// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include "common/assert.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/swap.h" #include "core/arm/arm_interface.h" #include "core/core.h" #include "core/hle/kernel/memory.h" #include "core/hle/kernel/process.h" #include "core/memory.h" #include "core/memory_setup.h" #include "video_core/renderer_base.h" #include "video_core/video_core.h" namespace Memory { static std::array vram; static std::array n3ds_extra_ram; static PageTable* current_page_table = nullptr; void SetCurrentPageTable(PageTable* page_table) { current_page_table = page_table; if (Core::System::GetInstance().IsPoweredOn()) { Core::CPU().PageTableChanged(); } } PageTable* GetCurrentPageTable() { return current_page_table; } static void MapPages(PageTable& page_table, VAddr base, u64 size, u8* memory, PageType type) { LOG_DEBUG(HW_Memory, "Mapping %p onto %08X-%08X", memory, base * PAGE_SIZE, (base + size) * PAGE_SIZE); VAddr end = base + size; while (base != end) { ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at %08X", base); page_table.attributes[base] = type; page_table.pointers[base] = memory; base += 1; if (memory != nullptr) memory += PAGE_SIZE; } } void MapMemoryRegion(PageTable& page_table, VAddr base, u64 size, u8* target) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory); } void MapIoRegion(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer mmio_handler) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special); auto interval = boost::icl::discrete_interval::closed(base, base + size - 1); SpecialRegion region{SpecialRegion::Type::IODevice, mmio_handler}; page_table.special_regions.add(std::make_pair(interval, std::set{region})); } void UnmapRegion(PageTable& page_table, VAddr base, u64 size) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped); auto interval = boost::icl::discrete_interval::closed(base, base + size - 1); page_table.special_regions.erase(interval); } void AddDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer hook) { auto interval = boost::icl::discrete_interval::closed(base, base + size - 1); SpecialRegion region{SpecialRegion::Type::DebugHook, hook}; page_table.special_regions.add(std::make_pair(interval, std::set{region})); } void RemoveDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer hook) { auto interval = boost::icl::discrete_interval::closed(base, base + size - 1); SpecialRegion region{SpecialRegion::Type::DebugHook, hook}; page_table.special_regions.subtract(std::make_pair(interval, std::set{region})); } /** * This function should only be called for virtual addreses with attribute `PageType::Special`. */ static std::set GetSpecialHandlers(const PageTable& page_table, VAddr vaddr, u64 size) { std::set result; auto interval = boost::icl::discrete_interval::closed(vaddr, vaddr + size - 1); auto interval_list = page_table.special_regions.equal_range(interval); for (auto it = interval_list.first; it != interval_list.second; ++it) { for (const auto& region : it->second) { result.insert(region.handler); } } return result; } static std::set GetSpecialHandlers(VAddr vaddr, u64 size) { const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table; return GetSpecialHandlers(page_table, vaddr, size); } template boost::optional ReadSpecial(VAddr addr); template T Read(const VAddr vaddr) { const PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (type) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "unmapped Read%lu @ 0x%016llX", sizeof(T) * 8, vaddr); return 0; case PageType::Special: { if (auto result = ReadSpecial(vaddr)) return *result; [[fallthrough]]; } case PageType::Memory: { const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; ASSERT_MSG(page_pointer, "Mapped memory page without a pointer @ %08X", vaddr); T value; std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T)); return value; } } UNREACHABLE(); return 0; } template bool WriteSpecial(VAddr addr, const T data); template void Write(const VAddr vaddr, const T data) { const PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (type) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, vaddr); return; case PageType::Special: { if (WriteSpecial(vaddr, data)) return; [[fallthrough]]; } case PageType::Memory: { u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; ASSERT_MSG(page_pointer, "Mapped memory page without a pointer @ %08X", vaddr); std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T)); return; } } UNREACHABLE(); } bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) { auto& page_table = process.vm_manager.page_table; if ((vaddr >> PAGE_BITS) >= PAGE_TABLE_NUM_ENTRIES) return false; const PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (type) { case PageType::Unmapped: return false; case PageType::Memory: return true; case PageType::Special: { for (auto handler : GetSpecialHandlers(page_table, vaddr, 1)) if (auto result = handler->IsValidAddress(vaddr)) return *result; return current_page_table->pointers[vaddr >> PAGE_BITS] != nullptr; } } UNREACHABLE(); return false; } bool IsValidVirtualAddress(const VAddr vaddr) { return IsValidVirtualAddress(*Kernel::g_current_process, vaddr); } bool IsValidPhysicalAddress(const PAddr paddr) { return GetPhysicalPointer(paddr) != nullptr; } u8* GetPointer(const VAddr vaddr) { u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer) { return page_pointer + (vaddr & PAGE_MASK); } LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr); return nullptr; } std::string ReadCString(VAddr vaddr, std::size_t max_length) { std::string string; string.reserve(max_length); for (std::size_t i = 0; i < max_length; ++i) { char c = Read8(vaddr); if (c == '\0') break; string.push_back(c); ++vaddr; } string.shrink_to_fit(); return string; } u8* GetPhysicalPointer(PAddr address) { struct MemoryArea { PAddr paddr_base; u32 size; }; static constexpr MemoryArea memory_areas[] = { {VRAM_PADDR, VRAM_SIZE}, {IO_AREA_PADDR, IO_AREA_SIZE}, {DSP_RAM_PADDR, DSP_RAM_SIZE}, {FCRAM_PADDR, FCRAM_N3DS_SIZE}, {N3DS_EXTRA_RAM_PADDR, N3DS_EXTRA_RAM_SIZE}, }; const auto area = std::find_if(std::begin(memory_areas), std::end(memory_areas), [&](const auto& area) { return address >= area.paddr_base && address < area.paddr_base + area.size; }); if (area == std::end(memory_areas)) { LOG_ERROR(HW_Memory, "unknown GetPhysicalPointer @ 0x%08X", address); return nullptr; } if (area->paddr_base == IO_AREA_PADDR) { LOG_ERROR(HW_Memory, "MMIO mappings are not supported yet. phys_addr=0x%08X", address); return nullptr; } u64 offset_into_region = address - area->paddr_base; u8* target_pointer = nullptr; switch (area->paddr_base) { case VRAM_PADDR: target_pointer = vram.data() + offset_into_region; break; case DSP_RAM_PADDR: break; case FCRAM_PADDR: for (const auto& region : Kernel::memory_regions) { if (offset_into_region >= region.base && offset_into_region < region.base + region.size) { target_pointer = region.linear_heap_memory->data() + offset_into_region - region.base; break; } } ASSERT_MSG(target_pointer != nullptr, "Invalid FCRAM address"); break; case N3DS_EXTRA_RAM_PADDR: target_pointer = n3ds_extra_ram.data() + offset_into_region; break; default: UNREACHABLE(); } return target_pointer; } u8 Read8(const VAddr addr) { return Read(addr); } u16 Read16(const VAddr addr) { return Read(addr); } u32 Read32(const VAddr addr) { return Read(addr); } u64 Read64(const VAddr addr) { return Read(addr); } static bool ReadSpecialBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer, const size_t size) { auto& page_table = process.vm_manager.page_table; for (const auto& handler : GetSpecialHandlers(page_table, src_addr, size)) { if (handler->ReadBlock(src_addr, dest_buffer, size)) { return true; } } return false; } void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer, const size_t size) { auto& page_table = process.vm_manager.page_table; size_t remaining_size = size; size_t page_index = src_addr >> PAGE_BITS; size_t page_offset = src_addr & PAGE_MASK; while (remaining_size > 0) { const size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size); const VAddr current_vaddr = static_cast((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "unmapped ReadBlock @ 0x%08X (start address = 0xllx, size = %zu)", current_vaddr, src_addr, size); std::memset(dest_buffer, 0, copy_amount); break; case PageType::Special: { if (ReadSpecialBlock(process, current_vaddr, dest_buffer, copy_amount)) break; [[fallthrough]]; } case PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); const u8* src_ptr = page_table.pointers[page_index] + page_offset; std::memcpy(dest_buffer, src_ptr, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_buffer = static_cast(dest_buffer) + copy_amount; remaining_size -= copy_amount; } } void ReadBlock(const VAddr src_addr, void* dest_buffer, const size_t size) { ReadBlock(*Kernel::g_current_process, src_addr, dest_buffer, size); } void Write8(const VAddr addr, const u8 data) { Write(addr, data); } void Write16(const VAddr addr, const u16 data) { Write(addr, data); } void Write32(const VAddr addr, const u32 data) { Write(addr, data); } void Write64(const VAddr addr, const u64 data) { Write(addr, data); } static bool WriteSpecialBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer, const size_t size) { auto& page_table = process.vm_manager.page_table; for (const auto& handler : GetSpecialHandlers(page_table, dest_addr, size)) { if (handler->WriteBlock(dest_addr, src_buffer, size)) { return true; } } return false; } void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer, const size_t size) { auto& page_table = process.vm_manager.page_table; size_t remaining_size = size; size_t page_index = dest_addr >> PAGE_BITS; size_t page_offset = dest_addr & PAGE_MASK; while (remaining_size > 0) { const size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size); const VAddr current_vaddr = static_cast((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "unmapped WriteBlock @ 0x%08X (start address = 0x%08X, size = %zu)", current_vaddr, dest_addr, size); break; case PageType::Special: if (WriteSpecialBlock(process, current_vaddr, src_buffer, copy_amount)) break; [[fallthrough]]; case PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); u8* dest_ptr = page_table.pointers[page_index] + page_offset; std::memcpy(dest_ptr, src_buffer, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; src_buffer = static_cast(src_buffer) + copy_amount; remaining_size -= copy_amount; } } void WriteBlock(const VAddr dest_addr, const void* src_buffer, const size_t size) { WriteBlock(*Kernel::g_current_process, dest_addr, src_buffer, size); } void ZeroBlock(const VAddr dest_addr, const size_t size) { const auto& process = *Kernel::g_current_process; size_t remaining_size = size; size_t page_index = dest_addr >> PAGE_BITS; size_t page_offset = dest_addr & PAGE_MASK; static const std::array zeros = {}; while (remaining_size > 0) { const size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size); const VAddr current_vaddr = static_cast((page_index << PAGE_BITS) + page_offset); switch (current_page_table->attributes[page_index]) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "unmapped ZeroBlock @ 0x%08X (start address = 0x%08X, size = %zu)", current_vaddr, dest_addr, size); break; case PageType::Special: if (WriteSpecialBlock(process, current_vaddr, zeros.data(), copy_amount)) break; [[fallthrough]]; case PageType::Memory: { DEBUG_ASSERT(current_page_table->pointers[page_index]); u8* dest_ptr = current_page_table->pointers[page_index] + page_offset; std::memset(dest_ptr, 0, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; remaining_size -= copy_amount; } } void CopyBlock(VAddr dest_addr, VAddr src_addr, const size_t size) { const auto& process = *Kernel::g_current_process; size_t remaining_size = size; size_t page_index = src_addr >> PAGE_BITS; size_t page_offset = src_addr & PAGE_MASK; while (remaining_size > 0) { const size_t copy_amount = std::min(PAGE_SIZE - page_offset, remaining_size); const VAddr current_vaddr = static_cast((page_index << PAGE_BITS) + page_offset); switch (current_page_table->attributes[page_index]) { case PageType::Unmapped: LOG_ERROR(HW_Memory, "unmapped CopyBlock @ 0x%08X (start address = 0x%08X, size = %zu)", current_vaddr, src_addr, size); ZeroBlock(dest_addr, copy_amount); break; case PageType::Special: { std::vector buffer(copy_amount); if (ReadSpecialBlock(process, current_vaddr, buffer.data(), buffer.size())) { WriteBlock(dest_addr, buffer.data(), buffer.size()); break; } [[fallthrough]]; } case PageType::Memory: { DEBUG_ASSERT(current_page_table->pointers[page_index]); const u8* src_ptr = current_page_table->pointers[page_index] + page_offset; WriteBlock(dest_addr, src_ptr, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_addr += static_cast(copy_amount); src_addr += static_cast(copy_amount); remaining_size -= copy_amount; } } template <> boost::optional ReadSpecial(VAddr addr) { const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table; for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u8))) if (auto result = handler->Read8(addr)) return *result; return {}; } template <> boost::optional ReadSpecial(VAddr addr) { const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table; for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u16))) if (auto result = handler->Read16(addr)) return *result; return {}; } template <> boost::optional ReadSpecial(VAddr addr) { const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table; for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u32))) if (auto result = handler->Read32(addr)) return *result; return {}; } template <> boost::optional ReadSpecial(VAddr addr) { const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table; for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u64))) if (auto result = handler->Read64(addr)) return *result; return {}; } template <> bool WriteSpecial(VAddr addr, const u8 data) { const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table; for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u8))) if (handler->Write8(addr, data)) return true; return false; } template <> bool WriteSpecial(VAddr addr, const u16 data) { const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table; for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u16))) if (handler->Write16(addr, data)) return true; return false; } template <> bool WriteSpecial(VAddr addr, const u32 data) { const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table; for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u32))) if (handler->Write32(addr, data)) return true; return false; } template <> bool WriteSpecial(VAddr addr, const u64 data) { const PageTable& page_table = Kernel::g_current_process->vm_manager.page_table; for (const auto& handler : GetSpecialHandlers(page_table, addr, sizeof(u64))) if (handler->Write64(addr, data)) return true; return false; } boost::optional TryVirtualToPhysicalAddress(const VAddr addr) { if (addr == 0) { return 0; } else if (addr >= VRAM_VADDR && addr < VRAM_VADDR_END) { return addr - VRAM_VADDR + VRAM_PADDR; } else if (addr >= LINEAR_HEAP_VADDR && addr < LINEAR_HEAP_VADDR_END) { return addr - LINEAR_HEAP_VADDR + FCRAM_PADDR; } else if (addr >= NEW_LINEAR_HEAP_VADDR && addr < NEW_LINEAR_HEAP_VADDR_END) { return addr - NEW_LINEAR_HEAP_VADDR + FCRAM_PADDR; } else if (addr >= DSP_RAM_VADDR && addr < DSP_RAM_VADDR_END) { return addr - DSP_RAM_VADDR + DSP_RAM_PADDR; } else if (addr >= IO_AREA_VADDR && addr < IO_AREA_VADDR_END) { return addr - IO_AREA_VADDR + IO_AREA_PADDR; } else if (addr >= N3DS_EXTRA_RAM_VADDR && addr < N3DS_EXTRA_RAM_VADDR_END) { return addr - N3DS_EXTRA_RAM_VADDR + N3DS_EXTRA_RAM_PADDR; } return boost::none; } PAddr VirtualToPhysicalAddress(const VAddr addr) { auto paddr = TryVirtualToPhysicalAddress(addr); if (!paddr) { LOG_ERROR(HW_Memory, "Unknown virtual address @ 0x%08X", addr); // To help with debugging, set bit on address so that it's obviously invalid. return addr | 0x80000000; } return *paddr; } boost::optional PhysicalToVirtualAddress(const PAddr addr) { if (addr == 0) { return 0; } else if (addr >= VRAM_PADDR && addr < VRAM_PADDR_END) { return addr - VRAM_PADDR + VRAM_VADDR; } else if (addr >= FCRAM_PADDR && addr < FCRAM_PADDR_END) { return addr - FCRAM_PADDR + Kernel::g_current_process->GetLinearHeapAreaAddress(); } else if (addr >= DSP_RAM_PADDR && addr < DSP_RAM_PADDR_END) { return addr - DSP_RAM_PADDR + DSP_RAM_VADDR; } else if (addr >= IO_AREA_PADDR && addr < IO_AREA_PADDR_END) { return addr - IO_AREA_PADDR + IO_AREA_VADDR; } else if (addr >= N3DS_EXTRA_RAM_PADDR && addr < N3DS_EXTRA_RAM_PADDR_END) { return addr - N3DS_EXTRA_RAM_PADDR + N3DS_EXTRA_RAM_VADDR; } return boost::none; } } // namespace Memory