// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "common/algorithm.h" #include "common/assert.h" #include "common/logging/log.h" #include "common/microprofile.h" #include "common/settings.h" #include "core/core.h" #include "video_core/engines/maxwell_3d.h" #include "video_core/engines/maxwell_dma.h" #include "video_core/memory_manager.h" #include "video_core/renderer_base.h" #include "video_core/textures/decoders.h" MICROPROFILE_DECLARE(GPU_DMAEngine); MICROPROFILE_DEFINE(GPU_DMAEngine, "GPU", "DMA Engine", MP_RGB(224, 224, 128)); namespace Tegra::Engines { using namespace Texture; MaxwellDMA::MaxwellDMA(Core::System& system_, MemoryManager& memory_manager_) : system{system_}, memory_manager{memory_manager_} {} MaxwellDMA::~MaxwellDMA() = default; void MaxwellDMA::BindRasterizer(VideoCore::RasterizerInterface* rasterizer_) { rasterizer = rasterizer_; } void MaxwellDMA::CallMethod(u32 method, u32 method_argument, bool is_last_call) { ASSERT_MSG(method < NUM_REGS, "Invalid MaxwellDMA register"); regs.reg_array[method] = method_argument; if (method == offsetof(Regs, launch_dma) / sizeof(u32)) { Launch(); } } void MaxwellDMA::CallMultiMethod(u32 method, const u32* base_start, u32 amount, u32 methods_pending) { for (size_t i = 0; i < amount; ++i) { CallMethod(method, base_start[i], methods_pending - static_cast(i) <= 1); } } void MaxwellDMA::Launch() { MICROPROFILE_SCOPE(GPU_DMAEngine); LOG_TRACE(Render_OpenGL, "DMA copy 0x{:x} -> 0x{:x}", static_cast(regs.offset_in), static_cast(regs.offset_out)); // TODO(Subv): Perform more research and implement all features of this engine. const LaunchDMA& launch = regs.launch_dma; ASSERT(launch.interrupt_type == LaunchDMA::InterruptType::NONE); ASSERT(launch.data_transfer_type == LaunchDMA::DataTransferType::NON_PIPELINED); if (launch.multi_line_enable) { const bool is_src_pitch = launch.src_memory_layout == LaunchDMA::MemoryLayout::PITCH; const bool is_dst_pitch = launch.dst_memory_layout == LaunchDMA::MemoryLayout::PITCH; if (!is_src_pitch && !is_dst_pitch) { // If both the source and the destination are in block layout, assert. UNIMPLEMENTED_MSG("Tiled->Tiled DMA transfers are not yet implemented"); return; } if (is_src_pitch && is_dst_pitch) { for (u32 line = 0; line < regs.line_count; ++line) { const GPUVAddr source_line = regs.offset_in + static_cast(line) * regs.pitch_in; const GPUVAddr dest_line = regs.offset_out + static_cast(line) * regs.pitch_out; memory_manager.CopyBlock(dest_line, source_line, regs.line_length_in); } } else { if (!is_src_pitch && is_dst_pitch) { CopyBlockLinearToPitch(); } else { CopyPitchToBlockLinear(); } } } else { // TODO: allow multisized components. auto& accelerate = rasterizer->AccessAccelerateDMA(); const bool is_const_a_dst = regs.remap_const.dst_x == RemapConst::Swizzle::CONST_A; if (regs.launch_dma.remap_enable != 0 && is_const_a_dst) { ASSERT(regs.remap_const.component_size_minus_one == 3); accelerate.BufferClear(regs.offset_out, regs.line_length_in, regs.remap_consta_value); std::vector tmp_buffer(regs.line_length_in, regs.remap_consta_value); memory_manager.WriteBlockUnsafe(regs.offset_out, reinterpret_cast(tmp_buffer.data()), regs.line_length_in * sizeof(u32)); } else { auto convert_linear_2_blocklinear_addr = [](u64 address) { return (address & ~0x1f0ULL) | ((address & 0x40) >> 2) | ((address & 0x10) << 1) | ((address & 0x180) >> 1) | ((address & 0x20) << 3); }; auto src_kind = memory_manager.GetPageKind(regs.offset_in); auto dst_kind = memory_manager.GetPageKind(regs.offset_out); const bool is_src_pitch = IsPitchKind(static_cast(src_kind)); const bool is_dst_pitch = IsPitchKind(static_cast(dst_kind)); if (!is_src_pitch && is_dst_pitch) { std::vector tmp_buffer(regs.line_length_in); std::vector