// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include #include #include #include "shader_recompiler/environment.h" #include "shader_recompiler/frontend/ir/basic_block.h" #include "shader_recompiler/frontend/ir/breadth_first_search.h" #include "shader_recompiler/frontend/ir/ir_emitter.h" #include "shader_recompiler/host_translate_info.h" #include "shader_recompiler/ir_opt/passes.h" #include "shader_recompiler/shader_info.h" namespace Shader::Optimization { namespace { struct ConstBufferAddr { u32 index; u32 offset; u32 shift_left; u32 secondary_index; u32 secondary_offset; u32 secondary_shift_left; IR::U32 dynamic_offset; u32 count; bool has_secondary; }; struct TextureInst { ConstBufferAddr cbuf; IR::Inst* inst; IR::Block* block; }; using TextureInstVector = boost::container::small_vector; constexpr u32 DESCRIPTOR_SIZE = 8; constexpr u32 DESCRIPTOR_SIZE_SHIFT = static_cast(std::countr_zero(DESCRIPTOR_SIZE)); IR::Opcode IndexedInstruction(const IR::Inst& inst) { switch (inst.GetOpcode()) { case IR::Opcode::BindlessImageSampleImplicitLod: case IR::Opcode::BoundImageSampleImplicitLod: return IR::Opcode::ImageSampleImplicitLod; case IR::Opcode::BoundImageSampleExplicitLod: case IR::Opcode::BindlessImageSampleExplicitLod: return IR::Opcode::ImageSampleExplicitLod; case IR::Opcode::BoundImageSampleDrefImplicitLod: case IR::Opcode::BindlessImageSampleDrefImplicitLod: return IR::Opcode::ImageSampleDrefImplicitLod; case IR::Opcode::BoundImageSampleDrefExplicitLod: case IR::Opcode::BindlessImageSampleDrefExplicitLod: return IR::Opcode::ImageSampleDrefExplicitLod; case IR::Opcode::BindlessImageGather: case IR::Opcode::BoundImageGather: return IR::Opcode::ImageGather; case IR::Opcode::BindlessImageGatherDref: case IR::Opcode::BoundImageGatherDref: return IR::Opcode::ImageGatherDref; case IR::Opcode::BindlessImageFetch: case IR::Opcode::BoundImageFetch: return IR::Opcode::ImageFetch; case IR::Opcode::BoundImageQueryDimensions: case IR::Opcode::BindlessImageQueryDimensions: return IR::Opcode::ImageQueryDimensions; case IR::Opcode::BoundImageQueryLod: case IR::Opcode::BindlessImageQueryLod: return IR::Opcode::ImageQueryLod; case IR::Opcode::BoundImageGradient: case IR::Opcode::BindlessImageGradient: return IR::Opcode::ImageGradient; case IR::Opcode::BoundImageRead: case IR::Opcode::BindlessImageRead: return IR::Opcode::ImageRead; case IR::Opcode::BoundImageWrite: case IR::Opcode::BindlessImageWrite: return IR::Opcode::ImageWrite; case IR::Opcode::BoundImageAtomicIAdd32: case IR::Opcode::BindlessImageAtomicIAdd32: return IR::Opcode::ImageAtomicIAdd32; case IR::Opcode::BoundImageAtomicSMin32: case IR::Opcode::BindlessImageAtomicSMin32: return IR::Opcode::ImageAtomicSMin32; case IR::Opcode::BoundImageAtomicUMin32: case IR::Opcode::BindlessImageAtomicUMin32: return IR::Opcode::ImageAtomicUMin32; case IR::Opcode::BoundImageAtomicSMax32: case IR::Opcode::BindlessImageAtomicSMax32: return IR::Opcode::ImageAtomicSMax32; case IR::Opcode::BoundImageAtomicUMax32: case IR::Opcode::BindlessImageAtomicUMax32: return IR::Opcode::ImageAtomicUMax32; case IR::Opcode::BoundImageAtomicInc32: case IR::Opcode::BindlessImageAtomicInc32: return IR::Opcode::ImageAtomicInc32; case IR::Opcode::BoundImageAtomicDec32: case IR::Opcode::BindlessImageAtomicDec32: return IR::Opcode::ImageAtomicDec32; case IR::Opcode::BoundImageAtomicAnd32: case IR::Opcode::BindlessImageAtomicAnd32: return IR::Opcode::ImageAtomicAnd32; case IR::Opcode::BoundImageAtomicOr32: case IR::Opcode::BindlessImageAtomicOr32: return IR::Opcode::ImageAtomicOr32; case IR::Opcode::BoundImageAtomicXor32: case