// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 // Refer to the license.txt file included. #include #include #include #include #include #include #include #include #include #ifdef HAVE_PNG #include #include #endif #include #include #include #include "common/assert.h" #include "common/bit_field.h" #include "common/color.h" #include "common/common_types.h" #include "common/file_util.h" #include "common/logging/log.h" #include "common/math_util.h" #include "common/vector_math.h" #include "video_core/debug_utils/debug_utils.h" #include "video_core/pica.h" #include "video_core/pica_state.h" #include "video_core/pica_types.h" #include "video_core/rasterizer_interface.h" #include "video_core/renderer_base.h" #include "video_core/shader/shader.h" #include "video_core/utils.h" #include "video_core/video_core.h" using nihstro::DVLBHeader; using nihstro::DVLEHeader; using nihstro::DVLPHeader; namespace Pica { void DebugContext::DoOnEvent(Event event, void* data) { { std::unique_lock lock(breakpoint_mutex); // Commit the rasterizer's caches so framebuffers, render targets, etc. will show on debug // widgets VideoCore::g_renderer->Rasterizer()->FlushAll(); // TODO: Should stop the CPU thread here once we multithread emulation. active_breakpoint = event; at_breakpoint = true; // Tell all observers that we hit a breakpoint for (auto& breakpoint_observer : breakpoint_observers) { breakpoint_observer->OnPicaBreakPointHit(event, data); } // Wait until another thread tells us to Resume() resume_from_breakpoint.wait(lock, [&] { return !at_breakpoint; }); } } void DebugContext::Resume() { { std::lock_guard lock(breakpoint_mutex); // Tell all observers that we are about to resume for (auto& breakpoint_observer : breakpoint_observers) { breakpoint_observer->OnPicaResume(); } // Resume the waiting thread (i.e. OnEvent()) at_breakpoint = false; } resume_from_breakpoint.notify_one(); } std::shared_ptr g_debug_context; // TODO: Get rid of this global namespace DebugUtils { void DumpShader(const std::string& filename, const Regs::ShaderConfig& config, const Shader::ShaderSetup& setup, const Regs::VSOutputAttributes* output_attributes) { struct StuffToWrite { const u8* pointer; u32 size; }; std::vector writing_queue; u32 write_offset = 0; auto QueueForWriting = [&writing_queue, &write_offset](const u8* pointer, u32 size) { writing_queue.push_back({pointer, size}); u32 old_write_offset = write_offset; write_offset += size; return old_write_offset; }; // First off, try to translate Pica state (one enum for output attribute type and component) // into shbin format (separate type and component mask). union OutputRegisterInfo { enum Type : u64 { POSITION = 0, QUATERNION = 1, COLOR = 2, TEXCOORD0 = 3, TEXCOORD1 = 5, TEXCOORD2 = 6, VIEW = 8, }; BitField<0, 64, u64> hex; BitField<0, 16, Type> type; BitField<16, 16, u64> id; BitField<32, 4, u64> component_mask; }; // This is put into a try-catch block to make sure we notice unknown configurations. std::vector output_info_table; for (unsigned i = 0; i < 7; ++i) { using OutputAttributes = Pica::Regs::VSOutputAttributes; // TODO: It's still unclear how the attribute components map to the register! // Once we know that, this code probably will not make much sense anymore. std::map> map = { {OutputAttributes::POSITION_X, {OutputRegisterInfo::POSITION, 1}}, {OutputAttributes::POSITION_Y, {OutputRegisterInfo::POSITION, 2}}, {OutputAttributes::POSITION_Z, {OutputRegisterInfo::POSITION, 4}}, {OutputAttributes::POSITION_W, {OutputRegisterInfo::POSITION, 8}}, {OutputAttributes::QUATERNION_X, {OutputRegisterInfo::QUATERNION, 