// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include "common/profiler.h" #include "core/hle/service/gsp_gpu.h" #include "core/hw/gpu.h" #include "core/settings.h" #include "debug_utils/debug_utils.h" #include "clipper.h" #include "command_processor.h" #include "math.h" #include "pica.h" #include "primitive_assembly.h" #include "renderer_base.h" #include "vertex_shader.h" #include "video_core.h" namespace Pica { namespace CommandProcessor { static int float_regs_counter = 0; static u32 uniform_write_buffer[4]; static int default_attr_counter = 0; static u32 default_attr_write_buffer[3]; Common::Profiling::TimingCategory category_drawing("Drawing"); static inline void WritePicaReg(u32 id, u32 value, u32 mask) { auto& regs = g_state.regs; if (id >= regs.NumIds()) return; // If we're skipping this frame, only allow trigger IRQ if (GPU::g_skip_frame && id != PICA_REG_INDEX(trigger_irq)) return; // TODO: Figure out how register masking acts on e.g. vs.uniform_setup.set_value u32 old_value = regs[id]; regs[id] = (old_value & ~mask) | (value & mask); if (g_debug_context) g_debug_context->OnEvent(DebugContext::Event::CommandLoaded, reinterpret_cast(&id)); DebugUtils::OnPicaRegWrite(id, regs[id]); switch(id) { // Trigger IRQ case PICA_REG_INDEX(trigger_irq): GSP_GPU::SignalInterrupt(GSP_GPU::InterruptId::P3D); break; case PICA_REG_INDEX_WORKAROUND(command_buffer.trigger[0], 0x23c): case PICA_REG_INDEX_WORKAROUND(command_buffer.trigger[1], 0x23d): { unsigned index = id - PICA_REG_INDEX(command_buffer.trigger[0]); u32* head_ptr = (u32*)Memory::GetPhysicalPointer(regs.command_buffer.GetPhysicalAddress(index)); g_state.cmd_list.head_ptr = g_state.cmd_list.current_ptr = head_ptr; g_state.cmd_list.length = regs.command_buffer.GetSize(index) / sizeof(u32); break; } // It seems like these trigger vertex rendering case PICA_REG_INDEX(trigger_draw): case PICA_REG_INDEX(trigger_draw_indexed): { Common::Profiling::ScopeTimer scope_timer(category_drawing); DebugUtils::DumpTevStageConfig(regs.GetTevStages()); if (g_debug_context) g_debug_context->OnEvent(DebugContext::Event::IncomingPrimitiveBatch, nullptr); const auto& attribute_config = regs.vertex_attributes; const u32 base_address = attribute_config.GetPhysicalBaseAddress(); // Information about internal vertex attributes u32 vertex_attribute_sources[16]; boost::fill(vertex_attribute_sources, 0xdeadbeef); u32 vertex_attribute_strides[16] = {}; Regs::VertexAttributeFormat vertex_attribute_formats[16] = {}; u32 vertex_attribute_elements[16] = {}; u32 vertex_attribute_element_size[16] = {}; // Setup attribute data from loaders for (int loader = 0; loader < 12; ++loader) { const auto& loader_config = attribute_config.attribute_loaders[loader]; u32 load_address = base_address + loader_config.data_offset; // TODO: What happens if a loader overwrites a previous one's data? for (unsigned component = 0; component < loader_config.component_count; ++component) { u32 attribute_index = loader_config.GetComponent(component); vertex_attribute_sources[attribute_index] = load_address; vertex_attribute_strides[attribute_index] = static_cast(loader_config.byte_count); vertex_attribute_formats[attribute_index] = attribute_config.GetFormat(attribute_index); vertex_attribute_elements[attribute_index] = attribute_config.GetNumElements(attribute_index); vertex_attribute_element_size[attribute_index] = attribute_config.GetElementSizeInBytes(attribute_index); load_address += attribute_config.GetStride(attribute_index); } } // Load vertices bool is_indexed = (id == PICA_REG_INDEX(trigger_draw_indexed)); const auto& index_info = regs.index_array; const u8* index_address_8 = Memory::GetPhysicalPointer(base_address + index_info.offset); const u16* index_address_16 = (u16*)index_address_8; bool index_u16 = index_info.format != 0; DebugUtils::GeometryDumper geometry_dumper; PrimitiveAssembler primitive_assembler(regs.triangle_topology.Value()); PrimitiveAssembler dumping_primitive_assembler(regs.triangle_topology.Value()); if (g_debug_context) { for (int i = 0; i < 3; ++i) { const auto texture = regs.GetTextures()[i]; if (!texture.enabled) continue; u8* texture_data = Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress()); if (g_debug_context && Pica::g_debug_context->recorder) g_debug_context->recorder->MemoryAccessed(texture_data, Pica::Regs::NibblesPerPixel(texture.format) * texture.config.width / 2 * texture.config.height, texture.config.GetPhysicalAddress()); } } class { /// Combine overlapping and close ranges void SimplifyRanges() { for (auto it = ranges.begin(); it != ranges.end(); ++it) { // NOTE: We add 32 to the range end address to make sure "close" ranges are combined, too auto it2 = std::next(it); while (it2 != ranges.end() && it->first + it->second + 32 >= it2->first) { it->second = std::max(it->second, it2->first + it2->second - it->first); it2 = ranges.erase(it2); } } } public: /// Record a particular memory access in the list void AddAccess(u32 paddr, u32 size) { // Create new range or extend existing one ranges[paddr] = std::max(ranges[paddr], size); // Simplify ranges... SimplifyRanges(); } /// Map of accessed ranges (mapping start address to range size) std::map ranges; } memory_accesses; for (unsigned int index = 0; index < regs.num_vertices; ++index) { unsigned int vertex = is_indexed ? (index_u16 ? index_address_16[index] : index_address_8[index]) : index; if (is_indexed) { // TODO: Implement some sort of vertex cache! if (g_debug_context && Pica::g_debug_context->recorder) { int size = index_u16 ? 2 : 1; memory_accesses.AddAccess(base_address + index_info.offset + size * index, size); } } // Initialize data for the current vertex VertexShader::InputVertex input; // Load a debugging token to check whether this gets loaded by the running // application or not. static const float24 debug_token = float24::FromRawFloat24(0x00abcdef); input.attr[0].w = debug_token; for (int i = 0; i < attribute_config.GetNumTotalAttributes(); ++i) { // Load the default attribute if we're configured to do so, this data will be overwritten by the loader data if it's set if (attribute_config.IsDefaultAttribute(i)) { input.attr[i] = g_state.vs.default_attributes[i]; LOG_TRACE(HW_GPU, "Loaded default attribute %x for vertex %x (index %x): (%f, %f, %f, %f)", i, vertex, index, input.attr[i][0].ToFloat32(), input.attr[i][1].ToFloat32(), input.attr[i][2].ToFloat32(), input.attr[i][3].ToFloat32()); } // Load per-vertex data from the loader arrays for (unsigned int comp = 0; comp < vertex_attribute_elements[i]; ++comp) { u32 source_addr = vertex_attribute_sources[i] + vertex_attribute_strides[i] * vertex + comp * vertex_attribute_element_size[i]; const u8* srcdata = Memory::GetPhysicalPointer(source_addr); if (g_debug_context && Pica::g_debug_context->recorder) { memory_accesses.AddAccess(source_addr, (vertex_attribute_formats[i] == Regs::VertexAttributeFormat::FLOAT) ? 4 : (vertex_attribute_formats[i] == Regs::VertexAttributeFormat::SHORT) ? 2 : 1); } const float srcval = (vertex_attribute_formats[i] == Regs::VertexAttributeFormat::BYTE) ? *(s8*)srcdata : (vertex_attribute_formats[i] == Regs::VertexAttributeFormat::UBYTE) ? *(u8*)srcdata : (vertex_attribute_formats[i] == Regs::VertexAttributeFormat::SHORT) ? *(s16*)srcdata : *(float*)srcdata; input.attr[i][comp] = float24::FromFloat32(srcval); LOG_TRACE(HW_GPU, "Loaded component %x of attribute %x for vertex %x (index %x) from 0x%08x + 0x%08lx + 0x%04lx: %f", comp, i, vertex, index, attribute_config.GetPhysicalBaseAddress(), vertex_attribute_sources[i] - base_address, vertex_attribute_strides[i] * vertex + comp * vertex_attribute_element_size[i], input.attr[i][comp].ToFloat32()); } } // HACK: Some games do not initialize the vertex position's w component. This leads // to critical issues since it messes up perspective division. As a // workaround, we force the fourth component to 1.0 if we find this to be the // case. // To do this, we additionally have to assume that the first input attribute // is the vertex position, since there's no information about this other than // the empiric observation that this is usually the case. if (input.attr[0].w == debug_token) input.attr[0].w = float24::FromFloat32(1.0); if (g_debug_context) g_debug_context->OnEvent(DebugContext::Event::VertexLoaded, (void*)&input); // NOTE: When dumping geometry, we simply assume that the first input attribute // corresponds to the position for now. DebugUtils::GeometryDumper::Vertex dumped_vertex = { input.attr[0][0].ToFloat32(), input.attr[0][1].ToFloat32(), input.attr[0][2].ToFloat32() }; using