// Copyright 2014 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include #include #include "common/logging/log.h" #include "input_common/gcadapter/gc_adapter.h" namespace GCAdapter { /// Used to loop through and assign button in poller constexpr std::array PadButtonArray{ PadButton::PAD_BUTTON_LEFT, PadButton::PAD_BUTTON_RIGHT, PadButton::PAD_BUTTON_DOWN, PadButton::PAD_BUTTON_UP, PadButton::PAD_TRIGGER_Z, PadButton::PAD_TRIGGER_R, PadButton::PAD_TRIGGER_L, PadButton::PAD_BUTTON_A, PadButton::PAD_BUTTON_B, PadButton::PAD_BUTTON_X, PadButton::PAD_BUTTON_Y, PadButton::PAD_BUTTON_START, }; Adapter::Adapter() { if (usb_adapter_handle != nullptr) { return; } LOG_INFO(Input, "GC Adapter Initialization started"); current_status = NO_ADAPTER_DETECTED; get_origin.fill(true); const int init_res = libusb_init(&libusb_ctx); if (init_res == LIBUSB_SUCCESS) { StartScanThread(); } else { LOG_ERROR(Input, "libusb could not be initialized. failed with error = {}", init_res); } } GCPadStatus Adapter::GetPadStatus(int port, const std::array& adapter_payload) { GCPadStatus pad = {}; ControllerTypes type = ControllerTypes(adapter_payload[1 + (9 * port)] >> 4); adapter_controllers_status[port] = type; static constexpr std::array b1_buttons{ PadButton::PAD_BUTTON_A, PadButton::PAD_BUTTON_B, PadButton::PAD_BUTTON_X, PadButton::PAD_BUTTON_Y, PadButton::PAD_BUTTON_LEFT, PadButton::PAD_BUTTON_RIGHT, PadButton::PAD_BUTTON_DOWN, PadButton::PAD_BUTTON_UP, }; static constexpr std::array b2_buttons{ PadButton::PAD_BUTTON_START, PadButton::PAD_TRIGGER_Z, PadButton::PAD_TRIGGER_R, PadButton::PAD_TRIGGER_L, }; if (adapter_controllers_status[port] == ControllerTypes::None && !get_origin[port]) { // Controller may have been disconnected, recalibrate if reconnected. get_origin[port] = true; } if (adapter_controllers_status[port] != ControllerTypes::None) { const u8 b1 = adapter_payload[1 + (9 * port) + 1]; const u8 b2 = adapter_payload[1 + (9 * port) + 2]; for (std::size_t i = 0; i < b1_buttons.size(); ++i) { if ((b1 & (1U << i)) != 0) { pad.button |= static_cast(b1_buttons[i]); } } for (std::size_t j = 0; j < b2_buttons.size(); ++j) { if ((b2 & (1U << j)) != 0) { pad.button |= static_cast(b2_buttons[j]); } } pad.stick_x = adapter_payload[1 + (9 * port) + 3]; pad.stick_y = adapter_payload[1 + (9 * port) + 4]; pad.substick_x = adapter_payload[1 + (9 * port) + 5]; pad.substick_y = adapter_payload[1 + (9 * port) + 6]; pad.trigger_left = adapter_payload[1 + (9 * port) + 7]; pad.trigger_right = adapter_payload[1 + (9 * port) + 8]; if (get_origin[port]) { origin_status[port].stick_x = pad.stick_x; origin_status[port].stick_y = pad.stick_y; origin_status[port].substick_x = pad.substick_x; origin_status[port].substick_y = pad.substick_y; origin_status[port].trigger_left = pad.trigger_left; origin_status[port].trigger_right = pad.trigger_right; get_origin[port] = false; } } return pad; } void Adapter::PadToState(const GCPadStatus& pad, GCState& state) { for (const auto& button : PadButtonArray) { const u16 button_value = static_cast(button); state.buttons.insert_or_assign(button_value, pad.button & button_value); } state.axes.insert_or_assign(static_cast(PadAxes::StickX), pad.stick_x); state.axes.insert_or_assign(static_cast(PadAxes::StickY), pad.stick_y); state.axes.insert_or_assign(static_cast(PadAxes::SubstickX), pad.substick_x); state.axes.insert_or_assign(static_cast(PadAxes::SubstickY), pad.substick_y); state.axes.insert_or_assign(static_cast(PadAxes::TriggerLeft), pad.trigger_left); state.axes.insert_or_assign(static_cast(PadAxes::TriggerRight), pad.trigger_right); } void Adapter::Read() { LOG_DEBUG(Input, "GC Adapter Read() thread started"); int payload_size_in, payload_size_copy; std::array adapter_payload; std::array adapter_payload_copy; std::array pads; while (adapter_thread_running) { libusb_interrupt_transfer(usb_adapter_handle, input_endpoint, adapter_payload.data(), sizeof(adapter_payload), &payload_size_in, 16); payload_size_copy = 0; // this mutex might be redundant? { std::lock_guard lk(s_mutex); std::copy(std::begin(adapter_payload), std::end(adapter_payload), std::begin(adapter_payload_copy)); payload_size_copy = payload_size_in; } if (payload_size_copy != sizeof(adapter_payload_copy) || adapter_payload_copy[0] != LIBUSB_DT_HID) { LOG_ERROR(Input, "error reading payload (size: {}, type: {:02x})", payload_size_copy, adapter_payload_copy[0]); adapter_thread_running = false; // error reading from adapter, stop reading. break; } for (std::size_t port = 0; port < pads.size(); ++port) { pads[port] = GetPadStatus(port, adapter_payload_copy); if (DeviceConnected(port) && configuring) { if (pads[port].button != 0) { pad_queue[port].Push(pads[port]); } // Accounting for a threshold here because of some controller variance if (pads[port].stick_x > origin_status[port].stick_x + pads[port].THRESHOLD || pads[port].stick_x < origin_status[port].stick_x - pads[port].THRESHOLD) { pads[port].axis = GCAdapter::PadAxes::StickX; pads[port].axis_value = pads[port].stick_x; pad_queue[port].Push(pads[port]); } if (pads[port].stick_y > origin_status[port].stick_y + pads[port].THRESHOLD || pads[port].stick_y < origin_status[port].stick_y - pads[port].THRESHOLD) { pads[port].axis = GCAdapter::PadAxes::StickY; pads[port].axis_value = pads[port].stick_y; pad_queue[port].Push(pads[port]); } if (pads[port].substick_x > origin_status[port].substick_x + pads[port].THRESHOLD || pads[port].substick_x < origin_status[port].substick_x - pads[port].THRESHOLD) { pads[port].axis = GCAdapter::PadAxes::SubstickX; pads[port].axis_value = pads[port].substick_x; pad_queue[port].Push(pads[port]); } if (pads[port].substick_y > origin_status[port].substick_y + pads[port].THRESHOLD || pads[port].substick_y < origin_status[port].substick_y - pads[port].THRESHOLD) { pads[port].axis = GCAdapter::PadAxes::SubstickY; pads[port].axis_value = pads[port].substick_y; pad_queue[port].Push(pads[port]); } if (pads[port].trigger_left > pads[port].TRIGGER_THRESHOLD) { pads[port].axis = GCAdapter::PadAxes::TriggerLeft; pads[port].axis_value = pads[port].trigger_left; pad_queue[port].Push(pads[port]); } if (pads[port].trigger_right > pads[port].TRIGGER_THRESHOLD) { pads[port].axis = GCAdapter::PadAxes::TriggerRight; pads[port].axis_value = pads[port].trigger_right; pad_queue[port].Push(pads[port]); } } PadToState(pads[port], state[port]); } std::this_thread::yield(); } } void Adapter::ScanThreadFunc() { LOG_INFO(Input, "GC Adapter scanning thread started"); while (detect_thread_running) { if (usb_adapter_handle == nullptr) { std::lock_guard lk(initialization_mutex); Setup(); } std::this_thread::sleep_for(std::chrono::milliseconds(500)); } } void Adapter::StartScanThread() { if (detect_thread_running) { return; } if (!libusb_ctx) { return; } detect_thread_running = true; detect_thread = std::thread([=] { ScanThreadFunc(); }); } void Adapter::StopScanThread() { detect_thread_running = false; detect_thread.join(); } void Adapter::Setup() { // Reset the error status in case the adapter gets unplugged if (current_status < 0) { current_status = NO_ADAPTER_DETECTED; } adapter_controllers_status.fill(ControllerTypes::None); // pointer to list of connected usb devices libusb_device** devices{}; // populate the list of devices, get the count const ssize_t device_count = libusb_get_device_list(libusb_ctx, &devices); if (device_count < 0) { LOG_ERROR(Input, "libusb_get_device_list failed with error: {}", device_count); detect_thread_running = false; // Stop the loop constantly checking for gc adapter // TODO: For hotplug+gc adapter checkbox implementation, revert this. return; } if (devices != nullptr) { for (std::size_t index = 0; index < device_count; ++index) { if (CheckDeviceAccess(devices[index])) { // GC Adapter found and accessible, registering it GetGCEndpoint(devices[index]); break; } } libusb_free_device_list(devices, 1); } } bool Adapter::CheckDeviceAccess(libusb_device* device) { libusb_device_descriptor desc; const int get_descriptor_error = libusb_get_device_descriptor(device, &desc); if (get_descriptor_error) { // could not acquire the descriptor, no point in trying to use it. LOG_ERROR(Input, "libusb_get_device_descriptor failed with error: {}", get_descriptor_error); return false; } if (desc.idVendor != 0x057e || desc.idProduct != 0x0337) { // This isn't the device we are looking for. return false; } const int open_error = libusb_open(device, &usb_adapter_handle); if (open_error == LIBUSB_ERROR_ACCESS) { LOG_ERROR(Input, "Yuzu can not gain access to this device: ID {:04X}:{:04X}.", desc.idVendor, desc.idProduct); return false; } if (open_error) { LOG_ERROR(Input, "libusb_open failed to open device with error = {}", open_error); return false; } int kernel_driver_error = libusb_kernel_driver_active(usb_adapter_handle, 0); if (kernel_driver_error == 1) { kernel_driver_error = libusb_detach_kernel_driver(usb_adapter_handle, 0); if (kernel_driver_error != 0 && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) { LOG_ERROR(Input, "libusb_detach_kernel_driver failed with error = {}", kernel_driver_error); } } if (kernel_driver_error && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) { libusb_close(usb_adapter_handle); usb_adapter_handle = nullptr; return false; } const int interface_claim_error = libusb_claim_interface(usb_adapter_handle, 0); if (interface_claim_error) { LOG_ERROR(Input, "libusb_claim_interface failed with error = {}", interface_claim_error); libusb_close(usb_adapter_handle); usb_adapter_handle = nullptr; return false; } return true; } void Adapter::GetGCEndpoint(libusb_device* device) { libusb_config_descriptor* config = nullptr; const int config_descriptor_return = libusb_get_config_descriptor(device, 0, &config); if (config_descriptor_return != LIBUSB_SUCCESS) { LOG_ERROR(Input, "libusb_get_config_descriptor failed with error = {}", config_descriptor_return); return; } for (u8 ic = 0; ic < config->bNumInterfaces; ic++) { const libusb_interface* interfaceContainer = &config->interface[ic]; for (int i = 0; i < interfaceContainer->num_altsetting; i++) { const libusb_interface_descriptor* interface = &interfaceContainer->altsetting[i]; for (u8 e = 0; e < interface->bNumEndpoints; e++) { const libusb_endpoint_descriptor* endpoint = &interface->endpoint[e]; if (endpoint->bEndpointAddress & LIBUSB_ENDPOINT_IN) { input_endpoint = endpoint->bEndpointAddress; } else { output_endpoint = endpoint->bEndpointAddress; } } } } // This transfer seems to be responsible for clearing the state of the adapter // Used to clear the "busy" state of when the device is unexpectedly unplugged unsigned char clear_payload = 0x13; libusb_interrupt_transfer(usb_adapter_handle, output_endpoint, &clear_payload, sizeof(clear_payload), nullptr, 16); adapter_thread_running = true; current_status = ADAPTER_DETECTED; adapter_input_thread = std::thread([=] { Read(); }); // Read input } Adapter::~Adapter() { StopScanThread(); Reset(); } void Adapter::Reset() { std::unique_lock lock(initialization_mutex, std::defer_lock); if (!lock.try_lock()) { return; } if (current_status != ADAPTER_DETECTED) { return; } if (adapter_thread_running) { adapter_thread_running = false; } adapter_input_thread.join(); adapter_controllers_status.fill(ControllerTypes::None); get_origin.fill(true); current_status = NO_ADAPTER_DETECTED; if (usb_adapter_handle) { libusb_release_interface(usb_adapter_handle, 1); libusb_close(usb_adapter_handle); usb_adapter_handle = nullptr; } if (libusb_ctx) { libusb_exit(libusb_ctx); } } bool Adapter::DeviceConnected(int port) { return adapter_controllers_status[port] != ControllerTypes::None; } void Adapter::ResetDeviceType(int port) { adapter_controllers_status[port] = ControllerTypes::None; } void Adapter::BeginConfiguration() { get_origin.fill(true); for (auto& pq : pad_queue) { pq.Clear(); } configuring = true; } void Adapter::EndConfiguration() { for (auto& pq : pad_queue) { pq.Clear(); } configuring = false; } std::array, 4>& Adapter::GetPadQueue() { return pad_queue; } const std::array, 4>& Adapter::GetPadQueue() const { return pad_queue; } std::array& Adapter::GetPadState() { return state; } const std::array& Adapter::GetPadState() const { return state; } int Adapter::GetOriginValue(int port, int axis) const { const auto& status = origin_status[port]; switch (static_cast(axis)) { case PadAxes::StickX: return status.stick_x; case PadAxes::StickY: return status.stick_y; case PadAxes::SubstickX: return status.substick_x; case PadAxes::SubstickY: return status.substick_y; case PadAxes::TriggerLeft: return status.trigger_left; case PadAxes::TriggerRight: return status.trigger_right; default: return 0; } } } // namespace GCAdapter