1}}, {OutputAttributes::QUATERNION_Y, {OutputRegisterInfo::QUATERNION, 2}}, {OutputAttributes::QUATERNION_Z, {OutputRegisterInfo::QUATERNION, 4}}, {OutputAttributes::QUATERNION_W, {OutputRegisterInfo::QUATERNION, 8}}, {OutputAttributes::COLOR_R, {OutputRegisterInfo::COLOR, 1}}, {OutputAttributes::COLOR_G, {OutputRegisterInfo::COLOR, 2}}, {OutputAttributes::COLOR_B, {OutputRegisterInfo::COLOR, 4}}, {OutputAttributes::COLOR_A, {OutputRegisterInfo::COLOR, 8}}, {OutputAttributes::TEXCOORD0_U, {OutputRegisterInfo::TEXCOORD0, 1}}, {OutputAttributes::TEXCOORD0_V, {OutputRegisterInfo::TEXCOORD0, 2}}, {OutputAttributes::TEXCOORD1_U, {OutputRegisterInfo::TEXCOORD1, 1}}, {OutputAttributes::TEXCOORD1_V, {OutputRegisterInfo::TEXCOORD1, 2}}, {OutputAttributes::TEXCOORD2_U, {OutputRegisterInfo::TEXCOORD2, 1}}, {OutputAttributes::TEXCOORD2_V, {OutputRegisterInfo::TEXCOORD2, 2}}, {OutputAttributes::VIEW_X, {OutputRegisterInfo::VIEW, 1}}, {OutputAttributes::VIEW_Y, {OutputRegisterInfo::VIEW, 2}}, {OutputAttributes::VIEW_Z, {OutputRegisterInfo::VIEW, 4}}, }; for (const auto& semantic : std::vector{ output_attributes[i].map_x, output_attributes[i].map_y, output_attributes[i].map_z, output_attributes[i].map_w}) { if (semantic == OutputAttributes::INVALID) continue; try { OutputRegisterInfo::Type type = map.at(semantic).first; u32 component_mask = map.at(semantic).second; auto it = std::find_if(output_info_table.begin(), output_info_table.end(), [&i, &type](const OutputRegisterInfo& info) { return info.id == i && info.type == type; }); if (it == output_info_table.end()) { output_info_table.emplace_back(); output_info_table.back().type.Assign(type); output_info_table.back().component_mask.Assign(component_mask); output_info_table.back().id.Assign(i); } else { it->component_mask.Assign(it->component_mask | component_mask); } } catch (const std::out_of_range&) { DEBUG_ASSERT_MSG(false, "Unknown output attribute mapping"); LOG_ERROR(HW_GPU, "Unknown output attribute mapping: %03x, %03x, %03x, %03x", (int)output_attributes[i].map_x.Value(), (int)output_attributes[i].map_y.Value(), (int)output_attributes[i].map_z.Value(), (int)output_attributes[i].map_w.Value()); } } } struct { DVLBHeader header; u32 dvle_offset; } dvlb{{DVLBHeader::MAGIC_WORD, 1}}; // 1 DVLE DVLPHeader dvlp{DVLPHeader::MAGIC_WORD}; DVLEHeader dvle{DVLEHeader::MAGIC_WORD}; QueueForWriting(reinterpret_cast(&dvlb), sizeof(dvlb)); u32 dvlp_offset = QueueForWriting(reinterpret_cast(&dvlp), sizeof(dvlp)); dvlb.dvle_offset = QueueForWriting(reinterpret_cast(&dvle), sizeof(dvle)); // TODO: Reduce the amount of binary code written to relevant portions dvlp.binary_offset = write_offset - dvlp_offset; dvlp.binary_size_words = static_cast(setup.program_code.size()); QueueForWriting(reinterpret_cast(setup.program_code.data()), static_cast(setup.program_code.size()) * sizeof(u32)); dvlp.swizzle_info_offset = write_offset - dvlp_offset; dvlp.swizzle_info_num_entries = static_cast(setup.swizzle_data.size()); u32 dummy = 0; for (unsigned int i = 0; i < setup.swizzle_data.size(); ++i) { QueueForWriting(reinterpret_cast(&setup.swizzle_data[i]), sizeof(setup.swizzle_data[i])); QueueForWriting(reinterpret_cast(&dummy), sizeof(dummy)); } dvle.main_offset_words = config.main_offset; dvle.output_register_table_offset = write_offset - dvlb.dvle_offset; dvle.output_register_table_size = static_cast(output_info_table.size()); QueueForWriting(reinterpret_cast(output_info_table.data()), static_cast(output_info_table.size() * sizeof(OutputRegisterInfo))); // TODO: Create a label table for "main" std::vector constant_table; for (unsigned i = 0; i < setup.uniforms.b.size(); ++i) { nihstro::ConstantInfo constant; memset(&constant, 0, sizeof(constant)); constant.type = nihstro::ConstantInfo::Bool; constant.regid = i; constant.b = setup.uniforms.b[i]; constant_table.emplace_back(constant); } for (unsigned i = 0; i < setup.uniforms.i.size(); ++i) { nihstro::ConstantInfo constant; memset(&constant, 0, sizeof(constant)); constant.type = nihstro::ConstantInfo::Int; constant.regid = i; constant.i.x = setup.uniforms.i[i].x; constant.i.y = setup.uniforms.i[i].y; constant.i.z = setup.uniforms.i[i].z; constant.i.w = setup.uniforms.i[i].w; constant_table.emplace_back(constant); } for (unsigned i = 0; i < sizeof(setup.uniforms.f) / sizeof(setup.uniforms.f[0]); ++i) { nihstro::ConstantInfo constant; memset(&constant, 0, sizeof(constant)); constant.type = nihstro::ConstantInfo::Float; constant.regid = i; constant.f.x = nihstro::to_float24(setup.uniforms.f[i].x.ToFloat32()); constant.f.y = nihstro::to_float24(setup.uniforms.f[i].y.ToFloat32()); constant.f.z = nihstro::to_float24(setup.uniforms.f[i].z.ToFloat32()); constant.f.w = nihstro::to_float24(setup.uniforms.f[i].w.ToFloat32()); // Store constant if it's different from zero.. if (setup.uniforms.f[i].x.ToFloat32() != 0.0 || setup.uniforms.f[i].y.ToFloat32() != 0.0 || setup.uniforms.f[i].z.ToFloat32() != 0.0 || setup.uniforms.f[i].w.ToFloat32() != 0.0) constant_table.emplace_back(constant); } dvle.constant_table_offset = write_offset - dvlb.dvle_offset; dvle.constant_table_size = static_cast(constant_table.size()); for (const auto& constant : constant_table) { QueueForWriting(reinterpret_cast(&constant), sizeof(constant)); } // Write data to file std::ofstream file(filename, std::ios_base::out | std::ios_base::binary); for (const auto& chunk : writing_queue) { file.write(reinterpret_cast(chunk.pointer), chunk.size); } } static std::unique_ptr pica_trace; static std::mutex pica_trace_mutex; static int is_pica_tracing = false; void StartPicaTracing() { if (is_pica_tracing) { LOG_WARNING(HW_GPU, "StartPicaTracing called even though tracing already running!"); return; } std::lock_guard lock(pica_trace_mutex); pica_trace = std::make_unique(); is_pica_tracing = true; } bool IsPicaTracing() { return is_pica_tracing != 0; } void OnPicaRegWrite(PicaTrace::Write write) { // Double check for is_pica_tracing to avoid pointless locking overhead if (!is_pica_tracing) return; std::lock_guard lock(pica_trace_mutex); if (!is_pica_tracing) return; pica_trace->writes.push_back(write); } std::unique_ptr FinishPicaTracing() { if (!is_pica_tracing) { LOG_WARNING(HW_GPU, "FinishPicaTracing called even though tracing isn't running!"); return {}; } // signalize that no further tracing should be performed is_pica_tracing = false; // Wait until running tracing is finished std::lock_guard lock(pica_trace_mutex); std::unique_ptr ret(std::move(pica_trace)); return ret; } const Math::Vec4 LookupTexture(const u8* source, int x, int y, const TextureInfo& info, bool disable_alpha) { const unsigned int coarse_x = x & ~7; const unsigned int coarse_y = y & ~7; if (info.format != Regs::TextureFormat::ETC1 && info.format != Regs::TextureFormat::ETC1A4) { // TODO(neobrain): Fix code design to unify vertical block offsets! source += coarse_y * info.stride; } // TODO: Assert that width/height are multiples of block dimensions switch (info.format) { case Regs::TextureFormat::RGBA8: { auto res = Color::DecodeRGBA8(source + VideoCore::GetMortonOffset(x, y, 4)); return {res.r(), res.g(), res.b(), static_cast(disable_alpha ? 