// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project // SPDX-FileCopyrightText: Copyright 2014 The Android Open Source Project // SPDX-License-Identifier: GPL-3.0-or-later // Parts of this implementation were based on: // https://cs.android.com/android/platform/superproject/+/android-5.1.1_r38:frameworks/native/libs/gui/BufferQueueProducer.cpp #include "common/assert.h" #include "common/logging/log.h" #include "common/settings.h" #include "core/core.h" #include "core/hle/kernel/hle_ipc.h" #include "core/hle/kernel/k_event.h" #include "core/hle/kernel/k_readable_event.h" #include "core/hle/kernel/kernel.h" #include "core/hle/service/kernel_helpers.h" #include "core/hle/service/nvdrv/core/nvmap.h" #include "core/hle/service/nvflinger/buffer_queue_core.h" #include "core/hle/service/nvflinger/buffer_queue_producer.h" #include "core/hle/service/nvflinger/consumer_listener.h" #include "core/hle/service/nvflinger/parcel.h" #include "core/hle/service/nvflinger/ui/graphic_buffer.h" #include "core/hle/service/nvflinger/window.h" #include "core/hle/service/vi/vi.h" namespace Service::android { BufferQueueProducer::BufferQueueProducer(Service::KernelHelpers::ServiceContext& service_context_, std::shared_ptr buffer_queue_core_, Service::Nvidia::NvCore::NvMap& nvmap_) : service_context{service_context_}, core{std::move(buffer_queue_core_)}, slots(core->slots), nvmap(nvmap_) { buffer_wait_event = service_context.CreateEvent("BufferQueue:WaitEvent"); } BufferQueueProducer::~BufferQueueProducer() { service_context.CloseEvent(buffer_wait_event); } Status BufferQueueProducer::RequestBuffer(s32 slot, std::shared_ptr* buf) { LOG_DEBUG(Service_NVFlinger, "slot {}", slot); std::scoped_lock lock{core->mutex}; if (core->is_abandoned) { LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned"); return Status::NoInit; } if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) { LOG_ERROR(Service_NVFlinger, "slot index {} out of range [0, {})", slot, BufferQueueDefs::NUM_BUFFER_SLOTS); return Status::BadValue; } else if (slots[slot].buffer_state != BufferState::Dequeued) { LOG_ERROR(Service_NVFlinger, "slot {} is not owned by the producer (state = {})", slot, slots[slot].buffer_state); return Status::BadValue; } slots[slot].request_buffer_called = true; *buf = slots[slot].graphic_buffer; return Status::NoError; } Status BufferQueueProducer::SetBufferCount(s32 buffer_count) { LOG_DEBUG(Service_NVFlinger, "count = {}", buffer_count); std::shared_ptr listener; { std::scoped_lock lock{core->mutex}; core->WaitWhileAllocatingLocked(); if (core->is_abandoned) { LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned"); return Status::NoInit; } if (buffer_count > BufferQueueDefs::NUM_BUFFER_SLOTS) { LOG_ERROR(Service_NVFlinger, "buffer_count {} too large (max {})", buffer_count, BufferQueueDefs::NUM_BUFFER_SLOTS); return Status::BadValue; } // There must be no dequeued buffers when changing the buffer count. for (s32 s{}; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) { if (slots[s].buffer_state == BufferState::Dequeued) { LOG_ERROR(Service_NVFlinger, "buffer owned by producer"); return Status::BadValue; } } if (buffer_count == 0) { core->override_max_buffer_count = 0; core->SignalDequeueCondition(); return Status::NoError; } const s32 min_buffer_slots = core->GetMinMaxBufferCountLocked(false); if (buffer_count < min_buffer_slots) { LOG_ERROR(Service_NVFlinger, "requested buffer count {} is less than minimum {}", buffer_count, min_buffer_slots); return Status::BadValue; } // Here we are guaranteed that the producer doesn't have any dequeued buffers and will // release all of its buffer references. if (core->GetPreallocatedBufferCountLocked() <= 0) { core->FreeAllBuffersLocked(); } core->override_max_buffer_count = buffer_count; core->SignalDequeueCondition(); buffer_wait_event->Signal(); listener = core->consumer_listener; } // Call back without lock held if (listener != nullptr) { listener->OnBuffersReleased(); } return Status::NoError; } Status BufferQueueProducer::WaitForFreeSlotThenRelock(bool async, s32* found, Status* return_flags) const { bool try_again = true; while (try_again) { if (core->is_abandoned) { LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned"); return Status::NoInit; } const s32 max_buffer_count = core->GetMaxBufferCountLocked(async); if (async && core->override_max_buffer_count) { if (core->override_max_buffer_count < max_buffer_count) { LOG_ERROR(Service_NVFlinger, "async mode is invalid with buffer count override"); return Status::BadValue; } } // Free up any buffers that are in slots beyond the max buffer count for (s32 s = max_buffer_count; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) { ASSERT(slots[s].buffer_state == BufferState::Free); if (slots[s].graphic_buffer != nullptr) { core->FreeBufferLocked(s); *return_flags |= Status::ReleaseAllBuffers; } } // Look for a free buffer to give to the client *found = BufferQueueCore::INVALID_BUFFER_SLOT; s32 dequeued_count{}; s32 acquired_count{}; for (s32 s{}; s < max_buffer_count; ++s) { switch (slots[s].buffer_state) { case BufferState::Dequeued: ++dequeued_count; break; case BufferState::Acquired: ++acquired_count; break; case BufferState::Free: // We return the oldest of the free buffers to avoid stalling the producer if // possible, since the consumer may still have pending reads of in-flight buffers if (*found == BufferQueueCore::INVALID_BUFFER_SLOT || slots[s].frame_number < slots[*found].frame_number) { *found = s; } break; default: break; } } // Producers are not allowed to dequeue more than one buffer if they did not set a buffer // count if (!core->override_max_buffer_count && dequeued_count) { LOG_ERROR(Service_NVFlinger, "can't dequeue multiple buffers without setting the buffer count"); return Status::InvalidOperation; } // See whether a buffer has been queued since the last SetBufferCount so we know whether to // perform the min undequeued buffers check below if (core->buffer_has_been_queued) { // Make sure the producer is not trying to dequeue more buffers than allowed const s32 new_undequeued_count = max_buffer_count - (dequeued_count + 1); const s32 min_undequeued_count = core->GetMinUndequeuedBufferCountLocked(async); if (new_undequeued_count < min_undequeued_count) { LOG_ERROR(Service_NVFlinger, "min undequeued buffer count({}) exceeded (dequeued={} undequeued={})", min_undequeued_count, dequeued_count, new_undequeued_count); return Status::InvalidOperation; } } // If we disconnect and reconnect quickly, we can be in a state where our slots are empty // but we have many buffers in the queue. This can cause us to run out of memory if we // outrun the consumer. Wait here if it looks like we have too many buffers queued up. const bool too_many_buffers = core->queue.size() > static_cast(max_buffer_count); if (too_many_buffers) { LOG_ERROR(Service_NVFlinger, "queue size is {}, waiting", core->queue.size()); } // If no buffer is found, or if the queue has too many buffers outstanding, wait for a // buffer to be acquired or released, or for the max buffer count to change. try_again = (*found == BufferQueueCore::INVALID_BUFFER_SLOT) || too_many_buffers; if (try_again) { // Return an error if we're in non-blocking mode (producer and consumer are controlled // by the application). if (core->dequeue_buffer_cannot_block && (acquired_count <= core->max_acquired_buffer_count)) { return Status::WouldBlock; } if (!core->WaitForDequeueCondition()) { // We are no longer running return Status::NoError; } } } return Status::NoError; } Status BufferQueueProducer::DequeueBuffer(s32* out_slot, Fence* out_fence, bool