// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include "common/alignment.h" #include "common/assert.h" #include "common/logging/log.h" #include "core/core.h" #include "core/hle/kernel/k_page_table.h" #include "core/hle/kernel/k_process.h" #include "core/memory.h" #include "video_core/memory_manager.h" #include "video_core/rasterizer_interface.h" #include "video_core/renderer_base.h" namespace Tegra { MemoryManager::MemoryManager(Core::System& system_) : system{system_}, page_table(page_table_size) {} MemoryManager::~MemoryManager() = default; void MemoryManager::BindRasterizer(VideoCore::RasterizerInterface* rasterizer_) { rasterizer = rasterizer_; } GPUVAddr MemoryManager::UpdateRange(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size) { u64 remaining_size{size}; for (u64 offset{}; offset < size; offset += page_size) { if (remaining_size < page_size) { SetPageEntry(gpu_addr + offset, page_entry + offset, remaining_size); } else { SetPageEntry(gpu_addr + offset, page_entry + offset); } remaining_size -= page_size; } return gpu_addr; } GPUVAddr MemoryManager::Map(VAddr cpu_addr, GPUVAddr gpu_addr, std::size_t size) { const auto it = std::ranges::lower_bound(map_ranges, gpu_addr, {}, &MapRange::first); if (it != map_ranges.end() && it->first == gpu_addr) { it->second = size; } else { map_ranges.insert(it, MapRange{gpu_addr, size}); } return UpdateRange(gpu_addr, cpu_addr, size); } GPUVAddr MemoryManager::MapAllocate(VAddr cpu_addr, std::size_t size, std::size_t align) { return Map(cpu_addr, *FindFreeRange(size, align), size); } GPUVAddr MemoryManager::MapAllocate32(VAddr cpu_addr, std::size_t size) { const std::optional gpu_addr = FindFreeRange(size, 1, true); ASSERT(gpu_addr); return Map(cpu_addr, *gpu_addr, size); } void MemoryManager::Unmap(GPUVAddr gpu_addr, std::size_t size) { if (size == 0) { return; } const auto it = std::ranges::lower_bound(map_ranges, gpu_addr, {}, &MapRange::first); if (it != map_ranges.end()) { ASSERT(it->first == gpu_addr); map_ranges.erase(it); } else { ASSERT_MSG(false, "Unmapping non-existent GPU address=0x{:x}", gpu_addr); } const auto submapped_ranges = GetSubmappedRange(gpu_addr, size); for (const auto& [map_addr, map_size] : submapped_ranges) { // Flush and invalidate through the GPU interface, to be asynchronous if possible. const std::optional cpu_addr = GpuToCpuAddress(map_addr); ASSERT(cpu_addr); rasterizer->UnmapMemory(*cpu_addr, map_size); } UpdateRange(gpu_addr, PageEntry::State::Unmapped, size); } std::optional MemoryManager::AllocateFixed(GPUVAddr gpu_addr, std::size_t size) { for (u64 offset{}; offset < size; offset += page_size) { if (!GetPageEntry(gpu_addr + offset).IsUnmapped()) { return std::nullopt; } } return UpdateRange(gpu_addr, PageEntry::State::Allocated, size); } GPUVAddr MemoryManager::Allocate(std::size_t size, std::size_t align) { return *AllocateFixed(*FindFreeRange(size, align), size); } void MemoryManager::TryLockPage(PageEntry page_entry, std::size_t size) { if (!page_entry.IsValid()) { return; } ASSERT(system.CurrentProcess() ->PageTable() .LockForDeviceAddressSpace(page_entry.ToAddress(), size) .IsSuccess()); } void MemoryManager::TryUnlockPage(PageEntry page_entry, std::size_t size) { if (!page_entry.IsValid()) { return; } ASSERT(system.CurrentProcess() ->PageTable() .UnlockForDeviceAddressSpace(page_entry.ToAddress(), size) .IsSuccess()); } PageEntry MemoryManager::GetPageEntry(GPUVAddr gpu_addr) const { return page_table[PageEntryIndex(gpu_addr)]; } void MemoryManager::SetPageEntry(GPUVAddr gpu_addr, PageEntry page_entry, std::size_t size) { // TODO(bunnei): We should lock/unlock device regions. This currently causes issues due to // improper tracking, but should be fixed in the future. //// Unlock the old page // TryUnlockPage(page_table[PageEntryIndex(gpu_addr)], size); //// Lock the new page // TryLockPage(page_entry, size); auto& current_page = page_table[PageEntryIndex(gpu_addr)]; if ((!current_page.IsValid() && page_entry.IsValid()) || current_page.ToAddress() != page_entry.ToAddress()) { rasterizer->ModifyGPUMemory(gpu_addr, size); } current_page = page_entry; } std::optional MemoryManager::FindFreeRange(std::size_t size, std::size_t align, bool start_32bit_address) const { if (!align) { align = page_size; } else { align = Common::AlignUp(align, page_size); } u64 available_size{}; GPUVAddr gpu_addr{start_32bit_address ? address_space_start_low : address_space_start}; while (gpu_addr + available_size < address_space_size) { if (GetPageEntry(gpu_addr + available_size).IsUnmapped()) { available_size += page_size; if (available_size >= size) { return gpu_addr; } } else { gpu_addr += available_size + page_size; available_size = 0; const auto remainder{gpu_addr % align}; if (remainder) { gpu_addr = (gpu_addr - remainder) + align; } } } return std::nullopt; } std::optional MemoryManager::GpuToCpuAddress(GPUVAddr