255 : res.a())}; } case Regs::TextureFormat::RGB8: { auto res = Color::DecodeRGB8(source + VideoCore::GetMortonOffset(x, y, 3)); return {res.r(), res.g(), res.b(), 255}; } case Regs::TextureFormat::RGB5A1: { auto res = Color::DecodeRGB5A1(source + VideoCore::GetMortonOffset(x, y, 2)); return {res.r(), res.g(), res.b(), static_cast(disable_alpha ? 255 : res.a())}; } case Regs::TextureFormat::RGB565: { auto res = Color::DecodeRGB565(source + VideoCore::GetMortonOffset(x, y, 2)); return {res.r(), res.g(), res.b(), 255}; } case Regs::TextureFormat::RGBA4: { auto res = Color::DecodeRGBA4(source + VideoCore::GetMortonOffset(x, y, 2)); return {res.r(), res.g(), res.b(), static_cast(disable_alpha ? 255 : res.a())}; } case Regs::TextureFormat::IA8: { const u8* source_ptr = source + VideoCore::GetMortonOffset(x, y, 2); if (disable_alpha) { // Show intensity as red, alpha as green return {source_ptr[1], source_ptr[0], 0, 255}; } else { return {source_ptr[1], source_ptr[1], source_ptr[1], source_ptr[0]}; } } case Regs::TextureFormat::RG8: { auto res = Color::DecodeRG8(source + VideoCore::GetMortonOffset(x, y, 2)); return {res.r(), res.g(), 0, 255}; } case Regs::TextureFormat::I8: { const u8* source_ptr = source + VideoCore::GetMortonOffset(x, y, 1); return {*source_ptr, *source_ptr, *source_ptr, 255}; } case Regs::TextureFormat::A8: { const u8* source_ptr = source + VideoCore::GetMortonOffset(x, y, 1); if (disable_alpha) { return {*source_ptr, *source_ptr, *source_ptr, 255}; } else { return {0, 0, 0, *source_ptr}; } } case Regs::TextureFormat::IA4: { const u8* source_ptr = source + VideoCore::GetMortonOffset(x, y, 1); u8 i = Color::Convert4To8(((*source_ptr) & 0xF0) >> 4); u8 a = Color::Convert4To8((*source_ptr) & 0xF); if (disable_alpha) { // Show intensity as red, alpha as green return {i, a, 0, 255}; } else { return {i, i, i, a}; } } case Regs::TextureFormat::I4: { u32 morton_offset = VideoCore::GetMortonOffset(x, y, 1); const u8* source_ptr = source + morton_offset / 2; u8 i = (morton_offset % 2) ? ((*source_ptr & 0xF0) >> 4) : (*source_ptr & 0xF); i = Color::Convert4To8(i); return {i, i, i, 255}; } case Regs::TextureFormat::A4: { u32 morton_offset = VideoCore::GetMortonOffset(x, y, 1); const u8* source_ptr = source + morton_offset / 2; u8 a = (morton_offset % 2) ? ((*source_ptr & 0xF0) >> 4) : (*source_ptr & 0xF); a = Color::Convert4To8(a); if (disable_alpha) { return {a, a, a, 255}; } else { return {0, 0, 0, a}; } } case Regs::TextureFormat::ETC1: case Regs::TextureFormat::ETC1A4: { bool has_alpha = (info.format == Regs::TextureFormat::ETC1A4); // ETC1 further subdivides each 8x8 tile into four 4x4 subtiles const int subtile_width = 4; const int subtile_height = 4; int subtile_index = ((x / subtile_width) & 1) + 2 * ((y / subtile_height) & 1); unsigned subtile_bytes = has_alpha ? 2 : 1; // TODO: Name... const u64* source_ptr = (const u64*)(source + coarse_x * subtile_bytes * 4 + coarse_y * subtile_bytes * 4 * (info.width / 8) + subtile_index * subtile_bytes * 8); u64 alpha = 0xFFFFFFFFFFFFFFFF; if (has_alpha) { alpha = *source_ptr; source_ptr++; } union ETC1Tile { // Each of these two is a collection of 16 bits (one per lookup value) BitField<0, 16, u64> table_subindexes; BitField<16, 16, u64> negation_flags; unsigned GetTableSubIndex(unsigned index) const { return (table_subindexes >> index) & 1; } bool GetNegationFlag(unsigned index) const { return ((negation_flags >> index) & 1) == 1; } BitField<32, 1, u64> flip; BitField<33, 1, u64> differential_mode; BitField<34, 3, u64> table_index_2; BitField<37, 3, u64> table_index_1; union { // delta value + base value BitField<40, 3, s64> db; BitField<43, 5, u64> b; BitField<48, 