async, u32 width, u32 height, PixelFormat format, u32 usage) { LOG_DEBUG(Service_NVFlinger, "async={} w={} h={} format={}, usage={}", async ? "true" : "false", width, height, format, usage); if ((width != 0 && height == 0) || (width == 0 && height != 0)) { LOG_ERROR(Service_NVFlinger, "invalid size: w={} h={}", width, height); return Status::BadValue; } Status return_flags = Status::NoError; bool attached_by_consumer = false; { std::scoped_lock lock{core->mutex}; core->WaitWhileAllocatingLocked(); if (format == PixelFormat::NoFormat) { format = core->default_buffer_format; } // Enable the usage bits the consumer requested usage |= core->consumer_usage_bit; s32 found{}; Status status = WaitForFreeSlotThenRelock(async, &found, &return_flags); if (status != Status::NoError) { return status; } // This should not happen if (found == BufferQueueCore::INVALID_BUFFER_SLOT) { LOG_ERROR(Service_NVFlinger, "no available buffer slots"); return Status::Busy; } *out_slot = found; attached_by_consumer = slots[found].attached_by_consumer; const bool use_default_size = !width && !height; if (use_default_size) { width = core->default_width; height = core->default_height; } slots[found].buffer_state = BufferState::Dequeued; const std::shared_ptr& buffer(slots[found].graphic_buffer); if ((buffer == nullptr) || (buffer->Width() != width) || (buffer->Height() != height) || (buffer->Format() != format) || ((buffer->Usage() & usage) != usage)) { slots[found].acquire_called = false; slots[found].graphic_buffer = nullptr; slots[found].request_buffer_called = false; slots[found].fence = Fence::NoFence(); return_flags |= Status::BufferNeedsReallocation; } *out_fence = slots[found].fence; slots[found].fence = Fence::NoFence(); } if ((return_flags & Status::BufferNeedsReallocation) != Status::None) { LOG_DEBUG(Service_NVFlinger, "allocating a new buffer for slot {}", *out_slot); auto graphic_buffer = std::make_shared(width, height, format, usage); if (graphic_buffer == nullptr) { LOG_ERROR(Service_NVFlinger, "creating GraphicBuffer failed"); return Status::NoMemory; } { std::scoped_lock lock{core->mutex}; if (core->is_abandoned) { LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned"); return Status::NoInit; } slots[*out_slot].frame_number = UINT32_MAX; slots[*out_slot].graphic_buffer = graphic_buffer; } } if (attached_by_consumer) { return_flags |= Status::BufferNeedsReallocation; } LOG_DEBUG(Service_NVFlinger, "returning slot={} frame={}, flags={}", *out_slot, slots[*out_slot].frame_number, return_flags); return return_flags; } Status BufferQueueProducer::DetachBuffer(s32 slot) { LOG_DEBUG(Service_NVFlinger, "slot {}", slot); std::scoped_lock lock{core->mutex}; if (core->is_abandoned) { LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned"); return Status::NoInit; } if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) { LOG_ERROR(Service_NVFlinger, "slot {} out of range [0, {})", slot, BufferQueueDefs::NUM_BUFFER_SLOTS); return Status::BadValue; } else if (slots[slot].buffer_state != BufferState::Dequeued) { LOG_ERROR(Service_NVFlinger, "slot {} is not owned by the producer (state = {})", slot, slots[slot].buffer_state); return Status::BadValue; } else if (!slots[slot].request_buffer_called) { LOG_ERROR(Service_NVFlinger, "buffer in slot {} has not been requested", slot); return Status::BadValue; } core->FreeBufferLocked(slot); core->SignalDequeueCondition(); return Status::NoError; } Status BufferQueueProducer::DetachNextBuffer(std::shared_ptr* out_buffer, Fence* out_fence) { if (out_buffer == nullptr) { LOG_ERROR(Service_NVFlinger, "out_buffer must not be nullptr"); return Status::BadValue; } else if (out_fence == nullptr) { LOG_ERROR(Service_NVFlinger, "out_fence must not be nullptr"); return Status::BadValue; } std::scoped_lock