// Copyright 2021 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "shader_recompiler/exception.h" #include "shader_recompiler/frontend/ir/microinstruction.h" #include "shader_recompiler/frontend/ir/type.h" namespace Shader::IR { namespace { void CheckPseudoInstruction(IR::Inst* inst, IR::Opcode opcode) { if (inst && inst->Opcode() != opcode) { throw LogicError("Invalid pseudo-instruction"); } } void SetPseudoInstruction(IR::Inst*& dest_inst, IR::Inst* pseudo_inst) { if (dest_inst) { throw LogicError("Only one of each type of pseudo-op allowed"); } dest_inst = pseudo_inst; } void RemovePseudoInstruction(IR::Inst*& inst, IR::Opcode expected_opcode) { if (inst->Opcode() != expected_opcode) { throw LogicError("Undoing use of invalid pseudo-op"); } inst = nullptr; } } // Anonymous namespace Inst::Inst(IR::Opcode op_, u32 flags_) noexcept : op{op_}, flags{flags_} { if (op == Opcode::Phi) { std::construct_at(&phi_args); } else { std::construct_at(&args); } } Inst::~Inst() { if (op == Opcode::Phi) { std::destroy_at(&phi_args); } else { std::destroy_at(&args); } } bool Inst::MayHaveSideEffects() const noexcept { switch (op) { case Opcode::Branch: case Opcode::BranchConditional: case Opcode::LoopMerge: case Opcode::SelectionMerge: case Opcode::Return: case Opcode::DemoteToHelperInvocation: case Opcode::Prologue: case Opcode::Epilogue: case Opcode::SetAttribute: case Opcode::SetAttributeIndexed: case Opcode::SetFragColor: case Opcode::SetFragDepth: case Opcode::WriteGlobalU8: case Opcode::WriteGlobalS8: case Opcode::WriteGlobalU16: case Opcode::WriteGlobalS16: case Opcode::WriteGlobal32: case Opcode::WriteGlobal64: case Opcode::WriteGlobal128: case Opcode::WriteStorageU8: case Opcode::WriteStorageS8: case Opcode::WriteStorageU16: case Opcode::WriteStorageS16: case Opcode::WriteStorage32: case Opcode::WriteStorage64: case Opcode::WriteStorage128: case Opcode::WriteLocal: case Opcode::WriteSharedU8: case Opcode::WriteSharedU16: case Opcode::WriteSharedU32: case Opcode::WriteSharedU64: case Opcode::WriteSharedU128: return true; default: return false; } } bool Inst::IsPseudoInstruction() const noexcept { switch (op) { case Opcode::GetZeroFromOp: case Opcode::GetSignFromOp: case Opcode::GetCarryFromOp: case Opcode::GetOverflowFromOp: case Opcode::GetSparseFromOp: case Opcode::GetInBoundsFromOp: return true; default: return false; } } bool Inst::AreAllArgsImmediates() const { if (op == Opcode::Phi) { throw LogicError("Testing for all arguments are immediates on phi instruction"); } return std::all_of(args.begin(), args.begin() + NumArgs(), [](const IR::Value& value) { return value.IsImmediate(); }); } Inst* Inst::GetAssociatedPseudoOperation(IR::Opcode opcode) { if (!associated_insts) { return nullptr; } switch (opcode) { case Opcode::GetZeroFromOp: CheckPseudoInstruction(associated_insts->zero_inst, Opcode::GetZeroFromOp); return associated_insts->zero_inst; case Opcode::GetSignFromOp: CheckPseudoInstruction(associated_insts->sign_inst, Opcode::GetSignFromOp); return associated_insts->sign_inst; case Opcode::GetCarryFromOp: CheckPseudoInstruction(associated_insts->carry_inst, Opcode::GetCarryFromOp); return associated_insts->carry_inst; case Opcode::GetOverflowFromOp: CheckPseudoInstruction(associated_insts->overflow_inst, Opcode::GetOverflowFromOp); return associated_insts->overflow_inst; case Opcode::GetSparseFromOp: CheckPseudoInstruction(associated_insts->sparse_inst, Opcode::GetSparseFromOp); return associated_insts->sparse_inst; case Opcode::GetInBoundsFromOp: CheckPseudoInstruction(associated_insts->in_bounds_inst, Opcode::GetInBoundsFromOp); return associated_insts->in_bounds_inst; default: throw InvalidArgument("{} is not a pseudo-instruction", opcode); } } size_t Inst::NumArgs() const { return op == Opcode::Phi ? phi_args.size() : NumArgsOf(op); } IR::Type Inst::Type() const { return TypeOf(op); } Value Inst::Arg(size_t