// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/assert.h" #include "core/core.h" #include "core/core_timing.h" #include "video_core/debug_utils/debug_utils.h" #include "video_core/engines/maxwell_3d.h" #include "video_core/memory_manager.h" #include "video_core/rasterizer_interface.h" #include "video_core/textures/texture.h" namespace Tegra::Engines { /// First register id that is actually a Macro call. constexpr u32 MacroRegistersStart = 0xE00; Maxwell3D::Maxwell3D(Core::System& system, VideoCore::RasterizerInterface& rasterizer, MemoryManager& memory_manager) : system{system}, rasterizer{rasterizer}, memory_manager{memory_manager}, macro_interpreter{*this}, upload_state{memory_manager, regs.upload} { InitDirtySettings(); InitializeRegisterDefaults(); } void Maxwell3D::InitializeRegisterDefaults() { // Initializes registers to their default values - what games expect them to be at boot. This is // for certain registers that may not be explicitly set by games. // Reset all registers to zero std::memset(®s, 0, sizeof(regs)); // Depth range near/far is not always set, but is expected to be the default 0.0f, 1.0f. This is // needed for ARMS. for (auto& viewport : regs.viewports) { viewport.depth_range_near = 0.0f; viewport.depth_range_far = 1.0f; } // Doom and Bomberman seems to use the uninitialized registers and just enable blend // so initialize blend registers with sane values regs.blend.equation_rgb = Regs::Blend::Equation::Add; regs.blend.factor_source_rgb = Regs::Blend::Factor::One; regs.blend.factor_dest_rgb = Regs::Blend::Factor::Zero; regs.blend.equation_a = Regs::Blend::Equation::Add; regs.blend.factor_source_a = Regs::Blend::Factor::One; regs.blend.factor_dest_a = Regs::Blend::Factor::Zero; for (auto& blend : regs.independent_blend) { blend.equation_rgb = Regs::Blend::Equation::Add; blend.factor_source_rgb = Regs::Blend::Factor::One; blend.factor_dest_rgb = Regs::Blend::Factor::Zero; blend.equation_a = Regs::Blend::Equation::Add; blend.factor_source_a = Regs::Blend::Factor::One; blend.factor_dest_a = Regs::Blend::Factor::Zero; } regs.stencil_front_op_fail = Regs::StencilOp::Keep; regs.stencil_front_op_zfail = Regs::StencilOp::Keep; regs.stencil_front_op_zpass = Regs::StencilOp::Keep; regs.stencil_front_func_func = Regs::ComparisonOp::Always; regs.stencil_front_func_mask = 0xFFFFFFFF; regs.stencil_front_mask = 0xFFFFFFFF; regs.stencil_two_side_enable = 1; regs.stencil_back_op_fail = Regs::StencilOp::Keep; regs.stencil_back_op_zfail = Regs::StencilOp::Keep; regs.stencil_back_op_zpass = Regs::StencilOp::Keep; regs.stencil_back_func_func = Regs::ComparisonOp::Always; regs.stencil_back_func_mask = 0xFFFFFFFF; regs.stencil_back_mask = 0xFFFFFFFF; regs.depth_test_func = Regs::ComparisonOp::Always; regs.cull.front_face = Regs::Cull::FrontFace::CounterClockWise; regs.cull.cull_face = Regs::Cull::CullFace::Back; // TODO(Rodrigo): Most games do not set a point size. I think this is a case of a // register carrying a default value. Assume it's OpenGL's default (1). regs.point_size = 1.0f; // TODO(bunnei): Some games do not initialize the color masks (e.g. Sonic Mania). Assuming a // default of enabled fixes rendering here. for (auto& color_mask : regs.color_mask) { color_mask.R.Assign(1); color_mask.G.Assign(1); color_mask.B.Assign(1); color_mask.A.Assign(1); } // Commercial games seem to assume this value is enabled and nouveau sets this value manually. regs.rt_separate_frag_data = 1; // Some games (like Super Mario Odyssey) assume that SRGB is enabled. regs.framebuffer_srgb = 1; mme_inline[MAXWELL3D_REG_INDEX(draw.vertex_end_gl)] = true; mme_inline[MAXWELL3D_REG_INDEX(draw.vertex_begin_gl)] = true; mme_inline[MAXWELL3D_REG_INDEX(vertex_buffer.count)] = true; mme_inline[MAXWELL3D_REG_INDEX(index_array.count)] = true; } #define DIRTY_REGS_POS(field_name) (offsetof(Maxwell3D::DirtyRegs, field_name)) void