dst_buffer(regs.line_length_in); memory_manager.ReadBlockUnsafe(regs.offset_in, tmp_buffer.data(), regs.line_length_in); for (u32 offset = 0; offset < regs.line_length_in; ++offset) { dst_buffer[offset] = tmp_buffer[convert_linear_2_blocklinear_addr(regs.offset_in + offset) - regs.offset_in]; } memory_manager.WriteBlock(regs.offset_out, dst_buffer.data(), regs.line_length_in); } else if (is_src_pitch && !is_dst_pitch) { std::vector tmp_buffer(regs.line_length_in); std::vector dst_buffer(regs.line_length_in); memory_manager.ReadBlockUnsafe(regs.offset_in, tmp_buffer.data(), regs.line_length_in); for (u32 offset = 0; offset < regs.line_length_in; ++offset) { dst_buffer[convert_linear_2_blocklinear_addr(regs.offset_out + offset) - regs.offset_out] = tmp_buffer[offset]; } memory_manager.WriteBlock(regs.offset_out, dst_buffer.data(), regs.line_length_in); } else { if (!accelerate.BufferCopy(regs.offset_in, regs.offset_out, regs.line_length_in)) { std::vector tmp_buffer(regs.line_length_in); memory_manager.ReadBlockUnsafe(regs.offset_in, tmp_buffer.data(), regs.line_length_in); memory_manager.WriteBlock(regs.offset_out, tmp_buffer.data(), regs.line_length_in); } } } } ReleaseSemaphore(); } void MaxwellDMA::CopyBlockLinearToPitch() { UNIMPLEMENTED_IF(regs.src_params.block_size.width != 0); UNIMPLEMENTED_IF(regs.src_params.layer != 0); const bool is_remapping = regs.launch_dma.remap_enable != 0; // Optimized path for micro copies. const size_t dst_size = static_cast(regs.pitch_out) * regs.line_count; if (!is_remapping && dst_size < GOB_SIZE && regs.pitch_out <= GOB_SIZE_X && regs.src_params.height > GOB_SIZE_Y) { FastCopyBlockLinearToPitch(); return; } // Deswizzle the input and copy it over. const Parameters& src_params = regs.src_params; const u32 num_remap_components = regs.remap_const.num_dst_components_minus_one + 1; const u32 remap_components_size = regs.remap_const.component_size_minus_one + 1; const u32 base_bpp = !is_remapping ? 1U : num_remap_components * remap_components_size; u32 width = src_params.width; u32 x_elements = regs.line_length_in; u32 x_offset = src_params.origin.x; u32 bpp_shift = 0U; if (!is_remapping) { bpp_shift = Common::FoldRight( 4U, [](u32 x, u32 y) { return std::min(x, static_cast(std::countr_zero(y))); }, width, x_elements, x_offset, static_cast(regs.offset_in)); width >>= bpp_shift; x_elements >>= bpp_shift; x_offset >>= bpp_shift; } const u32 bytes_per_pixel = base_bpp << bpp_shift; const u32 height = src_params.height; const u32 depth = src_params.depth; const u32 block_height = src_params.block_size.height; const u32 block_depth = src_params.block_size.depth; const size_t src_size = CalculateSize(true, bytes_per_pixel, width, height, depth, block_height, block_depth); if (read_buffer.size() < src_size) { read_buffer.resize(src_size); } if (write_buffer.size() < dst_size) { write_buffer.resize(dst_size); } memory_manager.ReadBlock(regs.offset_in, read_buffer.data(), src_size); memory_manager.ReadBlock(regs.offset_out, write_buffer.data(), dst_size); UnswizzleSubrect(write_buffer, read_buffer, bytes_per_pixel, width, height, depth, x_offset, src_params.origin.y, x_elements, regs.line_count, block_height, block_depth, regs.pitch_out); memory_manager.WriteBlock(regs.offset_out, write_buffer.data(), dst_size); } void MaxwellDMA::CopyPitchToBlockLinear() { UNIMPLEMENTED_IF_MSG(regs.dst_params.block_size.width != 0, "Block width is not one"); UNIMPLEMENTED_IF(regs.dst_params.layer != 0); const bool is_remapping = regs.launch_dma.remap_enable != 0; const u32 num_remap_components = regs.remap_const.num_dst_components_minus_one + 1; const u32 remap_components_size = regs.remap_const.component_size_minus_one + 1; const auto& dst_params = regs.dst_params; const u32 base_bpp = !is_remapping ? 