cmd_buff[2]; u32 buffer = cmd_buff[4]; DSP::HLE::DspPipe pipe = static_cast(pipe_index); if (IPC::StaticBufferDesc(size, 1) != cmd_buff[3]) { LOG_ERROR(Service_DSP, "IPC static buffer descriptor failed validation (0x%X). pipe=%u, size=0x%X, buffer=0x%08X", cmd_buff[3], pipe_index, size, buffer); cmd_buff[0] = IPC::MakeHeader(0, 1, 0); cmd_buff[1] = ResultCode(ErrorDescription::OS_InvalidBufferDescriptor, ErrorModule::OS, ErrorSummary::WrongArgument, ErrorLevel::Permanent).raw; return; } ASSERT_MSG(Memory::IsValidVirtualAddress(buffer), "Invalid Buffer: pipe=%u, size=0x%X, buffer=0x%08X", pipe, size, buffer); std::vector message(size); for (u32 i = 0; i < size; i++) { message[i] = Memory::Read8(buffer + i); } DSP::HLE::PipeWrite(pipe, message); cmd_buff[0] = IPC::MakeHeader(0xD, 1, 0); cmd_buff[1] = RESULT_SUCCESS.raw; // No error LOG_DEBUG(Service_DSP, "pipe=%u, size=0x%X, buffer=0x%08X", pipe_index, size, buffer); } /** * DSP_DSP::ReadPipeIfPossible service function * A pipe is a means of communication between the ARM11 and DSP that occurs on * hardware by writing to/reading from the DSP registers at 0x10203000. * Pipes are used for initialisation. See also DSP::HLE::PipeRead. * Inputs: * 1 : Pipe Number * 2 : Unknown * 3 : Size in bytes of read (observed only lower half word used) * 0x41 : Virtual address of memory buffer to write pipe contents to * Outputs: * 1 : Result of function, 0 on success, otherwise error code * 2 : Number of bytes read from pipe */ static void ReadPipeIfPossible(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 pipe_index = cmd_buff[1]; u32 unknown = cmd_buff[2]; u32 size = cmd_buff[3] & 0xFFFF; // Lower 16 bits are size VAddr addr = cmd_buff[0x41]; DSP::HLE::DspPipe pipe = static_cast(pipe_index); ASSERT_MSG(Memory::IsValidVirtualAddress(addr), "Invalid addr: pipe=0x%08X, unknown=0x%08X, size=0x%X, buffer=0x%08X", pipe, unknown, size, addr); cmd_buff[0] = IPC::MakeHeader(0x10, 1, 2); cmd_buff[1] = RESULT_SUCCESS.raw; // No error if (DSP::HLE::GetPipeReadableSize(pipe) >= size) { std::vector response = DSP::HLE::PipeRead(pipe, size); Memory::WriteBlock(addr, response.data(), response.size()); cmd_buff[2] = static_cast(response.size()); } else { cmd_buff[2] = 0; // Return no data } cmd_buff[3] = IPC::StaticBufferDesc(size, 0); cmd_buff[4] = addr; LOG_DEBUG(Service_DSP, "pipe=%u, unknown=0x%08X, size=0x%X, buffer=0x%08X, return cmd_buff[2]=0x%08X", pipe_index, unknown, size, addr, cmd_buff[2]); } /** * DSP_DSP::ReadPipe service function * Inputs: * 1 : Pipe Number * 2 : Unknown * 3 : Size in bytes of read (observed only lower half word used) * 0x41 : Virtual address of memory buffer to write pipe contents to * Outputs: * 1 : Result of function, 0 on success, otherwise error code * 2 : Number of bytes read from pipe */ static void ReadPipe(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 pipe_index = cmd_buff[1]; u32 unknown = cmd_buff[2]; u32 size = cmd_buff[3] & 0xFFFF; // Lower 16 bits are size VAddr addr = cmd_buff[0x41]; DSP::HLE::DspPipe pipe = static_cast(pipe_index); ASSERT_MSG(Memory::IsValidVirtualAddress(addr), "Invalid addr: pipe=0x%08X, unknown=0x%08X, size=0x%X, buffer=0x%08X", pipe, unknown, size, addr); if (DSP::HLE::GetPipeReadableSize(pipe) >= size) { std::vector response = DSP::HLE::PipeRead(pipe, size); Memory::WriteBlock(addr, response.data(), response.size()); cmd_buff[0] = IPC::MakeHeader(0xE, 2, 2); cmd_buff[1] = RESULT_SUCCESS.raw; // No error cmd_buff[2] = static_cast(response.size()); cmd_buff[3] = IPC::StaticBufferDesc(size, 0); cmd_buff[4] = addr; } else { // No more data is in pipe. Hardware hangs in this case; this should never happen. UNREACHABLE(); } LOG_DEBUG(Service_DSP, "pipe=%u, unknown=0x%08X, size=0x%X, buffer=0x%08X, return cmd_buff[2]=0x%08X", pipe_index, unknown, size, addr, cmd_buff[2]); } /** * DSP_DSP::GetPipeReadableSize service function * Inputs: * 1 : Pipe Number * 2 : Unknown * Outputs: * 1 : Result of function, 0 on success, otherwise error code * 2 : Number of bytes readable from pipe */ static void GetPipeReadableSize(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 pipe_index = cmd_buff[1]; u32 unknown = cmd_buff[2]; DSP::HLE::DspPipe pipe = static_cast(pipe_index); cmd_buff[0] = IPC::MakeHeader(0xF, 2, 0); cmd_buff[1] = RESULT_SUCCESS.raw; // No error cmd_buff[2] = static_cast(DSP::HLE::GetPipeReadableSize(pipe)); LOG_DEBUG(Service_DSP, "pipe=%u, unknown=0x%08X, return cmd_buff[2]=0x%08X", pipe_index, unknown, cmd_buff[2]); } /** * DSP_DSP::SetSemaphoreMask