// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include "common/assert.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/page_table.h" #include "common/swap.h" #include "core/arm/arm_interface.h" #include "core/core.h" #include "core/hle/kernel/physical_memory.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/vm_manager.h" #include "core/memory.h" #include "video_core/gpu.h" namespace Memory { // Implementation class used to keep the specifics of the memory subsystem hidden // from outside classes. This also allows modification to the internals of the memory // subsystem without needing to rebuild all files that make use of the memory interface. struct Memory::Impl { explicit Impl(Core::System& system_) : system{system_} {} void SetCurrentPageTable(Kernel::Process& process) { current_page_table = &process.VMManager().page_table; const std::size_t address_space_width = process.VMManager().GetAddressSpaceWidth(); system.ArmInterface(0).PageTableChanged(*current_page_table, address_space_width); system.ArmInterface(1).PageTableChanged(*current_page_table, address_space_width); system.ArmInterface(2).PageTableChanged(*current_page_table, address_space_width); system.ArmInterface(3).PageTableChanged(*current_page_table, address_space_width); } void MapMemoryRegion(Common::PageTable& page_table, VAddr base, u64 size, Kernel::PhysicalMemory& memory, VAddr offset) { MapMemoryRegion(page_table, base, size, memory.data() + offset); } void MapMemoryRegion(Common::PageTable& page_table, VAddr base, u64 size, u8* target) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:016X}", base); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, target, Common::PageType::Memory); } void MapIoRegion(Common::PageTable& page_table, VAddr base, u64 size, Common::MemoryHookPointer mmio_handler) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:016X}", base); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, Common::PageType::Special); const auto interval = boost::icl::discrete_interval::closed(base, base + size - 1); const Common::SpecialRegion region{Common::SpecialRegion::Type::IODevice, std::move(mmio_handler)}; page_table.special_regions.add( std::make_pair(interval, std::set{region})); } void UnmapRegion(Common::PageTable& page_table, VAddr base, u64 size) { ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:016X}", size); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:016X}", base); MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, Common::PageType::Unmapped); const auto interval = boost::icl::discrete_interval::closed(base, base + size - 1); page_table.special_regions.erase(interval); } void AddDebugHook(Common::PageTable& page_table, VAddr base, u64 size, Common::MemoryHookPointer hook) { const auto interval = boost::icl::discrete_interval::closed(base, base + size - 1); const Common::SpecialRegion region{Common::SpecialRegion::Type::DebugHook, std::move(hook)}; page_table.special_regions.add( std::make_pair(interval, std::set{region})); } void RemoveDebugHook(Common::PageTable& page_table, VAddr base, u64 size, Common::MemoryHookPointer hook) { const auto interval = boost::icl::discrete_interval::closed(base, base + size - 1); const Common::SpecialRegion region{Common::SpecialRegion::Type::DebugHook, std::move(hook)}; page_table.special_regions.subtract( std::make_pair(interval, std::set{region})); } bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) const { const auto& page_table = process.VMManager().page_table; const u8* const page_pointer = page_table.pointers[vaddr >> PAGE_BITS]; if (page_pointer != nullptr) { return true; } if (page_table.attributes[vaddr >> PAGE_BITS] == Common::PageType::RasterizerCachedMemory) { return true; } if (page_table.attributes[vaddr >> PAGE_BITS] != Common::PageType::Special) { return false; } return false; } bool IsValidVirtualAddress(VAddr vaddr) const { return IsValidVirtualAddress(*system.CurrentProcess(), vaddr); } /** * Gets a pointer to the exact memory at the virtual address (i.e. not page aligned) * using a VMA from the current process */ u8* GetPointerFromVMA(const Kernel::Process& process, VAddr