lock{core->mutex}; core->WaitWhileAllocatingLocked(); if (core->is_abandoned) { LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned"); return Status::NoInit; } // Find the oldest valid slot int found = BufferQueueCore::INVALID_BUFFER_SLOT; for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) { if (slots[s].buffer_state == BufferState::Free && slots[s].graphic_buffer != nullptr) { if (found == BufferQueueCore::INVALID_BUFFER_SLOT || slots[s].frame_number < slots[found].frame_number) { found = s; } } } if (found == BufferQueueCore::INVALID_BUFFER_SLOT) { return Status::NoMemory; } LOG_DEBUG(Service_NVFlinger, "Detached slot {}", found); *out_buffer = slots[found].graphic_buffer; *out_fence = slots[found].fence; core->FreeBufferLocked(found); return Status::NoError; } Status BufferQueueProducer::AttachBuffer(s32* out_slot, const std::shared_ptr& buffer) { if (out_slot == nullptr) { LOG_ERROR(Service_NVFlinger, "out_slot must not be nullptr"); return Status::BadValue; } else if (buffer == nullptr) { LOG_ERROR(Service_NVFlinger, "Cannot attach nullptr buffer"); return Status::BadValue; } std::scoped_lock lock{core->mutex}; core->WaitWhileAllocatingLocked(); Status return_flags = Status::NoError; s32 found{}; const auto status = WaitForFreeSlotThenRelock(false, &found, &return_flags); if (status != Status::NoError) { return status; } // This should not happen if (found == BufferQueueCore::INVALID_BUFFER_SLOT) { LOG_ERROR(Service_NVFlinger, "No available buffer slots"); return Status::Busy; } *out_slot = found; LOG_DEBUG(Service_NVFlinger, "Returning slot {} flags={}", *out_slot, return_flags); slots[*out_slot].graphic_buffer = buffer; slots[*out_slot].buffer_state = BufferState::Dequeued; slots[*out_slot].fence = Fence::NoFence(); slots[*out_slot].request_buffer_called = true; return return_flags; } Status BufferQueueProducer::QueueBuffer(s32 slot, const QueueBufferInput& input, QueueBufferOutput* output) { s64 timestamp{}; bool is_auto_timestamp{}; Common::Rectangle crop; NativeWindowScalingMode scaling_mode{}; NativeWindowTransform transform; u32 sticky_transform_{}; bool async{}; s32 swap_interval{}; Fence fence{}; input.Deflate(×tamp, &is_auto_timestamp, &crop, &scaling_mode, &transform, &sticky_transform_, &async, &swap_interval, &fence); switch (scaling_mode) { case NativeWindowScalingMode::Freeze: case NativeWindowScalingMode::ScaleToWindow: case NativeWindowScalingMode::ScaleCrop: case NativeWindowScalingMode::NoScaleCrop: break; default: LOG_ERROR(Service_NVFlinger, "unknown scaling mode {}", scaling_mode); return Status::BadValue; } std::shared_ptr frame_available_listener; std::shared_ptr frame_replaced_listener; s32 callback_ticket{}; BufferItem item; { std::scoped_lock lock{core->mutex}; if (core->is_abandoned) { LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned"); return Status::NoInit; } const s32 max_buffer_count = core->GetMaxBufferCountLocked(async); if (async && core->override_max_buffer_count) { if (core->override_max_buffer_count < max_buffer_count) { LOG_ERROR(Service_NVFlinger, "async mode is invalid with " "buffer count override"); return Status::BadValue; } } if (slot < 0 || slot >= max_buffer_count) { LOG_ERROR(Service_NVFlinger, "slot index {} out of range [0, {})", slot, max_buffer_count); return Status::BadValue; } else if (slots[slot].buffer_state != BufferState::Dequeued) { LOG_ERROR(Service_NVFlinger, "slot {} is not owned by the producer " "(state = {})", slot, slots[slot].buffer_state); return Status::BadValue; } else if (!slots[slot].request_buffer_called) { LOG_ERROR(Service_NVFlinger, "slot {} was queued without requesting " "a buffer", slot); return Status::BadValue; } LOG_DEBUG(Service_NVFlinger, "slot={} frame={} time={} crop=[{},{},{},{}] transform={} scale={}", slot, core->frame_counter + 