// SPDX-FileCopyrightText: 2014 Dolphin Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include #include "common/logging/log.h" #include "common/param_package.h" #include "common/polyfill_thread.h" #include "common/settings_input.h" #include "common/thread.h" #include "input_common/drivers/gc_adapter.h" namespace InputCommon { class LibUSBContext { public: explicit LibUSBContext() { init_result = libusb_init(&ctx); } ~LibUSBContext() { libusb_exit(ctx); } LibUSBContext& operator=(const LibUSBContext&) = delete; LibUSBContext(const LibUSBContext&) = delete; LibUSBContext& operator=(LibUSBContext&&) noexcept = delete; LibUSBContext(LibUSBContext&&) noexcept = delete; [[nodiscard]] int InitResult() const noexcept { return init_result; } [[nodiscard]] libusb_context* get() noexcept { return ctx; } private: libusb_context* ctx; int init_result{}; }; class LibUSBDeviceHandle { public: explicit LibUSBDeviceHandle(libusb_context* ctx, uint16_t vid, uint16_t pid) noexcept { handle = libusb_open_device_with_vid_pid(ctx, vid, pid); } ~LibUSBDeviceHandle() noexcept { if (handle) { libusb_release_interface(handle, 1); libusb_close(handle); } } LibUSBDeviceHandle& operator=(const LibUSBDeviceHandle&) = delete; LibUSBDeviceHandle(const LibUSBDeviceHandle&) = delete; LibUSBDeviceHandle& operator=(LibUSBDeviceHandle&&) noexcept = delete; LibUSBDeviceHandle(LibUSBDeviceHandle&&) noexcept = delete; [[nodiscard]] libusb_device_handle* get() noexcept { return handle; } private: libusb_device_handle* handle{}; }; GCAdapter::GCAdapter(std::string input_engine_) : InputEngine(std::move(input_engine_)) { if (usb_adapter_handle) { return; } LOG_DEBUG(Input, "Initialization started"); libusb_ctx = std::make_unique(); const int init_res = libusb_ctx->InitResult(); if (init_res == LIBUSB_SUCCESS) { adapter_scan_thread = std::jthread([this](std::stop_token stop_token) { AdapterScanThread(stop_token); }); } else { LOG_ERROR(Input, "libusb could not be initialized. failed with error = {}", init_res); } } GCAdapter::~GCAdapter() { Reset(); } void GCAdapter::AdapterInputThread(std::stop_token stop_token) { LOG_DEBUG(Input, "Input thread started"); Common::SetCurrentThreadName("GCAdapter"); s32 payload_size{}; AdapterPayload adapter_payload{}; adapter_scan_thread = {}; while (!stop_token.stop_requested()) { libusb_interrupt_transfer(usb_adapter_handle->get(), input_endpoint, adapter_payload.data(), static_cast(adapter_payload.size()), &payload_size, 16); if (IsPayloadCorrect(adapter_payload, payload_size)) { UpdateControllers(adapter_payload); UpdateVibrations(); } std::this_thread::yield(); } if (restart_scan_thread) { adapter_scan_thread = std::jthread([this](std::stop_token token) { AdapterScanThread(token); }); restart_scan_thread = false; } } bool GCAdapter::IsPayloadCorrect(const AdapterPayload& adapter_payload, s32 payload_size) { if (payload_size != static_cast(adapter_payload.size()) || adapter_payload[0] != LIBUSB_DT_HID) { LOG_DEBUG(Input, "Error reading payload (size: {}, type: {:02x})", payload_size, adapter_payload[0]); if (input_error_counter++ > 20) { LOG_ERROR(Input, "Timeout, Is the adapter connected?"); adapter_input_thread.request_stop(); restart_scan_thread = true; } return false; } input_error_counter = 0; return true; } void GCAdapter::UpdateControllers(const AdapterPayload& adapter_payload) { for (std::size_t port = 0; port < pads.size(); ++port) { const std::size_t offset = 1 + (9 * port); const auto type = static_cast(adapter_payload[offset] >> 4); UpdatePadType(port, type); if (DeviceConnected(port)) { const u8 b1 = adapter_payload[offset + 1]; const u8 b2 = adapter_payload[offset + 2]; UpdateStateButtons(port, b1, b2); UpdateStateAxes(port, adapter_payload); } } } void GCAdapter::UpdatePadType(std::size_t port, ControllerTypes pad_type) { if (pads[port].type == pad_type) { return; } // Device changed reset device and set new type pads[port].axis_origin = {}; pads[port].reset_origin_counter = {}; pads[port].enable_vibration = {}; pads[port].rumble_amplitude = {}; pads[port].type = pad_type; } void GCAdapter::UpdateStateButtons(std::size_t port, [[maybe_unused]] u8 b1, [[maybe_unused]] u8 b2) { if (port >= pads.size()) { return; } static constexpr std::array b1_buttons{ PadButton::ButtonA, PadButton::ButtonB, PadButton::ButtonX, PadButton::ButtonY, PadButton::ButtonLeft, PadButton::ButtonRight, PadButton::ButtonDown, PadButton::ButtonUp, }; static constexpr std::array b2_buttons{ PadButton::ButtonStart, PadButton::TriggerZ, PadButton::TriggerR, PadButton::TriggerL, }; for (std::size_t i = 0; i < b1_buttons.size(); ++i) { const bool button_status = (b1 & (1U << i)) != 0; const int button = static_cast(b1_buttons[i]); SetButton(pads[port].identifier, button, button_status); } for (std::size_t j = 0; j < b2_buttons.size(); ++j) { const bool button_status = (b2 & (1U << j)) != 0; const int button = static_cast(b2_buttons[j]); SetButton(pads[port].identifier, button, button_status); } } void GCAdapter::UpdateStateAxes(std::size_t port, const AdapterPayload& adapter_payload) { if (port >= pads.size()) { return; } const std::size_t offset = 1 + (9 * port); static constexpr std::array axes{ PadAxes::StickX, PadAxes::StickY, PadAxes::SubstickX, PadAxes::SubstickY, PadAxes::TriggerLeft, PadAxes::TriggerRight, }; for (const PadAxes axis : axes) { const auto index = static_cast(axis); const u8 axis_value = adapter_payload[offset + 3 + index]; if (pads[port].reset_origin_counter <= 18) { if (pads[port].axis_origin[index] != axis_value) { pads[port].reset_origin_counter = 0; } pads[port].axis_origin[index] = axis_value; pads[port].reset_origin_counter++; } const f32 axis_status = (axis_value - pads[port].axis_origin[index]) / 100.0f; SetAxis(pads[port].identifier, static_cast(index), axis_status); } } void GCAdapter::AdapterScanThread(std::stop_token stop_token) { Common::SetCurrentThreadName("ScanGCAdapter"); usb_adapter_handle = nullptr; pads = {}; while (!Setup() && Common::StoppableTimedWait(stop_token, std::chrono::seconds{2})) { } } bool GCAdapter::Setup() { constexpr u16 nintendo_vid = 0x057e; constexpr u16 gc_adapter_pid = 0x0337; usb_adapter_handle = std::make_unique(libusb_ctx->get(), nintendo_vid, gc_adapter_pid); if (!usb_adapter_handle->get()) { return false; } if (!CheckDeviceAccess()) { usb_adapter_handle = nullptr; return false; } libusb_device* const device = libusb_get_device(usb_adapter_handle->get()); LOG_INFO(Input, "GC adapter is now connected"); // GC Adapter found and accessible, registering it if (GetGCEndpoint(device)) { rumble_enabled = true; input_error_counter = 0; output_error_counter = 0; std::size_t port = 0; for (GCController& pad : pads) { pad.identifier = { .guid = Common::UUID{}, .port = port++, .pad = 0, }; PreSetController(pad.identifier); } adapter_input_thread = std::jthread([this](std::stop_token stop_token) { AdapterInputThread(stop_token); }); return true; } return false; } bool GCAdapter::CheckDeviceAccess() { s32 kernel_driver_error = libusb_kernel_driver_active(usb_adapter_handle->get(), 0); if (kernel_driver_error == 1) { kernel_driver_error = libusb_detach_kernel_driver(usb_adapter_handle->get(), 0); if (kernel_driver_error != 0 && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) { LOG_ERROR(Input, "libusb_detach_kernel_driver failed with error = {}", kernel_driver_error); } } if (kernel_driver_error && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) { usb_adapter_handle = nullptr; return false; } const int interface_claim_error = libusb_claim_interface(usb_adapter_handle->get(), 0); if (interface_claim_error) { LOG_ERROR(Input, "libusb_claim_interface failed with error = {}", interface_claim_error); usb_adapter_handle = nullptr; return false; } // This fixes payload problems from offbrand GCAdapters const s32 control_transfer_error = libusb_control_transfer(usb_adapter_handle->get(), 0x21, 11, 0x0001, 0, nullptr, 0, 1000); if (control_transfer_error < 0) { LOG_ERROR(Input, "libusb_control_transfer failed with error= {}", control_transfer_error); } return true; } bool GCAdapter::GetGCEndpoint(libusb_device* device) { libusb_config_descriptor* config = nullptr; const int config_descriptor_return = libusb_get_config_descriptor(device, 0, &config); if (config_descriptor_return != LIBUSB_SUCCESS) { LOG_ERROR(Input, "libusb_get_config_descriptor failed with error = {}", config_descriptor_return); return