vaddr) { const auto& vm_manager = process.VMManager(); const auto it = vm_manager.FindVMA(vaddr); DEBUG_ASSERT(vm_manager.IsValidHandle(it)); u8* direct_pointer = nullptr; const auto& vma = it->second; switch (vma.type) { case Kernel::VMAType::AllocatedMemoryBlock: direct_pointer = vma.backing_block->data() + vma.offset; break; case Kernel::VMAType::BackingMemory: direct_pointer = vma.backing_memory; break; case Kernel::VMAType::Free: return nullptr; default: UNREACHABLE(); } return direct_pointer + (vaddr - vma.base); } /** * Gets a pointer to the exact memory at the virtual address (i.e. not page aligned) * using a VMA from the current process. */ u8* GetPointerFromVMA(VAddr vaddr) { return GetPointerFromVMA(*system.CurrentProcess(), vaddr); } u8* GetPointer(const VAddr vaddr) { u8* const page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer != nullptr) { return page_pointer + vaddr; } if (current_page_table->attributes[vaddr >> PAGE_BITS] == Common::PageType::RasterizerCachedMemory) { return GetPointerFromVMA(vaddr); } LOG_ERROR(HW_Memory, "Unknown GetPointer @ 0x{:016X}", vaddr); return nullptr; } u8 Read8(const VAddr addr) { return Read(addr); } u16 Read16(const VAddr addr) { return Read(addr); } u32 Read32(const VAddr addr) { return Read(addr); } u64 Read64(const VAddr addr) { return Read(addr); } void Write8(const VAddr addr, const u8 data) { Write(addr, data); } void Write16(const VAddr addr, const u16 data) { Write(addr, data); } void Write32(const VAddr addr, const u32 data) { Write(addr, data); } void Write64(const VAddr addr, const u64 data) { Write(addr, data); } std::string ReadCString(VAddr vaddr, std::size_t max_length) { std::string string; string.reserve(max_length); for (std::size_t i = 0; i < max_length; ++i) { const char c = Read8(vaddr); if (c == '\0') { break; } string.push_back(c); ++vaddr; } string.shrink_to_fit(); return string; } void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer, const std::size_t size) { const auto& page_table = process.VMManager().page_table; std::size_t remaining_size = size; std::size_t page_index = src_addr >> PAGE_BITS; std::size_t page_offset = src_addr & PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(static_cast(PAGE_SIZE) - page_offset, remaining_size); const auto current_vaddr = static_cast((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case Common::PageType::Unmapped: { LOG_ERROR(HW_Memory, "Unmapped ReadBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", current_vaddr, src_addr, size); std::memset(dest_buffer, 0, copy_amount); break; } case Common::PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); const u8* const src_ptr = page_table.pointers[page_index] + page_offset + (page_index << PAGE_BITS); std::memcpy(dest_buffer, src_ptr, copy_amount); break; } case Common::PageType::RasterizerCachedMemory: { const u8* const host_ptr = GetPointerFromVMA(process, current_vaddr); system.GPU().FlushRegion(current_vaddr, copy_amount); std::memcpy(dest_buffer, host_ptr, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_buffer = static_cast(dest_buffer) + copy_amount; remaining_size -= copy_amount; } } void ReadBlockUnsafe(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer, const std::size_t size) { const auto& page_table = process.VMManager().page_table; std::size_t remaining_size = size; std::size_t page_index = src_addr >> PAGE_BITS; std::size_t page_offset = src_addr & PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(static_cast(PAGE_SIZE) - page_offset, remaining_size); const auto current_vaddr = static_cast((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case Common::PageType::Unmapped: { LOG_ERROR(HW_Memory, "Unmapped ReadBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", current_vaddr, src_addr, size); std::memset(dest_buffer, 0, copy_amount); break; } case Common::PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); const u8* const src_ptr = page_table.pointers[page_index] + page_offset + (page_index << PAGE_BITS); std::memcpy(dest_buffer, src_ptr, copy_amount); break; } case Common::PageType::RasterizerCachedMemory: { const u8* const