1, timestamp, crop.Left(), crop.Top(), crop.Right(), crop.Bottom(), transform, scaling_mode); const std::shared_ptr& graphic_buffer(slots[slot].graphic_buffer); Common::Rectangle buffer_rect(graphic_buffer->Width(), graphic_buffer->Height()); Common::Rectangle cropped_rect; [[maybe_unused]] const bool unused = crop.Intersect(buffer_rect, &cropped_rect); if (cropped_rect != crop) { LOG_ERROR(Service_NVFlinger, "crop rect is not contained within the buffer in slot {}", slot); return Status::BadValue; } slots[slot].fence = fence; slots[slot].buffer_state = BufferState::Queued; ++core->frame_counter; slots[slot].frame_number = core->frame_counter; item.acquire_called = slots[slot].acquire_called; item.graphic_buffer = slots[slot].graphic_buffer; item.crop = crop; item.transform = transform & ~NativeWindowTransform::InverseDisplay; item.transform_to_display_inverse = (transform & NativeWindowTransform::InverseDisplay) != NativeWindowTransform::None; item.scaling_mode = static_cast(scaling_mode); item.timestamp = timestamp; item.is_auto_timestamp = is_auto_timestamp; item.frame_number = core->frame_counter; item.slot = slot; item.fence = fence; item.is_droppable = core->dequeue_buffer_cannot_block || async; item.swap_interval = swap_interval; nvmap.DuplicateHandle(item.graphic_buffer->BufferId(), true); sticky_transform = sticky_transform_; if (core->queue.empty()) { // When the queue is empty, we can simply queue this buffer core->queue.push_back(item); frame_available_listener = core->consumer_listener; } else { // When the queue is not empty, we need to look at the front buffer // state to see if we need to replace it auto front(core->queue.begin()); if (front->is_droppable) { // If the front queued buffer is still being tracked, we first // mark it as freed if (core->StillTracking(*front)) { slots[front->slot].buffer_state = BufferState::Free; // Reset the frame number of the freed buffer so that it is the first in line to // be dequeued again slots[front->slot].frame_number = 0; } // Overwrite the droppable buffer with the incoming one *front = item; frame_replaced_listener = core->consumer_listener; } else { core->queue.push_back(item); frame_available_listener = core->consumer_listener; } } core->buffer_has_been_queued = true; core->SignalDequeueCondition(); output->Inflate(core->default_width, core->default_height, core->transform_hint, static_cast(core->queue.size())); // Take a ticket for the callback functions callback_ticket = next_callback_ticket++; } // Don't send the GraphicBuffer through the callback, and don't send the slot number, since the // consumer shouldn't need it item.graphic_buffer.reset(); item.slot = BufferItem::INVALID_BUFFER_SLOT; // Call back without the main BufferQueue lock held, but with the callback lock held so we can // ensure that callbacks occur in order { std::scoped_lock lock{callback_mutex}; while (callback_ticket != current_callback_ticket) { callback_condition.wait(callback_mutex); } if (frame_available_listener != nullptr) { frame_available_listener->OnFrameAvailable(item); } else if (frame_replaced_listener != nullptr) { frame_replaced_listener->OnFrameReplaced(item); } ++current_callback_ticket; callback_condition.notify_all(); } return Status::NoError; } void BufferQueueProducer::CancelBuffer(s32 slot, const Fence& fence) { LOG_DEBUG(Service_NVFlinger, "slot {}", slot); std::scoped_lock lock{core->mutex}; if (core->is_abandoned) { LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned"); return; } if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) { LOG_ERROR(Service_NVFlinger, "slot index {} out of range [0, {})", slot, BufferQueueDefs::NUM_BUFFER_SLOTS); return; } else if (slots[slot].buffer_state != BufferState::Dequeued) { LOG_ERROR(Service_NVFlinger, "slot {} is not owned by the