Maxwell3D::InitDirtySettings() { const auto set_block = [this](const u32 start, const u32 range, const u8 position) { const auto start_itr = dirty_pointers.begin() + start; const auto end_itr = start_itr + range; std::fill(start_itr, end_itr, position); }; dirty.regs.fill(true); // Init Render Targets constexpr u32 registers_per_rt = sizeof(regs.rt[0]) / sizeof(u32); constexpr u32 rt_start_reg = MAXWELL3D_REG_INDEX(rt); constexpr u32 rt_end_reg = rt_start_reg + registers_per_rt * 8; u32 rt_dirty_reg = DIRTY_REGS_POS(render_target); for (u32 rt_reg = rt_start_reg; rt_reg < rt_end_reg; rt_reg += registers_per_rt) { set_block(rt_reg, registers_per_rt, rt_dirty_reg); rt_dirty_reg++; } constexpr u32 depth_buffer_flag = DIRTY_REGS_POS(depth_buffer); dirty_pointers[MAXWELL3D_REG_INDEX(zeta_enable)] = depth_buffer_flag; dirty_pointers[MAXWELL3D_REG_INDEX(zeta_width)] = depth_buffer_flag; dirty_pointers[MAXWELL3D_REG_INDEX(zeta_height)] = depth_buffer_flag; constexpr u32 registers_in_zeta = sizeof(regs.zeta) / sizeof(u32); constexpr u32 zeta_reg = MAXWELL3D_REG_INDEX(zeta); set_block(zeta_reg, registers_in_zeta, depth_buffer_flag); // Init Vertex Arrays constexpr u32 vertex_array_start = MAXWELL3D_REG_INDEX(vertex_array); constexpr u32 vertex_array_size = sizeof(regs.vertex_array[0]) / sizeof(u32); constexpr u32 vertex_array_end = vertex_array_start + vertex_array_size * Regs::NumVertexArrays; u32 va_reg = DIRTY_REGS_POS(vertex_array); u32 vi_reg = DIRTY_REGS_POS(vertex_instance); for (u32 vertex_reg = vertex_array_start; vertex_reg < vertex_array_end; vertex_reg += vertex_array_size) { set_block(vertex_reg, 3, va_reg); // The divisor concerns vertex array instances dirty_pointers[vertex_reg + 3] = vi_reg; va_reg++; vi_reg++; } constexpr u32 vertex_limit_start = MAXWELL3D_REG_INDEX(vertex_array_limit); constexpr u32 vertex_limit_size = sizeof(regs.vertex_array_limit[0]) / sizeof(u32); constexpr u32 vertex_limit_end = vertex_limit_start + vertex_limit_size * Regs::NumVertexArrays; va_reg = DIRTY_REGS_POS(vertex_array); for (u32 vertex_reg = vertex_limit_start; vertex_reg < vertex_limit_end; vertex_reg += vertex_limit_size) { set_block(vertex_reg, vertex_limit_size, va_reg); va_reg++; } constexpr u32 vertex_instance_start = MAXWELL3D_REG_INDEX(instanced_arrays); constexpr u32 vertex_instance_size = sizeof(regs.instanced_arrays.is_instanced[0]) / sizeof(u32); constexpr u32 vertex_instance_end = vertex_instance_start + vertex_instance_size * Regs::NumVertexArrays; vi_reg = DIRTY_REGS_POS(vertex_instance); for (u32 vertex_reg = vertex_instance_start; vertex_reg < vertex_instance_end; vertex_reg += vertex_instance_size) { set_block(vertex_reg, vertex_instance_size, vi_reg); vi_reg++; } set_block(MAXWELL3D_REG_INDEX(vertex_attrib_format), regs.vertex_attrib_format.size(), DIRTY_REGS_POS(vertex_attrib_format)); // Init Shaders constexpr u32 shader_registers_count = sizeof(regs.shader_config[0]) * Regs::MaxShaderProgram / sizeof(u32); set_block(MAXWELL3D_REG_INDEX(shader_config[0]), shader_registers_count, DIRTY_REGS_POS(shaders)); // State // Viewport constexpr u32 viewport_dirty_reg = DIRTY_REGS_POS(viewport); constexpr u32 viewport_start = MAXWELL3D_REG_INDEX(viewports); constexpr u32 viewport_size = sizeof(regs.viewports) / sizeof(u32); set_block(viewport_start, viewport_size, viewport_dirty_reg); constexpr u32 view_volume_start = MAXWELL3D_REG_INDEX(view_volume_clip_control); constexpr u32 view_volume_size = sizeof(regs.view_volume_clip_control) / sizeof(u32); set_block(view_volume_start, view_volume_size, viewport_dirty_reg); // Viewport transformation constexpr u32 viewport_trans_start = MAXWELL3D_REG_INDEX(viewport_transform); constexpr u32 viewport_trans_size = sizeof(regs.viewport_transform) / sizeof(u32); set_block(viewport_trans_start, viewport_trans_size, DIRTY_REGS_POS(viewport_transform)); // Cullmode constexpr u32 cull_mode_start = MAXWELL3D_REG_INDEX(cull); constexpr u32 cull_mode_size = sizeof(regs.cull) / sizeof(u32); set_block(cull_mode_start, cull_mode_size, DIRTY_REGS_POS(cull_mode)); // Screen y control dirty_pointers[MAXWELL3D_REG_INDEX(screen_y_control)] = DIRTY_REGS_POS(screen_y_control); // Primitive Restart constexpr u32 primitive_restart_start = MAXWELL3D_REG_INDEX(primitive_restart); constexpr u32 primitive_restart_size = sizeof(regs.primitive_restart) / sizeof(u32); set_block(primitive_restart_start, primitive_restart_size, DIRTY_REGS_POS(primitive_restart)); // Depth Test constexpr u32 depth_test_dirty_reg = DIRTY_REGS_POS(depth_test); dirty_pointers[MAXWELL3D_REG_INDEX(depth_test_enable)] = depth_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(depth_write_enabled)] = depth_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(depth_test_func)] = depth_test_dirty_reg; // Stencil Test constexpr u32 stencil_test_dirty_reg = DIRTY_REGS_POS(stencil_test); dirty_pointers[MAXWELL3D_REG_INDEX(stencil_enable)] = stencil_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(stencil_front_func_func)] = stencil_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(stencil_front_func_ref)] = stencil_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(stencil_front_func_mask)] = stencil_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(stencil_front_op_fail)] = stencil_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(stencil_front_op_zfail)] = stencil_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(stencil_front_op_zpass)] = stencil_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(stencil_front_mask)] = stencil_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(stencil_two_side_enable)] = stencil_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(stencil_back_func_func)] = stencil_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(stencil_back_func_ref)] = stencil_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(stencil_back_func_mask)] = stencil_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(stencil_back_op_fail)] = stencil_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(stencil_back_op_zfail)] = stencil_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(stencil_back_op_zpass)] = stencil_test_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(stencil_back_mask)] = stencil_test_dirty_reg; // Color Mask constexpr u32 color_mask_dirty_reg = DIRTY_REGS_POS(color_mask); dirty_pointers[MAXWELL3D_REG_INDEX(color_mask_common)] = color_mask_dirty_reg; set_block(MAXWELL3D_REG_INDEX(color_mask), sizeof(regs.color_mask) / sizeof(u32), color_mask_dirty_reg); // Blend State constexpr u32 blend_state_dirty_reg = DIRTY_REGS_POS(blend_state); set_block(MAXWELL3D_REG_INDEX(blend_color), sizeof(regs.blend_color) / sizeof(u32), blend_state_dirty_reg); dirty_pointers[MAXWELL3D_REG_INDEX(independent_blend_enable)] = blend_state_dirty_reg; set_block(MAXWELL3D_REG_INDEX(blend), sizeof(regs.blend) / sizeof(u32), blend_state_dirty_reg); set_block(MAXWELL3D_REG_INDEX(independent_blend), sizeof(regs.independent_blend) / sizeof(u32), blend_state_dirty_reg); // Scissor State constexpr u32 scissor_test_dirty_reg = DIRTY_REGS_POS(scissor_test); set_block(MAXWELL3D_REG_INDEX(scissor_test), sizeof(regs.scissor_test) / sizeof(u32), scissor_test_dirty_reg); // Polygon Offset constexpr u32 polygon_offset_dirty_reg = DIRTY_REGS_POS(polygon_offset); dirty_pointers[MAXWELL3D_REG_INDEX(polygon_offset_fill_enable)] = polygon_offset_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(polygon_offset_line_enable)] = polygon_offset_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(polygon_offset_point_enable)] = polygon_offset_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(polygon_offset_units)] = polygon_offset_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(polygon_offset_factor)] = polygon_offset_dirty_reg; dirty_pointers[MAXWELL3D_REG_INDEX(polygon_offset_clamp)] = polygon_offset_dirty_reg; } void