3, s64> dg; BitField<51, 5, u64> g; BitField<56, 3, s64> dr; BitField<59, 5, u64> r; } differential; union { BitField<40, 4, u64> b2; BitField<44, 4, u64> b1; BitField<48, 4, u64> g2; BitField<52, 4, u64> g1; BitField<56, 4, u64> r2; BitField<60, 4, u64> r1; } separate; const Math::Vec3 GetRGB(int x, int y) const { int texel = 4 * x + y; if (flip) std::swap(x, y); // Lookup base value Math::Vec3 ret; if (differential_mode) { ret.r() = static_cast(differential.r); ret.g() = static_cast(differential.g); ret.b() = static_cast(differential.b); if (x >= 2) { ret.r() += static_cast(differential.dr); ret.g() += static_cast(differential.dg); ret.b() += static_cast(differential.db); } ret.r() = Color::Convert5To8(ret.r()); ret.g() = Color::Convert5To8(ret.g()); ret.b() = Color::Convert5To8(ret.b()); } else { if (x < 2) { ret.r() = Color::Convert4To8(static_cast(separate.r1)); ret.g() = Color::Convert4To8(static_cast(separate.g1)); ret.b() = Color::Convert4To8(static_cast(separate.b1)); } else { ret.r() = Color::Convert4To8(static_cast(separate.r2)); ret.g() = Color::Convert4To8(static_cast(separate.g2)); ret.b() = Color::Convert4To8(static_cast(separate.b2)); } } // Add modifier unsigned table_index = static_cast((x < 2) ? table_index_1.Value() : table_index_2.Value()); static const std::array, 8> etc1_modifier_table = {{ {{2, 8}}, {{5, 17}}, {{9, 29}}, {{13, 42}}, {{18, 60}}, {{24, 80}}, {{33, 106}}, {{47, 183}}, }}; int modifier = etc1_modifier_table.at(table_index).at(GetTableSubIndex(texel)); if (GetNegationFlag(texel)) modifier *= -1; ret.r() = MathUtil::Clamp(ret.r() + modifier, 0, 255); ret.g() = MathUtil::Clamp(ret.g() + modifier, 0, 255); ret.b() = MathUtil::Clamp(ret.b() + modifier, 0, 255); return ret.Cast(); } } const* etc1_tile = reinterpret_cast(source_ptr); alpha >>= 4 * ((x & 3) * 4 + (y & 3)); return Math::MakeVec(etc1_tile->GetRGB(x & 3, y & 3), disable_alpha ? (u8)255 : Color::Convert4To8(alpha & 0xF)); } default: LOG_ERROR(HW_GPU, "Unknown texture format: %x", (u32)info.format); DEBUG_ASSERT(false); return {}; } } TextureInfo TextureInfo::FromPicaRegister(const Regs::TextureConfig& config, const Regs::TextureFormat& format) { TextureInfo info; info.physical_address = config.GetPhysicalAddress(); info.width = config.width; info.height = config.height; info.format = format; info.stride = Pica::Regs::NibblesPerPixel(info.format) * info.width / 2; return info; } #ifdef HAVE_PNG // Adapter functions to libpng to write/flush to File::IOFile instances. static void WriteIOFile(png_structp png_ptr, png_bytep data, png_size_t length) { auto* fp = static_cast(png_get_io_ptr(png_ptr)); if (!fp->WriteBytes(data, length)) png_error(png_ptr, "Failed to write to output PNG file."); } static void FlushIOFile(png_structp png_ptr) { auto* fp = static_cast(png_get_io_ptr(png_ptr)); if (!fp->Flush()) png_error(png_ptr, "Failed to flush to output PNG file."); } #endif void DumpTexture(const Pica::Regs::TextureConfig& texture_config, u8* data) { #ifndef HAVE_PNG return; #else if (!data) return; // Write data to file static int dump_index = 0; std::string filename = std::string("texture_dump") + std::to_string(++dump_index) + std::string(".png"); u32 row_stride = texture_config.width * 3; u8* buf; char title[] = "Citra texture dump"; char title_key[] = "Title"; png_structp png_ptr = nullptr; png_infop info_ptr = nullptr; // Open file for writing (binary mode) FileUtil::IOFile fp(filename, "wb"); // Initialize write structure png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr); if (png_ptr == nullptr) { LOG_ERROR(Debug_GPU, "Could not allocate write struct"); goto