service function * Inputs: * 1 : Mask * Outputs: * 1 : Result of function, 0 on success, otherwise error code */ static void SetSemaphoreMask(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 mask = cmd_buff[1]; cmd_buff[0] = IPC::MakeHeader(0x17, 1, 0); cmd_buff[1] = RESULT_SUCCESS.raw; // No error LOG_WARNING(Service_DSP, "(STUBBED) called mask=0x%08X", mask); } /** * DSP_DSP::GetHeadphoneStatus service function * Inputs: * 1 : None * Outputs: * 1 : Result of function, 0 on success, otherwise error code * 2 : The headphone status response, 0 = Not using headphones?, * 1 = using headphones? */ static void GetHeadphoneStatus(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); cmd_buff[0] = IPC::MakeHeader(0x1F, 2, 0); cmd_buff[1] = RESULT_SUCCESS.raw; // No error cmd_buff[2] = 0; // Not using headphones LOG_DEBUG(Service_DSP, "called"); } /** * DSP_DSP::RecvData service function * This function reads a value out of a DSP register. * Inputs: * 1 : Register Number * Outputs: * 1 : Result of function, 0 on success, otherwise error code * 2 : Value in the register * Notes: * This function has only been observed being called with a register number of 0. */ static void RecvData(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 register_number = cmd_buff[1]; ASSERT_MSG(register_number == 0, "Unknown register_number %u", register_number); // Application reads this after requesting DSP shutdown, to verify the DSP has indeed shutdown or slept. cmd_buff[0] = IPC::MakeHeader(0x1, 2, 0); cmd_buff[1] = RESULT_SUCCESS.raw; switch (DSP::HLE::GetDspState()) { case DSP::HLE::DspState::On: cmd_buff[2] = 0; break; case DSP::HLE::DspState::Off: case DSP::HLE::DspState::Sleeping: cmd_buff[2] = 1; break; default: UNREACHABLE(); break; } LOG_DEBUG(Service_DSP, "register_number=%u", register_number); } /** * DSP_DSP::RecvDataIsReady service function * This function checks whether a DSP register is ready to be read. * Inputs: * 1 : Register Number * Outputs: * 1 : Result of function, 0 on success, otherwise error code * 2 : non-zero == ready * Note: * This function has only been observed being called with a register number of 0. */ static void RecvDataIsReady(Service::Interface* self) { u32* cmd_buff = Kernel::GetCommandBuffer(); u32 register_number = cmd_buff[1]; ASSERT_MSG(register_number == 0, "Unknown register_number %u", register_number); cmd_buff[0] = IPC::MakeHeader(0x2, 2, 0); cmd_buff[1] = RESULT_SUCCESS.raw; cmd_buff[2] = 1; // Ready to read LOG_DEBUG(Service_DSP, "register_number=%u", register_number); } const Interface::FunctionInfo FunctionTable[] = { {0x00010040, RecvData, "RecvData"}, {0x00020040, RecvDataIsReady, "RecvDataIsReady"}, {0x00030080, nullptr, "SendData"}, {0x00040040, nullptr, "SendDataIsEmpty"}, {0x000500C2, nullptr, "SendFifoEx"}, {0x000600C0, nullptr, "RecvFifoEx"}, {0x00070040, SetSemaphore, "SetSemaphore"}, {0x00080000, nullptr, "GetSemaphore"}, {0x00090040, nullptr, "ClearSemaphore"}, {0x000A0040, nullptr, "MaskSemaphore"}, {0x000B0000, nullptr, "CheckSemaphoreRequest"}, {0x000C0040, ConvertProcessAddressFromDspDram, "ConvertProcessAddressFromDspDram"}, {0x000D0082, WriteProcessPipe, "WriteProcessPipe"}, {0x000E00C0, ReadPipe, "ReadPipe"}, {0x000F0080, GetPipeReadableSize, "GetPipeReadableSize"}, {0x001000C0, ReadPipeIfPossible, "ReadPipeIfPossible"}, {0x001100C2, LoadComponent, "LoadComponent"}, {0x00120000, nullptr, "UnloadComponent"}, {0x00130082, FlushDataCache, "FlushDataCache"}, {0x00140082, nullptr, "InvalidateDCache"}, {0x00150082, RegisterInterruptEvents, "RegisterInterruptEvents"}, {0x00160000, GetSemaphoreEventHandle, "GetSemaphoreEventHandle"}, {0x00170040, SetSemaphoreMask, "SetSemaphoreMask"}, {0x00180040, nullptr, "GetPhysicalAddress"}, {0x00190040, nullptr, "GetVirtualAddress"}, {0x001A0042, nullptr, "SetIirFilterI2S1_cmd1"}, {0x001B0042, nullptr, "SetIirFilterI2S1_cmd2"}, {0x001C0082, nullptr, "SetIirFilterEQ"}, {0x001D00C0, nullptr, "ReadMultiEx_SPI2"}, {0x001E00C2, nullptr, "WriteMultiEx_SPI2"}, {0x001F0000, GetHeadphoneStatus, "GetHeadphoneStatus"}, {0x00200040, nullptr, "ForceHeadphoneOut"}, {0x00210000, nullptr, "GetIsDspOccupied"}, }; //////////////////////////////////////////////////////////////////////////////////////////////////// // Interface class Interface::Interface() { semaphore_event = Kernel::Event::Create(Kernel::ResetType::OneShot, "DSP_DSP::semaphore_event"); interrupt_events = {}; Register(FunctionTable); } Interface::~Interface() { semaphore_event = nullptr; interrupt_events = {}; } } // namespace