Maxwell3D::CallMacroMethod(u32 method, std::size_t num_parameters, const u32* parameters) { // Reset the current macro. executing_macro = 0; // Lookup the macro offset const u32 entry = ((method - MacroRegistersStart) >> 1) % macro_positions.size(); // Execute the current macro. macro_interpreter.Execute(macro_positions[entry], num_parameters, parameters); if (mme_draw.current_mode != MMMEDrawMode::Undefined) { FlushMMEInlineDraw(); } } void Maxwell3D::CallMethod(const GPU::MethodCall& method_call) { auto debug_context = system.GetGPUDebugContext(); const u32 method = method_call.method; if (method == cb_data_state.current) { regs.reg_array[method] = method_call.argument; ProcessCBData(method_call.argument); return; } else if (cb_data_state.current != null_cb_data) { FinishCBData(); } // It is an error to write to a register other than the current macro's ARG register before it // has finished execution. if (executing_macro != 0) { ASSERT(method == executing_macro + 1); } // Methods after 0xE00 are special, they're actually triggers for some microcode that was // uploaded to the GPU during initialization. if (method >= MacroRegistersStart) { // We're trying to execute a macro if (executing_macro == 0) { // A macro call must begin by writing the macro method's register, not its argument. ASSERT_MSG((method % 2) == 0, "Can't start macro execution by writing to the ARGS register"); executing_macro = method; } macro_params.push_back(method_call.argument); // Call the macro when there are no more parameters in the command buffer if (method_call.IsLastCall()) { CallMacroMethod(executing_macro, macro_params.size(), macro_params.data()); macro_params.clear(); } return; } ASSERT_MSG(method < Regs::NUM_REGS, "Invalid Maxwell3D register, increase the size of the Regs structure"); if (debug_context) { debug_context->OnEvent(Tegra::DebugContext::Event::MaxwellCommandLoaded, nullptr); } if (regs.reg_array[method] != method_call.argument) { regs.reg_array[method] = method_call.argument; const std::size_t dirty_reg = dirty_pointers[method]; if (dirty_reg) { dirty.regs[dirty_reg] = true; if (dirty_reg >= DIRTY_REGS_POS(vertex_array) && dirty_reg < DIRTY_REGS_POS(vertex_array_buffers)) { dirty.vertex_array_buffers = true; } else if (dirty_reg >= DIRTY_REGS_POS(vertex_instance) && dirty_reg < DIRTY_REGS_POS(vertex_instances)) { dirty.vertex_instances = true; } else if (dirty_reg >= DIRTY_REGS_POS(render_target) && dirty_reg < DIRTY_REGS_POS(render_settings)) { dirty.render_settings = true; } } } switch (method) { case MAXWELL3D_REG_INDEX(macros.data): { ProcessMacroUpload(method_call.argument); break; } case MAXWELL3D_REG_INDEX(macros.bind): { ProcessMacroBind(method_call.argument); break; } case MAXWELL3D_REG_INDEX(firmware[4]): { ProcessFirmwareCall4(); break; } case MAXWELL3D_REG_INDEX(const_buffer.cb_data[0]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[1]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[2]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[3]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[4]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[5]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[6]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[7]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[8]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[9]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[10]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[11]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[12]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[13]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[14]): case MAXWELL3D_REG_INDEX(const_buffer.cb_data[15]): { StartCBData(method); break; } case MAXWELL3D_REG_INDEX(cb_bind[0].raw_config): { ProcessCBBind(Regs::ShaderStage::Vertex); break; } case