false; } for (u8 ic = 0; ic < config->bNumInterfaces; ic++) { const libusb_interface* interfaceContainer = &config->interface[ic]; for (int i = 0; i < interfaceContainer->num_altsetting; i++) { const libusb_interface_descriptor* interface = &interfaceContainer->altsetting[i]; for (u8 e = 0; e < interface->bNumEndpoints; e++) { const libusb_endpoint_descriptor* endpoint = &interface->endpoint[e]; if ((endpoint->bEndpointAddress & LIBUSB_ENDPOINT_IN) != 0) { input_endpoint = endpoint->bEndpointAddress; } else { output_endpoint = endpoint->bEndpointAddress; } } } } // This transfer seems to be responsible for clearing the state of the adapter // Used to clear the "busy" state of when the device is unexpectedly unplugged unsigned char clear_payload = 0x13; libusb_interrupt_transfer(usb_adapter_handle->get(), output_endpoint, &clear_payload, sizeof(clear_payload), nullptr, 16); return true; } Common::Input::DriverResult GCAdapter::SetVibration( const PadIdentifier& identifier, const Common::Input::VibrationStatus& vibration) { const auto mean_amplitude = (vibration.low_amplitude + vibration.high_amplitude) * 0.5f; const auto processed_amplitude = static_cast((mean_amplitude + std::pow(mean_amplitude, 0.3f)) * 0.5f * 0x8); pads[identifier.port].rumble_amplitude = processed_amplitude; if (!rumble_enabled) { return Common::Input::DriverResult::Disabled; } return Common::Input::DriverResult::Success; } bool GCAdapter::IsVibrationEnabled([[maybe_unused]] const PadIdentifier& identifier) { return rumble_enabled; } void GCAdapter::UpdateVibrations() { // Use 8 states to keep the switching between on/off fast enough for // a human to feel different vibration strenght // More states == more rumble strengths == slower update time constexpr u8 vibration_states = 8; vibration_counter = (vibration_counter + 1) % vibration_states; for (GCController& pad : pads) { const bool vibrate = pad.rumble_amplitude > vibration_counter; vibration_changed |= vibrate != pad.enable_vibration; pad.enable_vibration = vibrate; } SendVibrations(); } void GCAdapter::SendVibrations() { if (!rumble_enabled || !vibration_changed) { return; } s32 size{}; constexpr u8 rumble_command = 0x11; const u8 p1 = pads[0].enable_vibration; const u8 p2 = pads[1].enable_vibration; const u8 p3 = pads[2].enable_vibration; const u8 p4 = pads[3].enable_vibration; std::array payload = {rumble_command, p1, p2, p3, p4}; const int err = libusb_interrupt_transfer(usb_adapter_handle->get(), output_endpoint, payload.data(), static_cast(payload.size()), &size, 16); if (err) { LOG_DEBUG(Input, "Libusb write failed: {}", libusb_error_name(err)); if (output_error_counter++ > 5) { LOG_ERROR(Input, "Output timeout, Rumble disabled"); rumble_enabled = false; } return; } output_error_counter = 0; vibration_changed = false; } bool GCAdapter::DeviceConnected(std::size_t port) const { return pads[port].type != ControllerTypes::None; } void GCAdapter::Reset() { adapter_scan_thread = {}; adapter_input_thread = {}; usb_adapter_handle = nullptr; pads = {}; libusb_ctx = nullptr; } std::vector GCAdapter::GetInputDevices() const { std::vector devices; for (std::size_t port = 0; port < pads.size(); ++port) { if (!DeviceConnected(port)) { continue; } Common::ParamPackage identifier{}; identifier.Set("engine", GetEngineName()); identifier.Set("display", fmt::format("Gamecube Controller {}", port + 1)); identifier.Set("port", static_cast(port)); devices.emplace_back(identifier); } return devices; } ButtonMapping GCAdapter::GetButtonMappingForDevice(const Common::ParamPackage& params) { // This list is missing ZL/ZR since those are not considered buttons. // We will add those afterwards // This list also excludes any button that can't be really mapped static constexpr std::array, 12> switch_to_gcadapter_button = { std::pair{Settings::NativeButton::A, PadButton::ButtonA}, {Settings::NativeButton::B, PadButton::ButtonB}, {Settings::NativeButton::X, PadButton::ButtonX}, {Settings::NativeButton::Y, PadButton::ButtonY}, {Settings::NativeButton::Plus, PadButton::ButtonStart}, {Settings::NativeButton::DLeft, PadButton::ButtonLeft}, {Settings::NativeButton::DUp, PadButton::ButtonUp}, {Settings::NativeButton::DRight, PadButton::ButtonRight}, {Settings::NativeButton::DDown, PadButton::ButtonDown}, {Settings::NativeButton::SL, PadButton::TriggerL}, {Settings::NativeButton::SR, PadButton::TriggerR}, {Settings::NativeButton::R, PadButton::TriggerZ}, }; if (!params.Has("port")) { return {}; } ButtonMapping mapping{}; for (const auto& [switch_button, gcadapter_button] : switch_to_gcadapter_button) { Common::ParamPackage button_params{}; button_params.Set("engine", GetEngineName()); button_params.Set("port", params.Get("port", 0)); button_params.Set("button", static_cast(gcadapter_button)); mapping.insert_or_assign(switch_button, std::move(button_params)); } // Add the missing bindings for ZL/ZR static constexpr std::array, 2> switch_to_gcadapter_axis = { std::tuple{Settings::NativeButton::ZL, PadButton::TriggerL, PadAxes::TriggerLeft}, {Settings::NativeButton::ZR, PadButton::TriggerR, PadAxes::TriggerRight}, }; for (const auto& [switch_button, gcadapter_buton, gcadapter_axis] : switch_to_gcadapter_axis) { Common::ParamPackage button_params{}; button_params.Set("engine", GetEngineName()); button_params.Set("port", params.Get("port", 0)); button_params.Set("button", static_cast(gcadapter_buton)); button_params.Set("axis", static_cast(gcadapter_axis)); button_params.Set("threshold", 0.5f); button_params.Set("range", 1.9f); button_params.Set("direction", "+"); mapping.insert_or_assign(switch_button, std::move(button_params)); } return mapping; } AnalogMapping GCAdapter::GetAnalogMappingForDevice(const Common::ParamPackage& params) { if (!params.Has("port")) { return {}; } AnalogMapping mapping = {}; Common::ParamPackage left_analog_params; left_analog_params.Set("engine", GetEngineName()); left_analog_params.Set("port", params.Get("port", 0)); left_analog_params.Set("axis_x", static_cast(PadAxes::StickX)); left_analog_params.Set("axis_y", static_cast(PadAxes::StickY)); mapping.insert_or_assign(Settings::NativeAnalog::LStick, std::move(left_analog_params)); Common::ParamPackage right_analog_params; right_analog_params.Set("engine", GetEngineName()); right_analog_params.Set("port", params.Get("port", 0)); right_analog_params.Set("axis_x", static_cast(PadAxes::SubstickX)); right_analog_params.Set("axis_y", static_cast(PadAxes::SubstickY)); mapping.insert_or_assign(Settings::NativeAnalog::RStick, std::move(right_analog_params)); return mapping; } Common::Input::ButtonNames GCAdapter::GetUIButtonName(const Common::ParamPackage& params) const { PadButton button = static_cast(params.Get("button", 0)); switch (button) { case PadButton::ButtonLeft: return Common::Input::ButtonNames::ButtonLeft; case PadButton::ButtonRight: return Common::Input::ButtonNames::ButtonRight; case PadButton::ButtonDown: return Common::Input::ButtonNames::ButtonDown; case PadButton::ButtonUp: return Common::Input::ButtonNames::ButtonUp; case PadButton::TriggerZ: return Common::Input::ButtonNames::TriggerZ; case PadButton::TriggerR: return Common::Input::ButtonNames::TriggerR; case PadButton::TriggerL: return Common::Input::ButtonNames::TriggerL; case PadButton::ButtonA: return Common::Input::ButtonNames::ButtonA; case PadButton::ButtonB: return Common::Input::ButtonNames::ButtonB; case PadButton::ButtonX: return Common::Input::ButtonNames::ButtonX; case PadButton::ButtonY: return Common::Input::ButtonNames::ButtonY; case PadButton::ButtonStart: return Common::Input::ButtonNames::ButtonStart; default: return Common::Input::ButtonNames::Undefined; } } Common::Input::ButtonNames GCAdapter::GetUIName(const Common::ParamPackage& params) const { if (params.Has("button")) { return GetUIButtonName(params); } if (params.Has("axis")) { return Common::Input::ButtonNames::Value; } return Common::Input::ButtonNames::Invalid; } bool GCAdapter::IsStickInverted(const Common::ParamPackage& params) { if (!params.Has("port")) { return false; } const auto x_axis = static_cast(params.Get("axis_x", 0)); const auto y_axis = static_cast(params.Get("axis_y", 0)); if (x_axis != PadAxes::StickY && x_axis != PadAxes::SubstickY) { return false; } if (y_axis != PadAxes::StickX && y_axis != PadAxes::SubstickX) { return false; } return true; } } // namespace InputCommon