namespace std::placeholders; dumping_primitive_assembler.SubmitVertex(dumped_vertex, std::bind(&DebugUtils::GeometryDumper::AddTriangle, &geometry_dumper, _1, _2, _3)); // Send to vertex shader VertexShader::OutputVertex output = VertexShader::RunShader(input, attribute_config.GetNumTotalAttributes(), g_state.regs.vs, g_state.vs); if (is_indexed) { // TODO: Add processed vertex to vertex cache! } if (Settings::values.use_hw_renderer) { // Send to hardware renderer static auto AddHWTriangle = [](const Pica::VertexShader::OutputVertex& v0, const Pica::VertexShader::OutputVertex& v1, const Pica::VertexShader::OutputVertex& v2) { VideoCore::g_renderer->hw_rasterizer->AddTriangle(v0, v1, v2); }; primitive_assembler.SubmitVertex(output, AddHWTriangle); } else { // Send to triangle clipper primitive_assembler.SubmitVertex(output, Clipper::ProcessTriangle); } } for (auto& range : memory_accesses.ranges) { g_debug_context->recorder->MemoryAccessed(Memory::GetPhysicalPointer(range.first), range.second, range.first); } if (Settings::values.use_hw_renderer) { VideoCore::g_renderer->hw_rasterizer->DrawTriangles(); } geometry_dumper.Dump(); if (g_debug_context) { g_debug_context->OnEvent(DebugContext::Event::FinishedPrimitiveBatch, nullptr); } break; } case PICA_REG_INDEX(vs.bool_uniforms): for (unsigned i = 0; i < 16; ++i) g_state.vs.uniforms.b[i] = (regs.vs.bool_uniforms.Value() & (1 << i)) != 0; break; case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[0], 0x2b1): case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[1], 0x2b2): case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[2], 0x2b3): case PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[3], 0x2b4): { int index = (id - PICA_REG_INDEX_WORKAROUND(vs.int_uniforms[0], 0x2b1)); auto values = regs.vs.int_uniforms[index]; g_state.vs.uniforms.i[index] = Math::Vec4(values.x, values.y, values.z, values.w); LOG_TRACE(HW_GPU, "Set integer uniform %d to %02x %02x %02x %02x", index, values.x.Value(), values.y.Value(), values.z.Value(), values.w.Value()); break; } case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[0], 0x2c1): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[1], 0x2c2): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[2], 0x2c3): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[3], 0x2c4): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[4], 0x2c5): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[5], 0x2c6): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[6], 0x2c7): case PICA_REG_INDEX_WORKAROUND(vs.uniform_setup.set_value[7], 0x2c8): { auto& uniform_setup = regs.vs.uniform_setup; // TODO: Does actual hardware indeed keep an intermediate buffer or does // it directly write the values? uniform_write_buffer[float_regs_counter++] = value; // Uniforms are written in a packed format such that four float24 values are encoded in // three 32-bit numbers. We write to internal memory once a full such vector is // written. if ((float_regs_counter >= 4 && uniform_setup.IsFloat32()) || (float_regs_counter >= 3 && !uniform_setup.IsFloat32())) { float_regs_counter = 0; auto& uniform = g_state.vs.uniforms.f[uniform_setup.index]; if (uniform_setup.index > 95) { LOG_ERROR(HW_GPU, "Invalid VS uniform index %d", (int)uniform_setup.index); break; } // NOTE: The destination component order indeed is "backwards" if (uniform_setup.IsFloat32()) { for (auto i : {0,1,2,3}) uniform[3 - i] = float24::FromFloat32(*(float*)(&uniform_write_buffer[i])); } else { // TODO: Untested uniform.w = float24::FromRawFloat24(uniform_write_buffer[0] >> 8); uniform.z = float24::FromRawFloat24(((uniform_write_buffer[0] & 0xFF)<<16) | ((uniform_write_buffer[1] >> 16) & 0xFFFF)); uniform.y = float24::FromRawFloat24(((uniform_write_buffer[1] & 0xFFFF)<<8) | ((uniform_write_buffer[2] >> 24) & 0xFF)); uniform.x = float24::FromRawFloat24(uniform_write_buffer[2] & 0xFFFFFF); } LOG_TRACE(HW_GPU, "Set uniform %x to (%f %f %f %f)", (int)uniform_setup.index, uniform.x.ToFloat32(), uniform.y.ToFloat32(), uniform.z.ToFloat32(), uniform.w.ToFloat32()); // TODO: Verify that this actually modifies the register! uniform_setup.index = uniform_setup.index + 1; } break; } // Load default vertex input attributes case PICA_REG_INDEX_WORKAROUND(vs_default_attributes_setup.set_value[0], 