// Copyright 2017 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/logging/log.h" #include "common/swap.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/resource_limit.h" #include "core/loader/nso.h" #include "core/memory.h" namespace Loader { enum class RelocationType : u32 { ABS64 = 257, GLOB_DAT = 1025, JUMP_SLOT = 1026, RELATIVE = 1027 }; enum DynamicType : u32 { DT_NULL = 0, DT_PLTRELSZ = 2, DT_STRTAB = 5, DT_SYMTAB = 6, DT_RELA = 7, DT_RELASZ = 8, DT_STRSZ = 10, DT_JMPREL = 23, }; struct NsoSegmentHeader { u32_le offset; u32_le location; u32_le size; u32_le alignment; }; static_assert(sizeof(NsoSegmentHeader) == 0x10, "NsoSegmentHeader has incorrect size."); struct NsoHeader { u32_le magic; INSERT_PADDING_BYTES(0xc); std::array segments; // Text, RoData, Data (in that order) u32_le bss_size; INSERT_PADDING_BYTES(0x1c); std::array segments_compressed_size; }; static_assert(sizeof(NsoHeader) == 0x6c, "NsoHeader has incorrect size."); struct ModHeader { INSERT_PADDING_BYTES(0x4); u32_le offset_to_start; // Always 8 u32_le magic; u32_le dynamic_offset; u32_le bss_start_offset; u32_le bss_end_offset; u32_le eh_frame_hdr_start_offset; u32_le eh_frame_hdr_end_offset; u32_le module_offset; // Offset to runtime-generated module object. typically equal to .bss base }; static_assert(sizeof(ModHeader) == 0x24, "ModHeader has incorrect size."); FileType AppLoader_NSO::IdentifyType(FileUtil::IOFile& file) { u32 magic = 0; file.Seek(0, SEEK_SET); if (1 != file.ReadArray(&magic, 1)) { return FileType::Error; } if (MakeMagic('N', 'S', 'O', '0') == magic) { return FileType::NSO; } return FileType::Error; } static std::vector ReadSegment(FileUtil::IOFile& file, const NsoSegmentHeader& header, int compressed_size) { std::vector compressed_data; compressed_data.resize(compressed_size); file.Seek(header.offset, SEEK_SET); if (compressed_size != file.ReadBytes(compressed_data.data(), compressed_size)) { LOG_CRITICAL(Loader, "Failed to read %d NSO LZ4 compressed bytes", compressed_size); return {}; } std::vector uncompressed_data; uncompressed_data.resize(header.size); const int bytes_uncompressed = LZ4_decompress_safe_partial(reinterpret_cast(compressed_data.data()), reinterpret_cast(uncompressed_data.data()), compressed_size, header.size, header.size); ASSERT_MSG(bytes_uncompressed == header.size, "%d != %d", bytes_uncompressed, header.size); return uncompressed_data; } void AppLoader_NSO::WriteRelocations(const std::vector& symbols, VAddr load_base, u64 relocation_offset, u64 size, bool is_jump_relocation) { for (u64 i = 0; i < size; i += 0x18) { VAddr addr = load_base + relocation_offset + i; u64 offset = Memory::Read64(addr); u64 info = Memory::Read64(addr + 8); u64 addend_unsigned = Memory::Read64(addr + 16); s64 addend{}; std::memcpy(&addend, &addend_unsigned, sizeof(u64)); RelocationType rtype = static_cast(info & 0xFFFFFFFF); u32 rsym = static_cast(info >> 32); VAddr ea = load_base + offset; const Symbol& symbol = symbols[rsym]; switch (rtype) { case RelocationType::RELATIVE: if (!symbol.name.empty()) { exports[symbol.name] = load_base + addend; } Memory::Write64(ea, load_base + addend); break; case RelocationType::JUMP_SLOT: case RelocationType::GLOB_DAT: if (!symbol.value) { imports[symbol.name] = {ea, 0}; } else { exports[symbol.name] = symbol.value; Memory::Write64(ea, symbol.value); } break; case RelocationType::ABS64: if (!symbol.value) { imports[symbol.name] = {ea, addend}; } else { exports[symbol.name] = symbol.value + addend; Memory::Write64(ea, symbol.value + addend); } break; default: LOG_CRITICAL(Loader, "Unknown relocation type: %d", rtype); break; } } } void AppLoader_NSO::Relocate(VAddr load_base, VAddr dynamic_section_addr) { std::map dynamic; while (1) { u64 tag = Memory::Read64(dynamic_section_addr); u64 value = Memory::Read64(dynamic_section_addr + 8); dynamic_section_addr += 16; if (tag == DT_NULL) { break; } dynamic[tag] = value; } u64 strtabsize = dynamic[DT_STRSZ]; std::vector strtab; strtab.resize(strtabsize); Memory::ReadBlock(load_base + dynamic[DT_STRTAB], strtab.data(), strtabsize); VAddr addr = load_base + dynamic[DT_SYMTAB]; std::vector symbols; while (1) { const u32 stname = Memory::Read32(addr); const u16 stshndx = Memory::Read16(addr + 6); const u64 stvalue = Memory::Read64(addr + 8); addr += 24; if (stname >= strtabsize) { break; } std::string name = reinterpret_cast(&strtab[stname]); if (stvalue) { exports[name] = load_base + stvalue; symbols.emplace_back(std::move(name), load_base + stvalue); } else { symbols.emplace_back(std::move(name), 0); } } if (dynamic.find(DT_RELA) != dynamic.end()) { WriteRelocations(symbols, load_base, dynamic[DT_RELA], dynamic[DT_RELASZ], false); } if (dynamic.find(DT_JMPREL) != dynamic.end()) { WriteRelocations(symbols, load_base, dynamic[DT_JMPREL], dynamic[DT_PLTRELSZ], true); } } VAddr AppLoader_NSO::GetEntryPoint(VAddr load_base) const { // Find nnMain function, set entrypoint to that address const auto& search = exports.find("nnMain"); if (search != exports.end()) { return search->second; } LOG_ERROR(Loader, "Unable to find entrypoint, defaulting to: 0x%llx", load_base); return load_base; } static constexpr u32 PageAlignSize(u32 size) { return (size + Memory::PAGE_MASK) & ~Memory::PAGE_MASK; } bool AppLoader_NSO::LoadNso(const std::string& path, VAddr load_base) { FileUtil::IOFile file(path, "rb"); if (!file.IsOpen()) { return {}; } // Read NSO header NsoHeader nso_header{}; file.Seek(0, SEEK_SET); if (sizeof(NsoHeader) != file.ReadBytes(&nso_header, sizeof(NsoHeader))) { return {}; } if (nso_header.magic != MakeMagic('N', 'S', 'O', '0')) { return {}; } // Build program image Kernel::SharedPtr codeset = Kernel::CodeSet::Create("", 0); std::vector program_image; for (int i = 0; i < nso_header.segments.size(); ++i) { std::vector data = ReadSegment(file, nso_header.segments[i], nso_header.segments_compressed_size[i]); program_image.resize(nso_header.segments[i].location); program_image.insert(program_image.end(), data.begin(), data.end()); codeset->segments[i].addr = nso_header.segments[i].location; codeset->segments[i].offset = nso_header.segments[i].location; codeset->segments[i].size = PageAlignSize(static_cast(data.size())); } // Read MOD header ModHeader mod_header{}; u32 bss_size{Memory::PAGE_SIZE}; // Default .bss to page size if MOD0 section doesn't exist std::memcpy(&mod_header, program_image.data(), sizeof(ModHeader)); const bool has_mod_header{mod_header.magic == MakeMagic('M', 'O', 'D', '0')}; if (has_mod_header) { // Resize program image to include .bss section and page align each section bss_size = PageAlignSize(mod_header.bss_end_offset - mod_header.bss_start_offset); codeset->data.size += bss_size; } program_image.resize(PageAlignSize(static_cast(program_image.size()) + bss_size)); // Load codeset for current process codeset->name = path; codeset->memory = std::make_shared>(std::move(program_image)); Kernel::g_current_process->LoadModule(codeset, load_base); // Relocate symbols if there was a proper MOD header - This must happen after the image has been // loaded into memory if (has_mod_header) { Relocate(load_base, load_base + mod_header.offset_to_start + mod_header.dynamic_offset); } return true; } ResultStatus AppLoader_NSO::Load() { if (is_loaded) { return ResultStatus::ErrorAlreadyLoaded; } if (!file.IsOpen()) { return ResultStatus::Error; } // Load and relocate "main" and "sdk" NSO static constexpr VAddr main_base{0x10000000}; Kernel::g_current_process = Kernel::Process::Create("main"); if (!LoadNso(filepath, main_base)) { return ResultStatus::ErrorInvalidFormat; } const std::string sdkpath = filepath.substr(0, filepath.find_last_of("/\\")) + "/sdk"; if (!LoadNso(sdkpath, 0x20000000)) { LOG_WARNING(Loader, "failed to find SDK NSO"); } Kernel::g_current_process->svc_access_mask.set(); Kernel::g_current_process->address_mappings = default_address_mappings; Kernel::g_current_process->resource_limit = Kernel::ResourceLimit::GetForCategory(Kernel::ResourceLimitCategory::APPLICATION); Kernel::g_current_process->Run(GetEntryPoint(main_base), 48, Kernel::DEFAULT_STACK_SIZE); // Resolve imports for (const auto& import : imports) { const auto& search = exports.find(import.first); if (search != exports.end()) { Memory::Write64(import.second.ea, search->second + import.second.addend); } else { LOG_ERROR(Loader, "Unresolved import: %s", import.first.c_str()); } } is_loaded = true; return ResultStatus::Success; } } // namespace Loader