producer (state = {})", slot, slots[slot].buffer_state); return; } slots[slot].buffer_state = BufferState::Free; slots[slot].frame_number = 0; slots[slot].fence = fence; core->SignalDequeueCondition(); buffer_wait_event->Signal(); } Status BufferQueueProducer::Query(NativeWindow what, s32* out_value) { std::scoped_lock lock{core->mutex}; if (out_value == nullptr) { LOG_ERROR(Service_NVFlinger, "outValue was nullptr"); return Status::BadValue; } if (core->is_abandoned) { LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned"); return Status::NoInit; } u32 value{}; switch (what) { case NativeWindow::Width: value = core->default_width; break; case NativeWindow::Height: value = core->default_height; break; case NativeWindow::Format: value = static_cast(core->default_buffer_format); break; case NativeWindow::MinUndequeedBuffers: value = core->GetMinUndequeuedBufferCountLocked(false); break; case NativeWindow::StickyTransform: value = sticky_transform; break; case NativeWindow::ConsumerRunningBehind: value = (core->queue.size() > 1); break; case NativeWindow::ConsumerUsageBits: value = core->consumer_usage_bit; break; default: ASSERT(false); return Status::BadValue; } LOG_DEBUG(Service_NVFlinger, "what = {}, value = {}", what, value); *out_value = static_cast(value); return Status::NoError; } Status BufferQueueProducer::Connect(const std::shared_ptr& listener, NativeWindowApi api, bool producer_controlled_by_app, QueueBufferOutput* output) { std::scoped_lock lock{core->mutex}; LOG_DEBUG(Service_NVFlinger, "api = {} producer_controlled_by_app = {}", api, producer_controlled_by_app); if (core->is_abandoned) { LOG_ERROR(Service_NVFlinger, "BufferQueue has been abandoned"); return Status::NoInit; } if (core->consumer_listener == nullptr) { LOG_ERROR(Service_NVFlinger, "BufferQueue has no consumer"); return Status::NoInit; } if (output == nullptr) { LOG_ERROR(Service_NVFlinger, "output was nullptr"); return Status::BadValue; } if (core->connected_api != NativeWindowApi::NoConnectedApi) { LOG_ERROR(Service_NVFlinger, "already connected (cur = {} req = {})", core->connected_api, api); return Status::BadValue; } Status status = Status::NoError; switch (api) { case NativeWindowApi::Egl: case NativeWindowApi::Cpu: case NativeWindowApi::Media: case NativeWindowApi::Camera: core->connected_api = api; output->Inflate(core->default_width, core->default_height, core->transform_hint, static_cast(core->queue.size())); core->connected_producer_listener = listener; break; default: LOG_ERROR(Service_NVFlinger, "unknown api = {}", api); status = Status::BadValue; break; } core->buffer_has_been_queued = false; core->dequeue_buffer_cannot_block = core->consumer_controlled_by_app && producer_controlled_by_app; return status; } Status BufferQueueProducer::Disconnect(NativeWindowApi api) { LOG_DEBUG(Service_NVFlinger, "api = {}", api); Status status = Status::NoError; std::shared_ptr listener; { std::scoped_lock lock{core->mutex}; core->WaitWhileAllocatingLocked(); if (core->is_abandoned) { // Disconnecting after the surface has been abandoned is a no-op. return Status::NoError; } // HACK: We are not Android. Remove handle for items in queue, and clear queue. // Allows synchronous destruction of nvmap handles. for (auto& item : core->queue) { nvmap.FreeHandle(item.graphic_buffer->BufferId(), true); } core->queue.clear(); switch (api) { case NativeWindowApi::Egl: case NativeWindowApi::Cpu: case NativeWindowApi::Media: case NativeWindowApi::Camera: if (core->connected_api == api) { core->FreeAllBuffersLocked(); core->connected_producer_listener = nullptr; core->connected_api = NativeWindowApi::NoConnectedApi; core->SignalDequeueCondition(); buffer_wait_event->Signal(); listener = core->consumer_listener; } else { LOG_ERROR(Service_NVFlinger, "still connected to another