MAXWELL3D_REG_INDEX(cb_bind[1].raw_config): { ProcessCBBind(Regs::ShaderStage::TesselationControl); break; } case MAXWELL3D_REG_INDEX(cb_bind[2].raw_config): { ProcessCBBind(Regs::ShaderStage::TesselationEval); break; } case MAXWELL3D_REG_INDEX(cb_bind[3].raw_config): { ProcessCBBind(Regs::ShaderStage::Geometry); break; } case MAXWELL3D_REG_INDEX(cb_bind[4].raw_config): { ProcessCBBind(Regs::ShaderStage::Fragment); break; } case MAXWELL3D_REG_INDEX(draw.vertex_end_gl): { DrawArrays(); break; } case MAXWELL3D_REG_INDEX(clear_buffers): { ProcessClearBuffers(); break; } case MAXWELL3D_REG_INDEX(query.query_get): { ProcessQueryGet(); break; } case MAXWELL3D_REG_INDEX(condition.mode): { ProcessQueryCondition(); break; } case MAXWELL3D_REG_INDEX(sync_info): { ProcessSyncPoint(); break; } case MAXWELL3D_REG_INDEX(exec_upload): { upload_state.ProcessExec(regs.exec_upload.linear != 0); break; } case MAXWELL3D_REG_INDEX(data_upload): { const bool is_last_call = method_call.IsLastCall(); upload_state.ProcessData(method_call.argument, is_last_call); if (is_last_call) { dirty.OnMemoryWrite(); } break; } default: break; } if (debug_context) { debug_context->OnEvent(Tegra::DebugContext::Event::MaxwellCommandProcessed, nullptr); } } void Maxwell3D::CallMethodFromMME(const GPU::MethodCall& method_call) { const u32 method = method_call.method; if (mme_inline[method]) { regs.reg_array[method] = method_call.argument; if (method == MAXWELL3D_REG_INDEX(vertex_buffer.count) || method == MAXWELL3D_REG_INDEX(index_array.count)) { const MMMEDrawMode expected_mode = method == MAXWELL3D_REG_INDEX(vertex_buffer.count) ? MMMEDrawMode::Array : MMMEDrawMode::Indexed; const u32 count = method_call.argument; while (true) { if (mme_draw.current_mode == MMMEDrawMode::Undefined) { if (mme_draw.gl_begin_consume) { mme_draw.current_mode = expected_mode; mme_draw.current_count = count; mme_draw.instance_count = 1; mme_draw.gl_begin_consume = false; mme_draw.gl_end_count = 0; } break; } else { if (mme_draw.current_mode == expected_mode && count == mme_draw.current_count && mme_draw.instance_mode && mme_draw.gl_begin_consume) { mme_draw.instance_count++; mme_draw.gl_begin_consume = false; break; } else { FlushMMEInlineDraw(); } } } } else if (method == MAXWELL3D_REG_INDEX(draw.vertex_begin_gl)) { mme_draw.instance_mode = (regs.draw.instance_next != 0) || (regs.draw.instance_cont != 0); mme_draw.gl_begin_consume = true; } else { mme_draw.gl_end_count++; } } else { if (mme_draw.current_mode != MMMEDrawMode::Undefined) { FlushMMEInlineDraw(); } CallMethod(method_call); } } void Maxwell3D::FlushMMEInlineDraw() { LOG_DEBUG(HW_GPU, "called, topology={}, count={}", static_cast(regs.draw.topology.Value()), regs.vertex_buffer.count); ASSERT_MSG(!(regs.index_array.count && regs.vertex_buffer.count), "Both indexed and direct?"); ASSERT(mme_draw.instance_count == mme_draw.gl_end_count); auto debug_context = system.GetGPUDebugContext(); if (debug_context) { debug_context->OnEvent(Tegra::DebugContext::Event::IncomingPrimitiveBatch, nullptr); } // Both instance configuration registers can not be set at the same time. ASSERT_MSG(!regs.draw.instance_next || !regs.draw.instance_cont, "Illegal combination of instancing parameters"); const bool is_indexed = mme_draw.current_mode == MMMEDrawMode::Indexed; rasterizer.DrawMultiBatch(is_indexed); if (debug_context) { debug_context->OnEvent(Tegra::DebugContext::Event::FinishedPrimitiveBatch, nullptr); } // TODO(bunnei): Below, we reset vertex count so that we can use these registers to determine if // the game is trying to draw indexed or direct mode. This needs to be verified on HW still - // it's possible that it is incorrect and that there is some other register used to specify the // drawing mode. if (is_indexed) { regs.index_array.count = 0; } else { regs.vertex_buffer.count = 