0x233): case PICA_REG_INDEX_WORKAROUND(vs_default_attributes_setup.set_value[1], 0x234): case PICA_REG_INDEX_WORKAROUND(vs_default_attributes_setup.set_value[2], 0x235): { // TODO: Does actual hardware indeed keep an intermediate buffer or does // it directly write the values? default_attr_write_buffer[default_attr_counter++] = value; // Default attributes are written in a packed format such that four float24 values are encoded in // three 32-bit numbers. We write to internal memory once a full such vector is // written. if (default_attr_counter >= 3) { default_attr_counter = 0; auto& setup = regs.vs_default_attributes_setup; if (setup.index >= 16) { LOG_ERROR(HW_GPU, "Invalid VS default attribute index %d", (int)setup.index); break; } Math::Vec4& attribute = g_state.vs.default_attributes[setup.index]; // NOTE: The destination component order indeed is "backwards" attribute.w = float24::FromRawFloat24(default_attr_write_buffer[0] >> 8); attribute.z = float24::FromRawFloat24(((default_attr_write_buffer[0] & 0xFF) << 16) | ((default_attr_write_buffer[1] >> 16) & 0xFFFF)); attribute.y = float24::FromRawFloat24(((default_attr_write_buffer[1] & 0xFFFF) << 8) | ((default_attr_write_buffer[2] >> 24) & 0xFF)); attribute.x = float24::FromRawFloat24(default_attr_write_buffer[2] & 0xFFFFFF); LOG_TRACE(HW_GPU, "Set default VS attribute %x to (%f %f %f %f)", (int)setup.index, attribute.x.ToFloat32(), attribute.y.ToFloat32(), attribute.z.ToFloat32(), attribute.w.ToFloat32()); // TODO: Verify that this actually modifies the register! setup.index = setup.index + 1; } break; } // Load shader program code case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[0], 0x2cc): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[1], 0x2cd): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[2], 0x2ce): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[3], 0x2cf): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[4], 0x2d0): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[5], 0x2d1): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[6], 0x2d2): case PICA_REG_INDEX_WORKAROUND(vs.program.set_word[7], 0x2d3): { g_state.vs.program_code[regs.vs.program.offset] = value; regs.vs.program.offset++; break; } // Load swizzle pattern data case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[0], 0x2d6): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[1], 0x2d7): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[2], 0x2d8): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[3], 0x2d9): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[4], 0x2da): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[5], 0x2db): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[6], 0x2dc): case PICA_REG_INDEX_WORKAROUND(vs.swizzle_patterns.set_word[7], 0x2dd): { g_state.vs.swizzle_data[regs.vs.swizzle_patterns.offset] = value; regs.vs.swizzle_patterns.offset++; break; } default: break; } VideoCore::g_renderer->hw_rasterizer->NotifyPicaRegisterChanged(id); if (g_debug_context) g_debug_context->OnEvent(DebugContext::Event::CommandProcessed, reinterpret_cast(&id)); } void ProcessCommandList(const u32* list, u32 size) { g_state.cmd_list.head_ptr = g_state.cmd_list.current_ptr = list; g_state.cmd_list.length = size / sizeof(u32); while (g_state.cmd_list.current_ptr < g_state.cmd_list.head_ptr + g_state.cmd_list.length) { // Expand a 4-bit mask to 4-byte mask, e.g. 0b0101 -> 0x00FF00FF static const u32 expand_bits_to_bytes[] = { 0x00000000, 0x000000ff, 0x0000ff00, 0x0000ffff, 0x00ff0000, 0x00ff00ff, 0x00ffff00, 0x00ffffff, 0xff000000, 0xff0000ff, 0xff00ff00, 0xff00ffff, 0xffff0000, 0xffff00ff, 0xffffff00, 0xffffffff }; // Align read pointer to 8 bytes if ((g_state.cmd_list.head_ptr - g_state.cmd_list.current_ptr) % 2 != 0) ++g_state.cmd_list.current_ptr; u32 value = *g_state.cmd_list.current_ptr++; const CommandHeader header = { *g_state.cmd_list.current_ptr++ }; const u32 write_mask = expand_bits_to_bytes[header.parameter_mask]; u32 cmd = header.cmd_id; WritePicaReg(cmd, value, write_mask); for (unsigned i = 0; i < header.extra_data_length; ++i) { u32 cmd = header.cmd_id + (header.group_commands ? i + 1 : 0); WritePicaReg(cmd, *g_state.cmd_list.current_ptr++, write_mask); } } } } // namespace } // namespace