api (cur = {} req = {})", core->connected_api, api); status = Status::BadValue; } break; default: LOG_ERROR(Service_NVFlinger, "unknown api = {}", api); status = Status::BadValue; break; } } // Call back without lock held if (listener != nullptr) { listener->OnBuffersReleased(); } return status; } Status BufferQueueProducer::SetPreallocatedBuffer(s32 slot, const std::shared_ptr& buffer) { LOG_DEBUG(Service_NVFlinger, "slot {}", slot); if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) { return Status::BadValue; } std::scoped_lock lock{core->mutex}; slots[slot] = {}; slots[slot].graphic_buffer = buffer; slots[slot].frame_number = 0; // Most games preallocate a buffer and pass a valid buffer here. However, it is possible for // this to be called with an empty buffer, Naruto Ultimate Ninja Storm is a game that does this. if (buffer) { slots[slot].is_preallocated = true; core->override_max_buffer_count = core->GetPreallocatedBufferCountLocked(); core->default_width = buffer->Width(); core->default_height = buffer->Height(); core->default_buffer_format = buffer->Format(); } core->SignalDequeueCondition(); buffer_wait_event->Signal(); return Status::NoError; } void BufferQueueProducer::Transact(Kernel::HLERequestContext& ctx, TransactionId code, u32 flags) { Status status{Status::NoError}; Parcel parcel_in{ctx.ReadBuffer()}; Parcel parcel_out{}; switch (code) { case TransactionId::Connect: { const auto enable_listener = parcel_in.Read(); const auto api = parcel_in.Read(); const auto producer_controlled_by_app = parcel_in.Read(); UNIMPLEMENTED_IF_MSG(enable_listener, "Listener is unimplemented!"); std::shared_ptr listener; QueueBufferOutput output{}; status = Connect(listener, api, producer_controlled_by_app, &output); parcel_out.Write(output); break; } case TransactionId::SetPreallocatedBuffer: { const auto slot = parcel_in.Read(); const auto buffer = parcel_in.ReadObject(); status = SetPreallocatedBuffer(slot, buffer); break; } case TransactionId::DequeueBuffer: { const auto is_async = parcel_in.Read(); const auto width = parcel_in.Read(); const auto height = parcel_in.Read(); const auto pixel_format = parcel_in.Read(); const auto usage = parcel_in.Read(); s32 slot{}; Fence fence{}; status = DequeueBuffer(&slot, &fence, is_async, width, height, pixel_format, usage); parcel_out.Write(slot); parcel_out.WriteObject(&fence); break; } case TransactionId::RequestBuffer: { const auto slot = parcel_in.Read(); std::shared_ptr buf; status = RequestBuffer(slot, &buf); parcel_out.WriteObject(buf); break; } case TransactionId::QueueBuffer: { const auto slot = parcel_in.Read(); QueueBufferInput input{parcel_in}; QueueBufferOutput output; status = QueueBuffer(slot, input, &output); parcel_out.Write(output); break; } case TransactionId::Query: { const auto what = parcel_in.Read(); s32 value{}; status = Query(what, &value); parcel_out.Write(value); break; } case TransactionId::CancelBuffer: { const auto slot = parcel_in.Read(); const auto fence = parcel_in.ReadFlattened(); CancelBuffer(slot, fence); break; } case TransactionId::Disconnect: { const auto api = parcel_in.Read(); status = Disconnect(api); break; } case TransactionId::DetachBuffer: { const auto slot = parcel_in.Read(); status = DetachBuffer(slot); break; } case TransactionId::SetBufferCount: { const auto buffer_count = parcel_in.Read(); status = SetBufferCount(buffer_count); break; } case TransactionId::GetBufferHistory: LOG_WARNING(Service_NVFlinger, "(STUBBED) called, transaction=GetBufferHistory"); break; default: ASSERT_MSG(false, "Unimplemented TransactionId {}", code); break; } parcel_out.Write(status); ctx.WriteBuffer(parcel_out.Serialize()); } Kernel::KReadableEvent& BufferQueueProducer::GetNativeHandle() { return buffer_wait_event->GetReadableEvent(); } } // namespace Service::android