0; } mme_draw.current_mode = MMMEDrawMode::Undefined; mme_draw.current_count = 0; mme_draw.instance_count = 0; mme_draw.instance_mode = false; mme_draw.gl_begin_consume = false; mme_draw.gl_end_count = 0; } void Maxwell3D::ProcessMacroUpload(u32 data) { ASSERT_MSG(regs.macros.upload_address < macro_memory.size(), "upload_address exceeded macro_memory size!"); macro_memory[regs.macros.upload_address++] = data; } void Maxwell3D::ProcessMacroBind(u32 data) { macro_positions[regs.macros.entry++] = data; } void Maxwell3D::ProcessFirmwareCall4() { LOG_WARNING(HW_GPU, "(STUBBED) called"); // Firmware call 4 is a blob that changes some registers depending on its parameters. // These registers don't affect emulation and so are stubbed by setting 0xd00 to 1. regs.reg_array[0xd00] = 1; } void Maxwell3D::ProcessQueryGet() { const GPUVAddr sequence_address{regs.query.QueryAddress()}; // Since the sequence address is given as a GPU VAddr, we have to convert it to an application // VAddr before writing. // TODO(Subv): Support the other query units. ASSERT_MSG(regs.query.query_get.unit == Regs::QueryUnit::Crop, "Units other than CROP are unimplemented"); u64 result = 0; // TODO(Subv): Support the other query variables switch (regs.query.query_get.select) { case Regs::QuerySelect::Zero: // This seems to actually write the query sequence to the query address. result = regs.query.query_sequence; break; default: result = 1; UNIMPLEMENTED_MSG("Unimplemented query select type {}", static_cast(regs.query.query_get.select.Value())); } // TODO(Subv): Research and implement how query sync conditions work. struct LongQueryResult { u64_le value; u64_le timestamp; }; static_assert(sizeof(LongQueryResult) == 16, "LongQueryResult has wrong size"); switch (regs.query.query_get.mode) { case Regs::QueryMode::Write: case Regs::QueryMode::Write2: { u32 sequence = regs.query.query_sequence; if (regs.query.query_get.short_query) { // Write the current query sequence to the sequence address. // TODO(Subv): Find out what happens if you use a long query type but mark it as a short // query. memory_manager.Write(sequence_address, sequence); } else { // Write the 128-bit result structure in long mode. Note: We emulate an infinitely fast // GPU, this command may actually take a while to complete in real hardware due to GPU // wait queues. LongQueryResult query_result{}; query_result.value = result; // TODO(Subv): Generate a real GPU timestamp and write it here instead of CoreTiming query_result.timestamp = system.CoreTiming().GetTicks(); memory_manager.WriteBlock(sequence_address, &query_result, sizeof(query_result)); } break; } default: UNIMPLEMENTED_MSG("Query mode {} not implemented", static_cast(regs.query.query_get.mode.Value())); } } void Maxwell3D::ProcessQueryCondition() { const GPUVAddr condition_address{regs.condition.Address()}; switch (regs.condition.mode) { case Regs::ConditionMode::Always: { execute_on = true; break; } case Regs::ConditionMode::Never: { execute_on = false; break; } case Regs::ConditionMode::ResNonZero: { Regs::QueryCompare cmp; memory_manager.ReadBlockUnsafe(condition_address, &cmp, sizeof(cmp)); execute_on = cmp.initial_sequence != 0U && cmp.initial_mode != 0U; break; } case Regs::ConditionMode::Equal: { Regs::QueryCompare cmp; memory_manager.ReadBlockUnsafe(condition_address, &cmp, sizeof(cmp)); execute_on = cmp.initial_sequence == cmp.current_sequence && cmp.initial_mode == cmp.current_mode; break; } case Regs::ConditionMode::NotEqual: { Regs::QueryCompare cmp; memory_manager.ReadBlockUnsafe(condition_address, &cmp, sizeof(cmp)); execute_on = cmp.initial_sequence != cmp.current_sequence || cmp.initial_mode != cmp.current_mode; break; } default: { UNIMPLEMENTED_MSG("Uninplemented Condition Mode!"); execute_on = true; break; } } } void Maxwell3D::ProcessSyncPoint() { const u32 sync_point = regs.sync_info.sync_point.Value(); const u32 increment = regs.sync_info.increment.Value(); [[maybe_unused]] const u32 cache_flush = regs.sync_info.unknown.Value(); if (increment) { system.GPU().IncrementSyncPoint(sync_point); } } void Maxwell3D::DrawArrays() { LOG_DEBUG(HW_GPU, "called, topology={}, count={}", static_cast(regs.draw.topology.Value()), regs.vertex_buffer.count); ASSERT_MSG(!