finalise; } // Initialize info structure info_ptr = png_create_info_struct(png_ptr); if (info_ptr == nullptr) { LOG_ERROR(Debug_GPU, "Could not allocate info struct"); goto finalise; } // Setup Exception handling if (setjmp(png_jmpbuf(png_ptr))) { LOG_ERROR(Debug_GPU, "Error during png creation"); goto finalise; } png_set_write_fn(png_ptr, static_cast(&fp), WriteIOFile, FlushIOFile); // Write header (8 bit color depth) png_set_IHDR(png_ptr, info_ptr, texture_config.width, texture_config.height, 8, PNG_COLOR_TYPE_RGB /*_ALPHA*/, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_BASE, PNG_FILTER_TYPE_BASE); png_text title_text; title_text.compression = PNG_TEXT_COMPRESSION_NONE; title_text.key = title_key; title_text.text = title; png_set_text(png_ptr, info_ptr, &title_text, 1); png_write_info(png_ptr, info_ptr); buf = new u8[row_stride * texture_config.height]; for (unsigned y = 0; y < texture_config.height; ++y) { for (unsigned x = 0; x < texture_config.width; ++x) { TextureInfo info; info.width = texture_config.width; info.height = texture_config.height; info.stride = row_stride; info.format = g_state.regs.texture0_format; Math::Vec4 texture_color = LookupTexture(data, x, y, info); buf[3 * x + y * row_stride] = texture_color.r(); buf[3 * x + y * row_stride + 1] = texture_color.g(); buf[3 * x + y * row_stride + 2] = texture_color.b(); } } // Write image data for (unsigned y = 0; y < texture_config.height; ++y) { u8* row_ptr = (u8*)buf + y * row_stride; png_write_row(png_ptr, row_ptr); } delete[] buf; // End write png_write_end(png_ptr, nullptr); finalise: if (info_ptr != nullptr) png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1); if (png_ptr != nullptr) png_destroy_write_struct(&png_ptr, (png_infopp) nullptr); #endif } static std::string ReplacePattern(const std::string& input, const std::string& pattern, const std::string& replacement) { size_t start = input.find(pattern); if (start == std::string::npos) return input; std::string ret = input; ret.replace(start, pattern.length(), replacement); return ret; } static std::string GetTevStageConfigSourceString(const Pica::Regs::TevStageConfig::Source& source) { using Source = Pica::Regs::TevStageConfig::Source; static const std::map source_map = { {Source::PrimaryColor, "PrimaryColor"}, {Source::PrimaryFragmentColor, "PrimaryFragmentColor"}, {Source::SecondaryFragmentColor, "SecondaryFragmentColor"}, {Source::Texture0, "Texture0"}, {Source::Texture1, "Texture1"}, {Source::Texture2, "Texture2"}, {Source::Texture3, "Texture3"}, {Source::PreviousBuffer, "PreviousBuffer"}, {Source::Constant, "Constant"}, {Source::Previous, "Previous"}, }; const auto src_it = source_map.find(source); if (src_it == source_map.end()) return "Unknown"; return src_it->second; } static std::string GetTevStageConfigColorSourceString( const Pica::Regs::TevStageConfig::Source& source, const Pica::Regs::TevStageConfig::ColorModifier modifier) { using ColorModifier = Pica::Regs::TevStageConfig::ColorModifier; static const std::map color_modifier_map = { {ColorModifier::SourceColor, "%source.rgb"}, {ColorModifier::OneMinusSourceColor, "(1.0 - %source.rgb)"}, {ColorModifier::SourceAlpha, "%source.aaa"}, {ColorModifier::OneMinusSourceAlpha, "(1.0 - %source.aaa)"}, {ColorModifier::SourceRed, "%source.rrr"}, {ColorModifier::OneMinusSourceRed, "(1.0 - %source.rrr)"}, {ColorModifier::SourceGreen, "%source.ggg"}, {ColorModifier::OneMinusSourceGreen, "(1.0 - %source.ggg)"}, {ColorModifier::SourceBlue, "%source.bbb"}, {ColorModifier::OneMinusSourceBlue, "(1.0 - %source.bbb)"}, }; auto src_str = GetTevStageConfigSourceString(source); auto