host_ptr = GetPointerFromVMA(process, current_vaddr); std::memcpy(dest_buffer, host_ptr, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_buffer = static_cast(dest_buffer) + copy_amount; remaining_size -= copy_amount; } } void ReadBlock(const VAddr src_addr, void* dest_buffer, const std::size_t size) { ReadBlock(*system.CurrentProcess(), src_addr, dest_buffer, size); } void ReadBlockUnsafe(const VAddr src_addr, void* dest_buffer, const std::size_t size) { ReadBlockUnsafe(*system.CurrentProcess(), src_addr, dest_buffer, size); } void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer, const std::size_t size) { const auto& page_table = process.VMManager().page_table; std::size_t remaining_size = size; std::size_t page_index = dest_addr >> PAGE_BITS; std::size_t page_offset = dest_addr & PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(static_cast(PAGE_SIZE) - page_offset, remaining_size); const auto current_vaddr = static_cast((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case Common::PageType::Unmapped: { LOG_ERROR(HW_Memory, "Unmapped WriteBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", current_vaddr, dest_addr, size); break; } case Common::PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); u8* const dest_ptr = page_table.pointers[page_index] + page_offset + (page_index << PAGE_BITS); std::memcpy(dest_ptr, src_buffer, copy_amount); break; } case Common::PageType::RasterizerCachedMemory: { u8* const host_ptr = GetPointerFromVMA(process, current_vaddr); system.GPU().InvalidateRegion(current_vaddr, copy_amount); std::memcpy(host_ptr, src_buffer, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; src_buffer = static_cast(src_buffer) + copy_amount; remaining_size -= copy_amount; } } void WriteBlockUnsafe(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer, const std::size_t size) { const auto& page_table = process.VMManager().page_table; std::size_t remaining_size = size; std::size_t page_index = dest_addr >> PAGE_BITS; std::size_t page_offset = dest_addr & PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(static_cast(PAGE_SIZE) - page_offset, remaining_size); const auto current_vaddr = static_cast((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case Common::PageType::Unmapped: { LOG_ERROR(HW_Memory, "Unmapped WriteBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", current_vaddr, dest_addr, size); break; } case Common::PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); u8* const dest_ptr = page_table.pointers[page_index] + page_offset + (page_index << PAGE_BITS); std::memcpy(dest_ptr, src_buffer, copy_amount); break; } case Common::PageType::RasterizerCachedMemory: { u8* const host_ptr = GetPointerFromVMA(process, current_vaddr); std::memcpy(host_ptr, src_buffer, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; src_buffer = static_cast(src_buffer) + copy_amount; remaining_size -= copy_amount; } } void WriteBlock(const VAddr dest_addr, const void* src_buffer, const std::size_t size) { WriteBlock(*system.CurrentProcess(), dest_addr, src_buffer, size); } void WriteBlockUnsafe(const VAddr dest_addr, const void* src_buffer, const std::size_t size) { WriteBlockUnsafe(*system.CurrentProcess(), dest_addr, src_buffer, size); } void ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const std::size_t size) { const auto& page_table = process.VMManager().page_table; std::size_t remaining_size = size; std::size_t page_index = dest_addr >> PAGE_BITS; std::size_t page_offset = dest_addr & PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(static_cast(PAGE_SIZE) - page_offset, remaining_size); const auto current_vaddr = static_cast((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case Common::PageType::Unmapped: { LOG_ERROR(HW_Memory, "Unmapped ZeroBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", current_vaddr, dest_addr, size); break; } case Common::PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); u8* dest_ptr = page_table.pointers[page_index] + page_offset + (page_index << PAGE_BITS); std::memset(dest_ptr, 0, copy_amount); break; } case Common::PageType::RasterizerCachedMemory: { u8* const host_ptr = GetPointerFromVMA(process, current_vaddr); system.GPU().InvalidateRegion(current_vaddr, copy_amount); std::memset(host_ptr, 0, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; remaining_size -= copy_amount; } } void ZeroBlock(const VAddr dest_addr, const std::size_t size) { ZeroBlock(*system.CurrentProcess(), dest_addr, size); } void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr, const std::size_t size) { const auto& page_table = process.VMManager().page_table; std::size_t remaining_size = size; std::size_t page_index = src_addr >> PAGE_BITS; std::size_t page_offset = src_addr & PAGE_MASK; while (remaining_size > 0) { const std::size_t copy_amount = std::min(static_cast(PAGE_SIZE) - page_offset, remaining_size); const auto current_vaddr = static_cast((page_index << PAGE_BITS) + page_offset); switch (page_table.attributes[page_index]) { case Common::PageType::Unmapped: { LOG_ERROR(HW_Memory, "Unmapped CopyBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})", current_vaddr, src_addr, size); ZeroBlock(process, dest_addr, copy_amount); break; } case Common::PageType::Memory: { DEBUG_ASSERT(page_table.pointers[page_index]); const u8* src_ptr = page_table.pointers[page_index] + page_offset + (page_index << PAGE_BITS); WriteBlock(process, dest_addr, src_ptr, copy_amount); break; } case Common::PageType::RasterizerCachedMemory: { const u8* const host_ptr = GetPointerFromVMA(process, current_vaddr); system.GPU().FlushRegion(current_vaddr, copy_amount); WriteBlock(process, dest_addr, host_ptr, copy_amount); break; } default: UNREACHABLE(); } page_index++; page_offset = 0; dest_addr += static_cast(copy_amount); src_addr += static_cast(copy_amount); remaining_size -= copy_amount; } } void CopyBlock(VAddr dest_addr, VAddr src_addr, std::size_t size) { return CopyBlock(*system.CurrentProcess(), dest_addr, src_addr, size); } void RasterizerMarkRegionCached(VAddr vaddr, u64 size, bool cached) { if (vaddr == 0) { return; } // Iterate over a contiguous CPU address space, which corresponds to the specified GPU // address space, marking the region as un/cached. The region is marked un/cached at a // granularity of CPU pages, hence why we iterate on a CPU page basis (note: GPU page size // is different). This assumes the specified GPU address region is contiguous as well. u64 num_pages = ((vaddr + size - 1) >> PAGE_BITS) - (vaddr >> PAGE_BITS) + 1; for (unsigned i = 0; i < num_pages; ++i, vaddr += PAGE_SIZE) { Common::PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS]; if (cached) { // Switch page type to cached if now cached switch (page_type) { case Common::PageType::Unmapped: // It is not necessary for a process to have this region mapped into its address // space, for example, a system module need not have a VRAM mapping. break; case Common::PageType::Memory: page_type = Common::PageType::RasterizerCachedMemory; current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr; break; case Common::PageType::RasterizerCachedMemory: // There can be more than one GPU region mapped per CPU region, so it's common // that this area is already marked as cached. break; default: UNREACHABLE(); } } else { // Switch page type to uncached if now uncached switch (page_type) { case Common::PageType::Unmapped: // It is not necessary for a process to have this region mapped into its address // space, for example, a system module need not have a VRAM mapping. break; case Common::PageType::Memory: // There can be more than one GPU region mapped per CPU region, so it's common // that this area is already unmarked as cached. break; case Common::PageType::RasterizerCachedMemory: { u8* pointer = GetPointerFromVMA(vaddr & ~PAGE_MASK); if (pointer == nullptr) { // It's possible that this function has been called while updating the // pagetable after unmapping a VMA. In that case the underlying VMA will no // longer exist, and we should just leave the pagetable entry blank. page_type = Common::PageType::Unmapped; } else { page_type = Common::PageType::Memory; current_page_table->pointers[vaddr >> PAGE_BITS] = pointer - (vaddr & ~PAGE_MASK); } break; } default: UNREACHABLE(); } } } } /** * Maps a region of pages as a specific type. * * @param page_table The page table to use to perform the mapping. * @param base The base address to begin mapping at. * @param size The total size of the range in bytes. * @param memory The memory to map. * @param type The page type to map the memory as. */ void MapPages(Common::PageTable& page_table, VAddr base, u64 size, u8* memory, Common::PageType type) { LOG_DEBUG(HW_Memory, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * PAGE_SIZE, (base + size) * PAGE_SIZE); // During boot, current_page_table might not be set yet, in which case we need not flush if (system.IsPoweredOn()) { auto& gpu = system.GPU(); for (u64 i = 0; i < size; i++) { const auto page = base + i; if (page_table.attributes[page] == Common::PageType::RasterizerCachedMemory) { gpu.FlushAndInvalidateRegion(page << PAGE_BITS, PAGE_SIZE); } } } const VAddr end = base + size; ASSERT_MSG(end <= page_table.pointers.size(), "out of range mapping at {:016X}", base + page_table.pointers.size()); std::fill(page_table.attributes.begin() + base, page_table.attributes.begin() + end, type); if (memory == nullptr) { std::fill(page_table.pointers.begin() + base, page_table.pointers.begin() + end, memory); } else { while (base != end) { page_table.pointers[base] = memory - (base << PAGE_BITS); ASSERT_MSG(page_table.pointers[base], "memory mapping base yield a nullptr within the table"); base += 1; memory += PAGE_SIZE; } } } /** * Reads a particular data type out of memory at the given virtual address. * * @param vaddr The virtual address to read the data type from. * * @tparam T The data type to read out of memory. This type *must* be * trivially copyable, otherwise the behavior of this function * is undefined. * * @returns The instance of T read from the specified virtual address. */ template T Read(const VAddr vaddr) { const u8* const page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer != nullptr) { // NOTE: Avoid adding any extra logic to this fast-path block T value; std::memcpy(&value, &page_pointer[vaddr], sizeof(T)); return value; } const Common::PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (type) { case Common::PageType::Unmapped: LOG_ERROR(HW_Memory, "Unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, vaddr); return 0; case Common::PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr); break; case Common::PageType::RasterizerCachedMemory: { const u8* const host_ptr = GetPointerFromVMA(vaddr); system.GPU().FlushRegion(vaddr, sizeof(T)); T value; std::memcpy(&value, host_ptr, sizeof(T)); return value; } default: UNREACHABLE(); } return {}; } /** * Writes a particular data type to memory at the given virtual address. * * @param vaddr The virtual address to write the data type to. * * @tparam T The data type to write to memory. This type *must* be * trivially copyable, otherwise the behavior of this function * is undefined. * * @returns The instance of T write to the specified virtual address. */ template void Write(const VAddr vaddr, const T data) { u8* const page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS]; if (page_pointer != nullptr) { // NOTE: Avoid adding any extra logic to this fast-path block std::memcpy(&page_pointer[vaddr], &data, sizeof(T)); return; } const Common::PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; switch (type) { case Common::PageType::Unmapped: LOG_ERROR(HW_Memory, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8, static_cast(data), vaddr); return; case Common::PageType::Memory: ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr); break; case Common::PageType::RasterizerCachedMemory: { u8* const host_ptr{GetPointerFromVMA(vaddr)}; system.GPU().InvalidateRegion(vaddr, sizeof(T)); std::memcpy(host_ptr, &data, sizeof(T)); break; } default: UNREACHABLE(); } } Common::PageTable* current_page_table = nullptr; Core::System& system; }; Memory::Memory(Core::System& system) : impl{std::make_unique(system)} {} Memory::~Memory() = default; void Memory::SetCurrentPageTable(Kernel::Process& process) { impl->SetCurrentPageTable(process); } void