IR::Opcode::BindlessImageAtomicXor32: return IR::Opcode::ImageAtomicXor32; case IR::Opcode::BoundImageAtomicExchange32: case IR::Opcode::BindlessImageAtomicExchange32: return IR::Opcode::ImageAtomicExchange32; default: return IR::Opcode::Void; } } bool IsBindless(const IR::Inst& inst) { switch (inst.GetOpcode()) { case IR::Opcode::BindlessImageSampleImplicitLod: case IR::Opcode::BindlessImageSampleExplicitLod: case IR::Opcode::BindlessImageSampleDrefImplicitLod: case IR::Opcode::BindlessImageSampleDrefExplicitLod: case IR::Opcode::BindlessImageGather: case IR::Opcode::BindlessImageGatherDref: case IR::Opcode::BindlessImageFetch: case IR::Opcode::BindlessImageQueryDimensions: case IR::Opcode::BindlessImageQueryLod: case IR::Opcode::BindlessImageGradient: case IR::Opcode::BindlessImageRead: case IR::Opcode::BindlessImageWrite: case IR::Opcode::BindlessImageAtomicIAdd32: case IR::Opcode::BindlessImageAtomicSMin32: case IR::Opcode::BindlessImageAtomicUMin32: case IR::Opcode::BindlessImageAtomicSMax32: case IR::Opcode::BindlessImageAtomicUMax32: case IR::Opcode::BindlessImageAtomicInc32: case IR::Opcode::BindlessImageAtomicDec32: case IR::Opcode::BindlessImageAtomicAnd32: case IR::Opcode::BindlessImageAtomicOr32: case IR::Opcode::BindlessImageAtomicXor32: case IR::Opcode::BindlessImageAtomicExchange32: return true; case IR::Opcode::BoundImageSampleImplicitLod: case IR::Opcode::BoundImageSampleExplicitLod: case IR::Opcode::BoundImageSampleDrefImplicitLod: case IR::Opcode::BoundImageSampleDrefExplicitLod: case IR::Opcode::BoundImageGather: case IR::Opcode::BoundImageGatherDref: case IR::Opcode::BoundImageFetch: case IR::Opcode::BoundImageQueryDimensions: case IR::Opcode::BoundImageQueryLod: case IR::Opcode::BoundImageGradient: case IR::Opcode::BoundImageRead: case IR::Opcode::BoundImageWrite: case IR::Opcode::BoundImageAtomicIAdd32: case IR::Opcode::BoundImageAtomicSMin32: case IR::Opcode::BoundImageAtomicUMin32: case IR::Opcode::BoundImageAtomicSMax32: case IR::Opcode::BoundImageAtomicUMax32: case IR::Opcode::BoundImageAtomicInc32: case IR::Opcode::BoundImageAtomicDec32: case IR::Opcode::BoundImageAtomicAnd32: case IR::Opcode::BoundImageAtomicOr32: case IR::Opcode::BoundImageAtomicXor32: case IR::Opcode::BoundImageAtomicExchange32: return false; default: throw InvalidArgument("Invalid opcode {}", inst.GetOpcode()); } } bool IsTextureInstruction(const IR::Inst& inst) { return IndexedInstruction(inst) != IR::Opcode::Void; } std::optional TryGetConstBuffer(const IR::Inst* inst, Environment& env); std::optional Track(const IR::Value& value, Environment& env) { return IR::BreadthFirstSearch( value, [&env](const IR::Inst* inst) { return TryGetConstBuffer(inst, env); }); } std::optional TryGetConstant(IR::Value& value, Environment& env) { const IR::Inst* inst = value.InstRecursive(); if (inst->GetOpcode() != IR::Opcode::GetCbufU32) { return std::nullopt; } const IR::Value index{inst->Arg(0)}; const IR::Value offset{inst->Arg(1)}; if (!index.IsImmediate()) { return std::nullopt; } if (!offset.IsImmediate()) { return std::nullopt; } const auto index_number = index.U32(); if (index_number != 1) { return std::nullopt; } const auto offset_number = offset.U32(); return env.ReadCbufValue(index_number, offset_number); } std::optional TryGetConstBuffer(const IR::Inst* inst, Environment& env) { switch (inst->GetOpcode()) { default: return std::nullopt; case IR::Opcode::BitwiseOr32: { std::optional lhs{Track(inst->Arg(0), env)}; std::optional rhs{Track(inst->Arg(1), env)}; if (!lhs || !rhs) { return std::nullopt; } if (lhs->has_secondary || rhs->has_secondary) { return std::nullopt; } if (lhs->count > 1 || rhs->count > 1) { return std::nullopt; } if (lhs->shift_left > 0 || lhs->index > rhs->index || lhs->offset > rhs->offset) { std::swap(lhs, rhs); } return ConstBufferAddr{ .index = lhs->index, .offset = lhs->offset, .shift_left = lhs->shift_left, .secondary_index = rhs->index, .secondary_offset = rhs->offset, .secondary_shift_left = rhs->shift_left, .dynamic_offset = {}, .count = 1, .has_secondary = true, }; } case IR::Opcode::ShiftLeftLogical32: { const IR::Value shift{inst->Arg(1)}; if (!shift.IsImmediate()) { return std::nullopt; } std::optional lhs{Track(inst->Arg(0), env)}; if (lhs) { lhs->shift_left = shift.U32(); } return lhs; break; } case IR::Opcode::BitwiseAnd32: { IR::Value op1{inst->Arg(0)}; IR::Value op2{inst->Arg(1)}; if (op1.IsImmediate()) { std::swap(op1, op2); } if (!op2.IsImmediate() && !op1.IsImmediate()) { do { auto try_index = TryGetConstant(op1, env); if (try_index) { op1 = op2; op2 = IR::Value{*try_index}; break; } auto try_index_2 = TryGetConstant(op2, env); if (try_index_2) { op2 = IR::Value{*try_index_2}; break; } return std::nullopt; } while (false); } std::optional lhs{Track(op1, env)}; if (lhs) { lhs->shift_left = static_cast(std::countr_zero(op2.U32())); } return lhs; break; } case IR::Opcode::GetCbufU32x2: case IR::Opcode::GetCbufU32: break; } const IR::Value index{inst->Arg(0)}; const IR::Value offset{inst->Arg(1)}; if (!index.IsImmediate()) { // Reading a bindless texture from variable indices is valid // but not supported here at the moment return std::nullopt; } if (offset.IsImmediate()) { return ConstBufferAddr{ .index = index.U32(), .offset = offset.U32(), .shift_left = 0, .secondary_index = 0, .secondary_offset = 0, .secondary_shift_left = 0, .dynamic_offset = {}, .count = 1, .has_secondary = false, }; } IR::Inst* const offset_inst{offset.InstRecursive()}; if (offset_inst->GetOpcode() != IR::Opcode::IAdd32) { return std::nullopt; } u32 base_offset{}; IR::U32 dynamic_offset; if (offset_inst->Arg(0).IsImmediate()) { base_offset = offset_inst->Arg(0).U32(); dynamic_offset = IR::U32{offset_inst->Arg(1)}; } else if (offset_inst->Arg(1).IsImmediate()) { base_offset = offset_inst->Arg(1).U32(); dynamic_offset = IR::U32{offset_inst->Arg(0)}; } else { return std::nullopt; } return ConstBufferAddr{ .index = index.U32(), .offset = base_offset, .shift_left = 0, .secondary_index = 0, .secondary_offset = 0, .secondary_shift_left = 0, .dynamic_offset = dynamic_offset, .count = 8, .has_secondary = false, }; } TextureInst MakeInst(Environment& env, IR::Block* block, IR::Inst& inst) { ConstBufferAddr addr; if (IsBindless(inst)) { const std::optional track_addr{Track(inst.Arg(0), env)}; if (!track_addr) { throw NotImplementedException("Failed to track bindless texture constant buffer"); } addr = *track_addr; } else { addr = ConstBufferAddr{ .index = env.TextureBoundBuffer(), .offset = inst.Arg(0).U32(), .shift_left = 0, .secondary_index = 0, .secondary_offset = 0, .secondary_shift_left = 0, .dynamic_offset = {}, .count = 1, .has_secondary = false, }; } return TextureInst{ .cbuf = addr, .inst = &inst, .block = block, }; } TextureType ReadTextureType(Environment& env, const ConstBufferAddr& cbuf) { const u32 secondary_index{cbuf.has_secondary ? cbuf.secondary_index : cbuf.index}; const u32 secondary_offset{cbuf.has_secondary ? cbuf.secondary_offset : cbuf.offset}; const u32 lhs_raw{env.ReadCbufValue(cbuf.index, cbuf.offset) << cbuf.shift_left}; const u32 rhs_raw{env.ReadCbufValue(secondary_index, secondary_offset) << cbuf.secondary_shift_left}; return env.ReadTextureType(lhs_raw | rhs_raw); } TexturePixelFormat