modifier_it = color_modifier_map.find(modifier); std::string modifier_str = "%source.????"; if (modifier_it != color_modifier_map.end()) modifier_str = modifier_it->second; return ReplacePattern(modifier_str, "%source", src_str); } static std::string GetTevStageConfigAlphaSourceString( const Pica::Regs::TevStageConfig::Source& source, const Pica::Regs::TevStageConfig::AlphaModifier modifier) { using AlphaModifier = Pica::Regs::TevStageConfig::AlphaModifier; static const std::map alpha_modifier_map = { {AlphaModifier::SourceAlpha, "%source.a"}, {AlphaModifier::OneMinusSourceAlpha, "(1.0 - %source.a)"}, {AlphaModifier::SourceRed, "%source.r"}, {AlphaModifier::OneMinusSourceRed, "(1.0 - %source.r)"}, {AlphaModifier::SourceGreen, "%source.g"}, {AlphaModifier::OneMinusSourceGreen, "(1.0 - %source.g)"}, {AlphaModifier::SourceBlue, "%source.b"}, {AlphaModifier::OneMinusSourceBlue, "(1.0 - %source.b)"}, }; auto src_str = GetTevStageConfigSourceString(source); auto modifier_it = alpha_modifier_map.find(modifier); std::string modifier_str = "%source.????"; if (modifier_it != alpha_modifier_map.end()) modifier_str = modifier_it->second; return ReplacePattern(modifier_str, "%source", src_str); } static std::string GetTevStageConfigOperationString( const Pica::Regs::TevStageConfig::Operation& operation) { using Operation = Pica::Regs::TevStageConfig::Operation; static const std::map combiner_map = { {Operation::Replace, "%source1"}, {Operation::Modulate, "(%source1 * %source2)"}, {Operation::Add, "(%source1 + %source2)"}, {Operation::AddSigned, "(%source1 + %source2) - 0.5"}, {Operation::Lerp, "lerp(%source1, %source2, %source3)"}, {Operation::Subtract, "(%source1 - %source2)"}, {Operation::Dot3_RGB, "dot(%source1, %source2)"}, {Operation::MultiplyThenAdd, "((%source1 * %source2) + %source3)"}, {Operation::AddThenMultiply, "((%source1 + %source2) * %source3)"}, }; const auto op_it = combiner_map.find(operation); if (op_it == combiner_map.end()) return "Unknown op (%source1, %source2, %source3)"; return op_it->second; } std::string GetTevStageConfigColorCombinerString(const Pica::Regs::TevStageConfig& tev_stage) { auto op_str = GetTevStageConfigOperationString(tev_stage.color_op); op_str = ReplacePattern( op_str, "%source1", GetTevStageConfigColorSourceString(tev_stage.color_source1, tev_stage.color_modifier1)); op_str = ReplacePattern( op_str, "%source2", GetTevStageConfigColorSourceString(tev_stage.color_source2, tev_stage.color_modifier2)); return ReplacePattern( op_str, "%source3", GetTevStageConfigColorSourceString(tev_stage.color_source3, tev_stage.color_modifier3)); } std::string GetTevStageConfigAlphaCombinerString(const Pica::Regs::TevStageConfig& tev_stage) { auto op_str = GetTevStageConfigOperationString(tev_stage.alpha_op); op_str = ReplacePattern( op_str, "%source1", GetTevStageConfigAlphaSourceString(tev_stage.alpha_source1, tev_stage.alpha_modifier1)); op_str = ReplacePattern( op_str, "%source2", GetTevStageConfigAlphaSourceString(tev_stage.alpha_source2, tev_stage.alpha_modifier2)); return ReplacePattern( op_str, "%source3", GetTevStageConfigAlphaSourceString(tev_stage.alpha_source3, tev_stage.alpha_modifier3)); } void DumpTevStageConfig(const std::array& stages) { std::string stage_info = "Tev setup:\n"; for (size_t index = 0; index < stages.size(); ++index) { const auto& tev_stage = stages[index]; stage_info += "Stage " + std::to_string(index) + ": " + GetTevStageConfigColorCombinerString(tev_stage) + " " + GetTevStageConfigAlphaCombinerString(tev_stage) + "\n"; } LOG_TRACE(HW_GPU, "%s", stage_info.c_str()); } } // namespace } // namespace