1U : num_remap_components * remap_components_size; u32 width = dst_params.width; u32 x_elements = regs.line_length_in; u32 x_offset = dst_params.origin.x; u32 bpp_shift = 0U; if (!is_remapping) { bpp_shift = Common::FoldRight( 4U, [](u32 x, u32 y) { return std::min(x, static_cast(std::countr_zero(y))); }, width, x_elements, x_offset, static_cast(regs.offset_out)); width >>= bpp_shift; x_elements >>= bpp_shift; x_offset >>= bpp_shift; } const u32 bytes_per_pixel = base_bpp << bpp_shift; const u32 height = dst_params.height; const u32 depth = dst_params.depth; const u32 block_height = dst_params.block_size.height; const u32 block_depth = dst_params.block_size.depth; const size_t dst_size = CalculateSize(true, bytes_per_pixel, width, height, depth, block_height, block_depth); const size_t src_size = static_cast(regs.pitch_in) * regs.line_count; if (read_buffer.size() < src_size) { read_buffer.resize(src_size); } if (write_buffer.size() < dst_size) { write_buffer.resize(dst_size); } memory_manager.ReadBlock(regs.offset_in, read_buffer.data(), src_size); if (Settings::IsGPULevelExtreme()) { memory_manager.ReadBlock(regs.offset_out, write_buffer.data(), dst_size); } else { memory_manager.ReadBlockUnsafe(regs.offset_out, write_buffer.data(), dst_size); } // If the input is linear and the output is tiled, swizzle the input and copy it over. SwizzleSubrect(write_buffer, read_buffer, bytes_per_pixel, width, height, depth, x_offset, dst_params.origin.y, x_elements, regs.line_count, block_height, block_depth, regs.pitch_in); memory_manager.WriteBlock(regs.offset_out, write_buffer.data(), dst_size); } void MaxwellDMA::FastCopyBlockLinearToPitch() { const u32 bytes_per_pixel = 1U; const size_t src_size = GOB_SIZE; const size_t dst_size = static_cast(regs.pitch_out) * regs.line_count; u32 pos_x = regs.src_params.origin.x; u32 pos_y = regs.src_params.origin.y; const u64 offset = GetGOBOffset(regs.src_params.width, regs.src_params.height, pos_x, pos_y, regs.src_params.block_size.height, bytes_per_pixel); const u32 x_in_gob = 64 / bytes_per_pixel; pos_x = pos_x % x_in_gob; pos_y = pos_y % 8; if (read_buffer.size() < src_size) { read_buffer.resize(src_size); } if (write_buffer.size() < dst_size) { write_buffer.resize(dst_size); } if (Settings::IsGPULevelExtreme()) { memory_manager.ReadBlock(regs.offset_in + offset, read_buffer.data(), src_size); memory_manager.ReadBlock(regs.offset_out, write_buffer.data(), dst_size); } else { memory_manager.ReadBlockUnsafe(regs.offset_in + offset, read_buffer.data(), src_size); memory_manager.ReadBlockUnsafe(regs.offset_out, write_buffer.data(), dst_size); } UnswizzleSubrect(write_buffer, read_buffer, bytes_per_pixel, regs.src_params.width, regs.src_params.height, 1, pos_x, pos_y, regs.line_length_in, regs.line_count, regs.src_params.block_size.height, regs.src_params.block_size.depth, regs.pitch_out); memory_manager.WriteBlock(regs.offset_out, write_buffer.data(), dst_size); } void MaxwellDMA::ReleaseSemaphore() { const auto type = regs.launch_dma.semaphore_type; const GPUVAddr address = regs.semaphore.address; const u32 payload = regs.semaphore.payload; switch (type) { case LaunchDMA::SemaphoreType::NONE: break; case LaunchDMA::SemaphoreType::RELEASE_ONE_WORD_SEMAPHORE: { std::function operation( [this, address, payload] { memory_manager.Write(address, payload); }); rasterizer->SignalFence(std::move(operation)); break; } case LaunchDMA::SemaphoreType::RELEASE_FOUR_WORD_SEMAPHORE: { std::function operation([this, address, payload] { memory_manager.Write(address + sizeof(u64), system.GPU().GetTicks()); memory_manager.Write(address, payload); }); rasterizer->SignalFence(std::move(operation)); break; } default: ASSERT_MSG(false, "Unknown semaphore type: {}", static_cast(type.Value())); } } } // namespace Tegra::Engines