// MIT License // // Copyright (c) 2020 BreadFish64 // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. // Adapted from https://github.com/BreadFish64/ScaleFish/tree/master/scaleforce #version 460 #ifdef VULKAN #define BINDING_COLOR_TEXTURE 1 #else // ^^^ Vulkan ^^^ // vvv OpenGL vvv #define BINDING_COLOR_TEXTURE 0 #endif layout (location = 0) in vec2 tex_coord; layout (location = 0) out vec4 frag_color; layout (binding = BINDING_COLOR_TEXTURE) uniform sampler2D input_texture; vec2 tex_size; vec2 inv_tex_size; vec4 cubic(float v) { vec3 n = vec3(1.0, 2.0, 3.0) - v; vec3 s = n * n * n; float x = s.x; float y = s.y - 4.0 * s.x; float z = s.z - 4.0 * s.y + 6.0 * s.x; float w = 6.0 - x - y - z; return vec4(x, y, z, w) / 6.0; } // Bicubic interpolation vec4 textureBicubic(vec2 tex_coords) { tex_coords = tex_coords * tex_size - 0.5; vec2 fxy = modf(tex_coords, tex_coords); vec4 xcubic = cubic(fxy.x); vec4 ycubic = cubic(fxy.y); vec4 c = tex_coords.xxyy + vec2(-0.5, +1.5).xyxy; vec4 s = vec4(xcubic.xz + xcubic.yw, ycubic.xz + ycubic.yw); vec4 offset = c + vec4(xcubic.yw, ycubic.yw) / s; offset *= inv_tex_size.xxyy; vec4 sample0 = textureLod(input_texture, offset.xz, 0.0); vec4 sample1 = textureLod(input_texture, offset.yz, 0.0); vec4 sample2 = textureLod(input_texture, offset.xw, 0.0); vec4 sample3 = textureLod(input_texture, offset.yw, 0.0); float sx = s.x / (s.x + s.y); float sy = s.z / (s.z + s.w); return mix(mix(sample3, sample2, sx), mix(sample1, sample0, sx), sy); } mat4x3 center_matrix; vec4 center_alpha; // Finds the distance between four colors and cc in YCbCr space vec4 ColorDist(vec4 A, vec4 B, vec4 C, vec4 D) { // https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.2020_conversion const vec3 K = vec3(0.2627, 0.6780, 0.0593); const float LUMINANCE_WEIGHT = .6; const mat3 YCBCR_MATRIX = mat3(K * LUMINANCE_WEIGHT, -.5 * K.r / (1.0 - K.b), -.5 * K.g / (1.0 - K.b), .5, .5, -.5 * K.g / (1.0 - K.r), -.5 * K.b / (1.0 - K.r)); mat4x3 colors = mat4x3(A.rgb, B.rgb, C.rgb, D.rgb) - center_matrix; mat4x3 YCbCr = YCBCR_MATRIX * colors; vec4 color_dist = vec3(1.0) * YCbCr; color_dist *= color_dist; vec4 alpha = vec4(A.a, B.a, C.a, D.a); return sqrt((color_dist + abs(center_alpha - alpha)) * alpha * center_alpha); } void main() { vec4 bl = textureLodOffset(input_texture, tex_coord, 0.0, ivec2(-1, -1)); vec4 bc = textureLodOffset(input_texture, tex_coord, 0.0, ivec2(0, -1)); vec4 br = textureLodOffset(input_texture, tex_coord, 0.0, ivec2(1, -1)); vec4 cl = textureLodOffset(input_texture, tex_coord, 0.0, ivec2(-1, 0)); vec4 cc = textureLod(input_texture, tex_coord, 0.0); vec4 cr = textureLodOffset(input_texture, tex_coord, 0.0, ivec2(1, 0)); vec4 tl = textureLodOffset(input_texture, tex_coord, 0.0, ivec2(-1, 1)); vec4 tc = textureLodOffset(input_texture, tex_coord, 0.0, ivec2(0, 1)); vec4 tr = textureLodOffset(input_texture, tex_coord, 0.0, ivec2(1, 1)); tex_size = vec2(textureSize(input_texture, 0)); inv_tex_size = 1.0 / tex_size; center_matrix = mat4x3(cc.rgb, cc.rgb, cc.rgb, cc.rgb); center_alpha = cc.aaaa; vec4 offset_tl = ColorDist(tl, tc, tr, cr); vec4 offset_br = ColorDist(br, bc, bl, cl); // Calculate how different cc is from the texels around it float total_dist = dot(offset_tl + offset_br, vec4(1.0)); // Add together all the distances with direction taken into account vec4 tmp = offset_tl - offset_br; vec2 total_offset = tmp.wy + tmp.zz + vec2(-tmp.x, tmp.x); if (total_dist == 0.0) { // Doing bicubic filtering just past the edges where the offset is 0 causes black floaters // and it doesn't really matter which filter is used when the colors aren't changing. frag_color = vec4(cc.rgb, 1.0f); } else { // When the image has thin points, they tend to split apart. // This is because the texels all around are different // and total_offset reaches into clear areas. // This works pretty well to keep the offset in bounds for these cases. float clamp_val = length(total_offset) / total_dist; vec2 final_offset = clamp(total_offset, -clamp_val, clamp_val) * inv_tex_size; frag_color = vec4(textureBicubic(tex_coord - final_offset).rgb, 1.0f); } }