ReadTexturePixelFormat(Environment& env, const ConstBufferAddr& cbuf) { const u32 secondary_index{cbuf.has_secondary ? cbuf.secondary_index : cbuf.index}; const u32 secondary_offset{cbuf.has_secondary ? cbuf.secondary_offset : cbuf.offset}; const u32 lhs_raw{env.ReadCbufValue(cbuf.index, cbuf.offset)}; const u32 rhs_raw{env.ReadCbufValue(secondary_index, secondary_offset)}; return env.ReadTexturePixelFormat(lhs_raw | rhs_raw); } class Descriptors { public: explicit Descriptors(TextureBufferDescriptors& texture_buffer_descriptors_, ImageBufferDescriptors& image_buffer_descriptors_, TextureDescriptors& texture_descriptors_, ImageDescriptors& image_descriptors_) : texture_buffer_descriptors{texture_buffer_descriptors_}, image_buffer_descriptors{image_buffer_descriptors_}, texture_descriptors{texture_descriptors_}, image_descriptors{image_descriptors_} {} u32 Add(const TextureBufferDescriptor& desc) { return Add(texture_buffer_descriptors, desc, [&desc](const auto& existing) { return desc.cbuf_index == existing.cbuf_index && desc.cbuf_offset == existing.cbuf_offset && desc.secondary_cbuf_index == existing.secondary_cbuf_index && desc.secondary_cbuf_offset == existing.secondary_cbuf_offset && desc.count == existing.count && desc.size_shift == existing.size_shift && desc.has_secondary == existing.has_secondary; }); } u32 Add(const ImageBufferDescriptor& desc) { const u32 index{Add(image_buffer_descriptors, desc, [&desc](const auto& existing) { return desc.format == existing.format && desc.cbuf_index == existing.cbuf_index && desc.cbuf_offset == existing.cbuf_offset && desc.count == existing.count && desc.size_shift == existing.size_shift; })}; image_buffer_descriptors[index].is_written |= desc.is_written; image_buffer_descriptors[index].is_read |= desc.is_read; return index; } u32 Add(const TextureDescriptor& desc) { return Add(texture_descriptors, desc, [&desc](const auto& existing) { return desc.type == existing.type && desc.is_depth == existing.is_depth && desc.has_secondary == existing.has_secondary && desc.cbuf_index == existing.cbuf_index && desc.cbuf_offset == existing.cbuf_offset && desc.secondary_cbuf_index == existing.secondary_cbuf_index && desc.secondary_cbuf_offset == existing.secondary_cbuf_offset && desc.count == existing.count && desc.size_shift == existing.size_shift; }); } u32 Add(const ImageDescriptor& desc) { const u32 index{Add(image_descriptors, desc, [&desc](const auto& existing) { return desc.type == existing.type && desc.format == existing.format && desc.cbuf_index == existing.cbuf_index && desc.cbuf_offset == existing.cbuf_offset && desc.count == existing.count && desc.size_shift == existing.size_shift; })}; image_descriptors[index].is_written |= desc.is_written; image_descriptors[index].is_read |= desc.is_read; return index; } private: template static u32 Add(Descriptors& descriptors, const Descriptor& desc, Func&& pred) { // TODO: Handle arrays const auto it{std::ranges::find_if(descriptors, pred)}; if (it != descriptors.end()) { return static_cast(std::distance(descriptors.begin(), it)); } descriptors.push_back(desc); return static_cast(descriptors.size()) - 1; } TextureBufferDescriptors& texture_buffer_descriptors; ImageBufferDescriptors& image_buffer_descriptors; TextureDescriptors& texture_descriptors; ImageDescriptors& image_descriptors; }; void PatchImageSampleImplicitLod(IR::Block& block, IR::Inst& inst) { IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)}; const auto info{inst.Flags()}; const IR::Value coord(inst.Arg(1)); const IR::Value handle(ir.Imm32(0)); const IR::U32 lod{ir.Imm32(0)}; const IR::Value texture_size = ir.ImageQueryDimension(handle, lod, info); inst.SetArg( 1, ir.CompositeConstruct( ir.FPMul(IR::F32(ir.CompositeExtract(coord, 0)), ir.FPRecip(ir.ConvertUToF(32, 32, ir.CompositeExtract(texture_size, 0)))), ir.FPMul(IR::F32(ir.CompositeExtract(coord, 1)), ir.FPRecip(ir.ConvertUToF(32, 32, ir.CompositeExtract(texture_size, 1)))))); } void PatchTexelFetch(IR::Block& block, IR::Inst& inst, TexturePixelFormat pixel_format) { const auto it{IR::Block::InstructionList::s_iterator_to(inst)}; IR::IREmitter ir{block, IR::Block::InstructionList::s_iterator_to(inst)}; auto get_max_value = [pixel_format]() -> float { switch (pixel_format) { case TexturePixelFormat::A8B8G8R8_SNORM: case TexturePixelFormat::R8G8_SNORM: case TexturePixelFormat::R8_SNORM: return 1.f / std::numeric_limits::max(); case TexturePixelFormat::R16G16B16A16_SNORM: case TexturePixelFormat::R16G16_SNORM: case TexturePixelFormat::R16_SNORM: return 1.f / std::numeric_limits::max(); default: throw InvalidArgument("Invalid texture pixel format"); } }; const IR::Value new_inst{&*block.PrependNewInst(it, inst)}; const IR::F32 x(ir.CompositeExtract(new_inst, 0)); const IR::F32 y(ir.CompositeExtract(new_inst, 1)); const IR::F32 z(ir.CompositeExtract(new_inst, 2)); const IR::F32 w(ir.CompositeExtract(new_inst, 3)); const IR::F16F32F64 max_value(ir.Imm32(get_max_value())); const IR::Value converted = ir.CompositeConstruct(ir.FPMul(ir.ConvertSToF(32, 32, ir.BitCast(x)), max_value), ir.FPMul(ir.ConvertSToF(32, 32, ir.BitCast(y)), max_value), ir.FPMul(ir.ConvertSToF(32, 32, ir.BitCast(z)), max_value), ir.FPMul(ir.ConvertSToF(32, 32, ir.BitCast(w)), max_value)); inst.ReplaceUsesWith(converted); } } // Anonymous namespace void TexturePass(Environment& env, IR::Program& program, const HostTranslateInfo& host_info) { TextureInstVector to_replace; for (IR::Block* const block : program.post_order_blocks) { for (IR::Inst& inst : block->Instructions()) { if (!IsTextureInstruction(inst)) { continue; } to_replace.push_back(MakeInst(env, block, inst)); } } // Sort instructions to visit textures by constant buffer index, then by offset std::ranges::sort(to_replace, [](const auto& lhs, const auto& rhs) { return lhs.cbuf.offset < rhs.cbuf.offset; }); std::stable_sort(to_replace.begin(), to_replace.end(), [](const auto& lhs, const auto& rhs) { return lhs.cbuf.index < rhs.cbuf.index; }); Descriptors descriptors{ program.info.texture_buffer_descriptors, program.info.image_buffer_descriptors, program.info.texture_descriptors, program.info.image_descriptors, }; for (TextureInst& texture_inst : to_replace) { // TODO: Handle arrays IR::Inst* const inst{texture_inst.inst}; inst->ReplaceOpcode(IndexedInstruction(*inst)); const auto& cbuf{texture_inst.cbuf}; auto flags{inst->Flags()}; bool is_multisample{false}; switch (inst->GetOpcode()) { case IR::Opcode::ImageQueryDimensions: flags.type.Assign(ReadTextureType(env, cbuf)); inst->SetFlags(flags); break; case IR::Opcode::ImageSampleImplicitLod: if (flags.type != TextureType::Color2D) { break; } if (ReadTextureType(env, cbuf) == TextureType::Color2DRect) { PatchImageSampleImplicitLod(*texture_inst.block, *texture_inst.inst); } break; case IR::Opcode::ImageFetch: if (flags.type == TextureType::Color2D || flags.type == TextureType::Color2DRect || flags.type == TextureType::ColorArray2D) { is_multisample = !inst->Arg(4).IsEmpty(); } else { inst->SetArg(4, IR::U32{}); } if (flags.type != TextureType::Color1D) { break; } if (ReadTextureType(env, cbuf) == TextureType::Buffer) { // Replace with the bound texture type only when it's a texture buffer // If the instruction is 1D and the bound type is 2D, don't change