(regs.index_array.count && regs.vertex_buffer.count), "Both indexed and direct?"); auto debug_context = system.GetGPUDebugContext(); if (debug_context) { debug_context->OnEvent(Tegra::DebugContext::Event::IncomingPrimitiveBatch, nullptr); } // Both instance configuration registers can not be set at the same time. ASSERT_MSG(!regs.draw.instance_next || !regs.draw.instance_cont, "Illegal combination of instancing parameters"); if (regs.draw.instance_next) { // Increment the current instance *before* drawing. state.current_instance += 1; } else if (!regs.draw.instance_cont) { // Reset the current instance to 0. state.current_instance = 0; } const bool is_indexed{regs.index_array.count && !regs.vertex_buffer.count}; rasterizer.DrawBatch(is_indexed); if (debug_context) { debug_context->OnEvent(Tegra::DebugContext::Event::FinishedPrimitiveBatch, nullptr); } // TODO(bunnei): Below, we reset vertex count so that we can use these registers to determine if // the game is trying to draw indexed or direct mode. This needs to be verified on HW still - // it's possible that it is incorrect and that there is some other register used to specify the // drawing mode. if (is_indexed) { regs.index_array.count = 0; } else { regs.vertex_buffer.count = 0; } } void Maxwell3D::ProcessCBBind(Regs::ShaderStage stage) { // Bind the buffer currently in CB_ADDRESS to the specified index in the desired shader stage. auto& shader = state.shader_stages[static_cast(stage)]; auto& bind_data = regs.cb_bind[static_cast(stage)]; ASSERT(bind_data.index < Regs::MaxConstBuffers); auto& buffer = shader.const_buffers[bind_data.index]; buffer.enabled = bind_data.valid.Value() != 0; buffer.address = regs.const_buffer.BufferAddress(); buffer.size = regs.const_buffer.cb_size; } void Maxwell3D::ProcessCBData(u32 value) { const u32 id = cb_data_state.id; cb_data_state.buffer[id][cb_data_state.counter] = value; // Increment the current buffer position. regs.const_buffer.cb_pos = regs.const_buffer.cb_pos + 4; cb_data_state.counter++; } void Maxwell3D::StartCBData(u32 method) { constexpr u32 first_cb_data = MAXWELL3D_REG_INDEX(const_buffer.cb_data[0]); cb_data_state.start_pos = regs.const_buffer.cb_pos; cb_data_state.id = method - first_cb_data; cb_data_state.current = method; cb_data_state.counter = 0; ProcessCBData(regs.const_buffer.cb_data[cb_data_state.id]); } void Maxwell3D::FinishCBData() { // Write the input value to the current const buffer at the current position. const GPUVAddr buffer_address = regs.const_buffer.BufferAddress(); ASSERT(buffer_address != 0); // Don't allow writing past the end of the buffer. ASSERT(regs.const_buffer.cb_pos <= regs.const_buffer.cb_size); const GPUVAddr address{buffer_address + cb_data_state.start_pos}; const std::size_t size = regs.const_buffer.cb_pos - cb_data_state.start_pos; const u32 id = cb_data_state.id; memory_manager.WriteBlock(address, cb_data_state.buffer[id].data(), size); dirty.OnMemoryWrite(); cb_data_state.id = null_cb_data; cb_data_state.current = null_cb_data; } Texture::TICEntry Maxwell3D::GetTICEntry(u32 tic_index) const { const GPUVAddr tic_address_gpu{regs.tic.TICAddress() + tic_index * sizeof(Texture::TICEntry)}; Texture::TICEntry tic_entry; memory_manager.ReadBlockUnsafe(tic_address_gpu, &tic_entry, sizeof(Texture::TICEntry)); [[maybe_unused]] const auto r_type{tic_entry.r_type.Value()}; [[maybe_unused]] const auto g_type{tic_entry.g_type.Value()}; [[maybe_unused]] const auto b_type{tic_entry.b_type.Value()}; [[maybe_unused]] const auto