index) const { if (op == Opcode::Phi) { if (index >= phi_args.size()) { throw InvalidArgument("Out of bounds argument index {} in phi instruction", index); } return phi_args[index].second; } else { if (index >= NumArgsOf(op)) { throw InvalidArgument("Out of bounds argument index {} in opcode {}", index, op); } return args[index]; } } void Inst::SetArg(size_t index, Value value) { if (index >= NumArgs()) { throw InvalidArgument("Out of bounds argument index {} in opcode {}", index, op); } const IR::Value arg{Arg(index)}; if (!arg.IsImmediate()) { UndoUse(arg); } if (!value.IsImmediate()) { Use(value); } if (op == Opcode::Phi) { phi_args[index].second = value; } else { args[index] = value; } } Block* Inst::PhiBlock(size_t index) const { if (op != Opcode::Phi) { throw LogicError("{} is not a Phi instruction", op); } if (index >= phi_args.size()) { throw InvalidArgument("Out of bounds argument index {} in phi instruction"); } return phi_args[index].first; } void Inst::AddPhiOperand(Block* predecessor, const Value& value) { if (!value.IsImmediate()) { Use(value); } phi_args.emplace_back(predecessor, value); } void Inst::Invalidate() { ClearArgs(); ReplaceOpcode(Opcode::Void); } void Inst::ClearArgs() { if (op == Opcode::Phi) { for (auto& pair : phi_args) { IR::Value& value{pair.second}; if (!value.IsImmediate()) { UndoUse(value); } } phi_args.clear(); } else { for (auto& value : args) { if (!value.IsImmediate()) { UndoUse(value); } value = {}; } } } void Inst::ReplaceUsesWith(Value replacement) { Invalidate(); ReplaceOpcode(Opcode::Identity); if (!replacement.IsImmediate()) { Use(replacement); } args[0] = replacement; } void Inst::ReplaceOpcode(IR::Opcode opcode) { if (opcode == IR::Opcode::Phi) { throw LogicError("Cannot transition into Phi"); } if (op == Opcode::Phi) { // Transition out of phi arguments into non-phi std::destroy_at(&phi_args); std::construct_at(&args); } op = opcode; } void AllocAssociatedInsts(std::unique_ptr& associated_insts) { if (!associated_insts) { associated_insts = std::make_unique(); } } void Inst::Use(const Value& value) { Inst* const inst{value.Inst()}; ++inst->use_count; std::unique_ptr& assoc_inst{inst->associated_insts}; switch (op) { case Opcode::GetZeroFromOp: AllocAssociatedInsts(assoc_inst); SetPseudoInstruction(assoc_inst->zero_inst, this); break; case Opcode::GetSignFromOp: AllocAssociatedInsts(assoc_inst); SetPseudoInstruction(assoc_inst->sign_inst, this); break; case Opcode::GetCarryFromOp: AllocAssociatedInsts(assoc_inst); SetPseudoInstruction(assoc_inst->carry_inst, this); break; case Opcode::GetOverflowFromOp: AllocAssociatedInsts(assoc_inst); SetPseudoInstruction(assoc_inst->overflow_inst, this); break; case Opcode::GetSparseFromOp: AllocAssociatedInsts(assoc_inst); SetPseudoInstruction(assoc_inst->sparse_inst, this); break; case Opcode::GetInBoundsFromOp: AllocAssociatedInsts(assoc_inst); SetPseudoInstruction(assoc_inst->in_bounds_inst, this); break; default: break; } } void Inst::UndoUse(const Value& value) { Inst* const inst{value.Inst()}; --inst->use_count; std::unique_ptr& assoc_inst{inst->associated_insts}; switch (op) { case Opcode::GetZeroFromOp: AllocAssociatedInsts(assoc_inst); RemovePseudoInstruction(assoc_inst->zero_inst, Opcode::GetZeroFromOp); break; case Opcode::GetSignFromOp: AllocAssociatedInsts(assoc_inst); RemovePseudoInstruction(assoc_inst->sign_inst, Opcode::GetSignFromOp); break; case Opcode::GetCarryFromOp: AllocAssociatedInsts(assoc_inst); RemovePseudoInstruction(assoc_inst->carry_inst, Opcode::GetCarryFromOp); break; case Opcode::GetOverflowFromOp: AllocAssociatedInsts(assoc_inst); RemovePseudoInstruction(assoc_inst->overflow_inst, Opcode::GetOverflowFromOp); break; case Opcode::GetInBoundsFromOp: AllocAssociatedInsts(assoc_inst); RemovePseudoInstruction(assoc_inst->in_bounds_inst, Opcode::GetInBoundsFromOp); break; default: break; } } } // namespace Shader::IR