the code and let // the rasterizer robustness handle it // This happens on Fire Emblem: Three Houses flags.type.Assign(TextureType::Buffer); } break; default: break; } u32 index; switch (inst->GetOpcode()) { case IR::Opcode::ImageRead: case IR::Opcode::ImageAtomicIAdd32: case IR::Opcode::ImageAtomicSMin32: case IR::Opcode::ImageAtomicUMin32: case IR::Opcode::ImageAtomicSMax32: case IR::Opcode::ImageAtomicUMax32: case IR::Opcode::ImageAtomicInc32: case IR::Opcode::ImageAtomicDec32: case IR::Opcode::ImageAtomicAnd32: case IR::Opcode::ImageAtomicOr32: case IR::Opcode::ImageAtomicXor32: case IR::Opcode::ImageAtomicExchange32: case IR::Opcode::ImageWrite: { if (cbuf.has_secondary) { throw NotImplementedException("Unexpected separate sampler"); } const bool is_written{inst->GetOpcode() != IR::Opcode::ImageRead}; const bool is_read{inst->GetOpcode() != IR::Opcode::ImageWrite}; if (flags.type == TextureType::Buffer) { index = descriptors.Add(ImageBufferDescriptor{ .format = flags.image_format, .is_written = is_written, .is_read = is_read, .cbuf_index = cbuf.index, .cbuf_offset = cbuf.offset, .count = cbuf.count, .size_shift = DESCRIPTOR_SIZE_SHIFT, }); } else { index = descriptors.Add(ImageDescriptor{ .type = flags.type, .format = flags.image_format, .is_written = is_written, .is_read = is_read, .cbuf_index = cbuf.index, .cbuf_offset = cbuf.offset, .count = cbuf.count, .size_shift = DESCRIPTOR_SIZE_SHIFT, }); } break; } default: if (flags.type == TextureType::Buffer) { index = descriptors.Add(TextureBufferDescriptor{ .has_secondary = cbuf.has_secondary, .cbuf_index = cbuf.index, .cbuf_offset = cbuf.offset, .shift_left = cbuf.shift_left, .secondary_cbuf_index = cbuf.secondary_index, .secondary_cbuf_offset = cbuf.secondary_offset, .secondary_shift_left = cbuf.secondary_shift_left, .count = cbuf.count, .size_shift = DESCRIPTOR_SIZE_SHIFT, }); } else { index = descriptors.Add(TextureDescriptor{ .type = flags.type, .is_depth = flags.is_depth != 0, .is_multisample = is_multisample, .has_secondary = cbuf.has_secondary, .cbuf_index = cbuf.index, .cbuf_offset = cbuf.offset, .shift_left = cbuf.shift_left, .secondary_cbuf_index = cbuf.secondary_index, .secondary_cbuf_offset = cbuf.secondary_offset, .secondary_shift_left = cbuf.secondary_shift_left, .count = cbuf.count, .size_shift = DESCRIPTOR_SIZE_SHIFT, }); } break; } flags.descriptor_index.Assign(index); inst->SetFlags(flags); if (cbuf.count > 1) { const auto insert_point{IR::Block::InstructionList::s_iterator_to(*inst)}; IR::IREmitter ir{*texture_inst.block, insert_point}; const IR::U32 shift{ir.Imm32(std::countr_zero(DESCRIPTOR_SIZE))}; inst->SetArg(0, ir.UMin(ir.ShiftRightArithmetic(cbuf.dynamic_offset, shift), ir.Imm32(DESCRIPTOR_SIZE - 1))); } else { inst->SetArg(0, IR::Value{}); } if (!host_info.support_snorm_render_buffer && inst->GetOpcode() == IR::Opcode::ImageFetch && flags.type == TextureType::Buffer) { const auto pixel_format = ReadTexturePixelFormat(env, cbuf); if (pixel_format != TexturePixelFormat::OTHER) { PatchTexelFetch(*texture_inst.block, *texture_inst.inst, pixel_format); } } } } void JoinTextureInfo(Info& base, Info& source) { Descriptors descriptors{ base.texture_buffer_descriptors, base.image_buffer_descriptors, base.texture_descriptors, base.image_descriptors, }; for (auto& desc : source.texture_buffer_descriptors) { descriptors.Add(desc); } for (auto& desc : source.image_buffer_descriptors) { descriptors.Add(desc); } for (auto& desc : source.texture_descriptors) { descriptors.Add(desc); } for (auto& desc : source.image_descriptors) { descriptors.Add(desc); } } } // namespace Shader::Optimization