a_type{tic_entry.a_type.Value()}; // TODO(Subv): Different data types for separate components are not supported DEBUG_ASSERT(r_type == g_type && r_type == b_type && r_type == a_type); return tic_entry; } Texture::TSCEntry Maxwell3D::GetTSCEntry(u32 tsc_index) const { const GPUVAddr tsc_address_gpu{regs.tsc.TSCAddress() + tsc_index * sizeof(Texture::TSCEntry)}; Texture::TSCEntry tsc_entry; memory_manager.ReadBlockUnsafe(tsc_address_gpu, &tsc_entry, sizeof(Texture::TSCEntry)); return tsc_entry; } std::vector Maxwell3D::GetStageTextures(Regs::ShaderStage stage) const { std::vector textures; auto& fragment_shader = state.shader_stages[static_cast(stage)]; auto& tex_info_buffer = fragment_shader.const_buffers[regs.tex_cb_index]; ASSERT(tex_info_buffer.enabled && tex_info_buffer.address != 0); GPUVAddr tex_info_buffer_end = tex_info_buffer.address + tex_info_buffer.size; // Offset into the texture constbuffer where the texture info begins. static constexpr std::size_t TextureInfoOffset = 0x20; for (GPUVAddr current_texture = tex_info_buffer.address + TextureInfoOffset; current_texture < tex_info_buffer_end; current_texture += sizeof(Texture::TextureHandle)) { const Texture::TextureHandle tex_handle{memory_manager.Read(current_texture)}; Texture::FullTextureInfo tex_info{}; // TODO(Subv): Use the shader to determine which textures are actually accessed. tex_info.index = static_cast(current_texture - tex_info_buffer.address - TextureInfoOffset) / sizeof(Texture::TextureHandle); // Load the TIC data. auto tic_entry = GetTICEntry(tex_handle.tic_id); // TODO(Subv): Workaround for BitField's move constructor being deleted. std::memcpy(&tex_info.tic, &tic_entry, sizeof(tic_entry)); // Load the TSC data auto tsc_entry = GetTSCEntry(tex_handle.tsc_id); // TODO(Subv): Workaround for BitField's move constructor being deleted. std::memcpy(&tex_info.tsc, &tsc_entry, sizeof(tsc_entry)); textures.push_back(tex_info); } return textures; } Texture::FullTextureInfo Maxwell3D::GetTextureInfo(const Texture::TextureHandle tex_handle, std::size_t offset) const { Texture::FullTextureInfo tex_info{}; tex_info.index = static_cast(offset); // Load the TIC data. auto tic_entry = GetTICEntry(tex_handle.tic_id); // TODO(Subv): Workaround for BitField's move constructor being deleted. std::memcpy(&tex_info.tic, &tic_entry, sizeof(tic_entry)); // Load the TSC data auto tsc_entry = GetTSCEntry(tex_handle.tsc_id); // TODO(Subv): Workaround for BitField's move constructor being deleted. std::memcpy(&tex_info.tsc, &tsc_entry, sizeof(tsc_entry)); return tex_info; } Texture::FullTextureInfo Maxwell3D::GetStageTexture(Regs::ShaderStage stage, std::size_t offset) const { const auto& shader = state.shader_stages[static_cast(stage)]; const auto& tex_info_buffer = shader.const_buffers[regs.tex_cb_index]; ASSERT(tex_info_buffer.enabled && tex_info_buffer.address != 0); const GPUVAddr tex_info_address = tex_info_buffer.address + offset * sizeof(Texture::TextureHandle); ASSERT(tex_info_address < tex_info_buffer.address + tex_info_buffer.size); const Texture::TextureHandle tex_handle{memory_manager.Read(tex_info_address)}; return GetTextureInfo(tex_handle, offset); } u32 Maxwell3D::GetRegisterValue(u32 method) const { ASSERT_MSG(method < Regs::NUM_REGS, "Invalid Maxwell3D register"); return regs.reg_array[method]; } void Maxwell3D::ProcessClearBuffers() { ASSERT(regs.clear_buffers.R == regs.clear_buffers.G && regs.clear_buffers.R == regs.clear_buffers.B && regs.clear_buffers.R == regs.clear_buffers.A); rasterizer.Clear(); } u32 Maxwell3D::AccessConstBuffer32(Regs::ShaderStage stage, u64 const_buffer, u64 offset) const { const auto& shader_stage = state.shader_stages[static_cast(stage)]; const auto& buffer = shader_stage.const_buffers[const_buffer]; u32 result; std::memcpy(&result, memory_manager.GetPointer(buffer.address + offset), sizeof(u32)); return result; } } // namespace Tegra::Engines