Memory::MapMemoryRegion(Common::PageTable& page_table, VAddr base, u64 size, Kernel::PhysicalMemory& memory, VAddr offset) { impl->MapMemoryRegion(page_table, base, size, memory, offset); } void Memory::MapMemoryRegion(Common::PageTable& page_table, VAddr base, u64 size, u8* target) { impl->MapMemoryRegion(page_table, base, size, target); } void Memory::MapIoRegion(Common::PageTable& page_table, VAddr base, u64 size, Common::MemoryHookPointer mmio_handler) { impl->MapIoRegion(page_table, base, size, std::move(mmio_handler)); } void Memory::UnmapRegion(Common::PageTable& page_table, VAddr base, u64 size) { impl->UnmapRegion(page_table, base, size); } void Memory::AddDebugHook(Common::PageTable& page_table, VAddr base, u64 size, Common::MemoryHookPointer hook) { impl->AddDebugHook(page_table, base, size, std::move(hook)); } void Memory::RemoveDebugHook(Common::PageTable& page_table, VAddr base, u64 size, Common::MemoryHookPointer hook) { impl->RemoveDebugHook(page_table, base, size, std::move(hook)); } bool Memory::IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) const { return impl->IsValidVirtualAddress(process, vaddr); } bool Memory::IsValidVirtualAddress(const VAddr vaddr) const { return impl->IsValidVirtualAddress(vaddr); } u8* Memory::GetPointer(VAddr vaddr) { return impl->GetPointer(vaddr); } const u8* Memory::GetPointer(VAddr vaddr) const { return impl->GetPointer(vaddr); } u8 Memory::Read8(const VAddr addr) { return impl->Read8(addr); } u16 Memory::Read16(const VAddr addr) { return impl->Read16(addr); } u32 Memory::Read32(const VAddr addr) { return impl->Read32(addr); } u64 Memory::Read64(const VAddr addr) { return impl->Read64(addr); } void Memory::Write8(VAddr addr, u8 data) { impl->Write8(addr, data); } void Memory::Write16(VAddr addr, u16 data) { impl->Write16(addr, data); } void Memory::Write32(VAddr addr, u32 data) { impl->Write32(addr, data); } void Memory::Write64(VAddr addr, u64 data) { impl->Write64(addr, data); } std::string Memory::ReadCString(VAddr vaddr, std::size_t max_length) { return impl->ReadCString(vaddr, max_length); } void Memory::ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer, const std::size_t size) { impl->ReadBlock(process, src_addr, dest_buffer, size); } void Memory::ReadBlock(const VAddr src_addr, void* dest_buffer, const std::size_t size) { impl->ReadBlock(src_addr, dest_buffer, size); } void Memory::ReadBlockUnsafe(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer, const std::size_t size) { impl->ReadBlockUnsafe(process, src_addr, dest_buffer, size); } void Memory::ReadBlockUnsafe(const VAddr src_addr, void* dest_buffer, const std::size_t size) { impl->ReadBlockUnsafe(src_addr, dest_buffer, size); } void Memory::WriteBlock(const Kernel::Process& process, VAddr dest_addr, const void* src_buffer, std::size_t size) { impl->WriteBlock(process, dest_addr, src_buffer, size); } void Memory::WriteBlock(const VAddr dest_addr, const void* src_buffer, const std::size_t size) { impl->WriteBlock(dest_addr, src_buffer, size); } void Memory::WriteBlockUnsafe(const Kernel::Process& process, VAddr dest_addr, const void* src_buffer, std::size_t size) { impl->WriteBlockUnsafe(process, dest_addr, src_buffer, size); } void Memory::WriteBlockUnsafe(const VAddr dest_addr, const void* src_buffer, const std::size_t size) { impl->WriteBlockUnsafe(dest_addr, src_buffer, size); } void Memory::ZeroBlock(const Kernel::Process& process, VAddr dest_addr, std::size_t size) { impl->ZeroBlock(process, dest_addr, size); } void Memory::ZeroBlock(VAddr dest_addr, std::size_t size) { impl->ZeroBlock(dest_addr, size); } void Memory::CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr, const std::size_t size) { impl->CopyBlock(process, dest_addr, src_addr, size); } void Memory::CopyBlock(VAddr dest_addr, VAddr src_addr, std::size_t size) { impl->CopyBlock(dest_addr, src_addr, size); } void Memory::RasterizerMarkRegionCached(VAddr vaddr, u64 size, bool cached) { impl->RasterizerMarkRegionCached(vaddr, size, cached); } bool IsKernelVirtualAddress(const VAddr vaddr) { return KERNEL_REGION_VADDR <= vaddr && vaddr < KERNEL_REGION_END; } } // namespace Memory