gpu_addr) const { if (gpu_addr == 0) { return std::nullopt; } const auto page_entry{GetPageEntry(gpu_addr)}; if (!page_entry.IsValid()) { return std::nullopt; } return page_entry.ToAddress() + (gpu_addr & page_mask); } std::optional MemoryManager::GpuToCpuAddress(GPUVAddr addr, std::size_t size) const { size_t page_index{addr >> page_bits}; const size_t page_last{(addr + size + page_size - 1) >> page_bits}; while (page_index < page_last) { const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; if (page_addr && *page_addr != 0) { return page_addr; } ++page_index; } return std::nullopt; } template T MemoryManager::Read(GPUVAddr addr) const { if (auto page_pointer{GetPointer(addr)}; page_pointer) { // NOTE: Avoid adding any extra logic to this fast-path block T value; std::memcpy(&value, page_pointer, sizeof(T)); return value; } ASSERT(false); return {}; } template void MemoryManager::Write(GPUVAddr addr, T data) { if (auto page_pointer{GetPointer(addr)}; page_pointer) { // NOTE: Avoid adding any extra logic to this fast-path block std::memcpy(page_pointer, &data, sizeof(T)); return; } ASSERT(false); } template u8 MemoryManager::Read(GPUVAddr addr) const; template u16 MemoryManager::Read(GPUVAddr addr) const; template u32 MemoryManager::Read(GPUVAddr addr) const; template u64 MemoryManager::Read(GPUVAddr addr) const; template void MemoryManager::Write(GPUVAddr addr, u8 data); template void MemoryManager::Write(GPUVAddr addr, u16 data); template void MemoryManager::Write(GPUVAddr addr, u32 data); template void MemoryManager::Write(GPUVAddr addr, u64 data); u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) { if (!GetPageEntry(gpu_addr).IsValid()) { return {}; } const auto address{GpuToCpuAddress(gpu_addr)}; if (!address) { return {}; } return system.Memory().GetPointer(*address); } const u8* MemoryManager::GetPointer(GPUVAddr gpu_addr) const { if (!GetPageEntry(gpu_addr).IsValid()) { return {}; } const auto address{GpuToCpuAddress(gpu_addr)}; if (!address) { return {}; } return system.Memory().GetPointer(*address); } size_t MemoryManager::BytesToMapEnd(GPUVAddr gpu_addr) const noexcept { auto it = std::ranges::upper_bound(map_ranges, gpu_addr, {}, &MapRange::first); --it; return it->second - (gpu_addr - it->first); } void MemoryManager::ReadBlockImpl(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size, bool is_safe) const { std::size_t remaining_size{size}; std::size_t page_index{gpu_src_addr >> page_bits}; std::size_t page_offset{gpu_src_addr & page_mask}; while (remaining_size > 0) { const std::size_t copy_amount{ std::min(static_cast(page_size) - page_offset, remaining_size)}; const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; if (page_addr && *page_addr != 0) { const auto src_addr{*page_addr + page_offset}; if (is_safe) { // Flush must happen on the rasterizer interface, such that memory is always // synchronous when it is read (even when in asynchronous GPU mode). // Fixes Dead Cells title menu. rasterizer->FlushRegion(src_addr, copy_amount); } system.Memory().ReadBlockUnsafe(src_addr, dest_buffer, copy_amount); } else { std::memset(dest_buffer, 0, copy_amount); } page_index++; page_offset = 0; dest_buffer = static_cast(dest_buffer) + copy_amount; remaining_size -= copy_amount; } } void MemoryManager::ReadBlock(GPUVAddr gpu_src_addr, void* dest_buffer, std::size_t size) const { ReadBlockImpl(gpu_src_addr, dest_buffer, size, true); } void MemoryManager::ReadBlockUnsafe(GPUVAddr gpu_src_addr, void* dest_buffer, const std::size_t size) const { ReadBlockImpl(gpu_src_addr, dest_buffer, size, false); } void MemoryManager::WriteBlockImpl(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size, bool is_safe) { std::size_t remaining_size{size}; std::size_t page_index{gpu_dest_addr >> page_bits}; std::size_t page_offset{gpu_dest_addr & page_mask}; while (remaining_size > 0) { const std::size_t copy_amount{ std::min(static_cast(page_size) - page_offset, remaining_size)}; const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; if (page_addr && *page_addr != 0) { const auto dest_addr{*page_addr + page_offset}; if (is_safe) { // Invalidate must happen on the rasterizer interface, such that memory is always // synchronous when it is written (even when in asynchronous GPU mode). rasterizer->InvalidateRegion(dest_addr, copy_amount); } system.Memory().WriteBlockUnsafe(dest_addr, src_buffer, copy_amount); } page_index++; page_offset = 0; src_buffer = static_cast(src_buffer) + copy_amount; remaining_size -= copy_amount; } } void MemoryManager::WriteBlock(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size) { WriteBlockImpl(gpu_dest_addr, src_buffer, size, true); } void MemoryManager::WriteBlockUnsafe(GPUVAddr gpu_dest_addr, const void* src_buffer, std::size_t size) { WriteBlockImpl(gpu_dest_addr, src_buffer, size, false); } void MemoryManager::FlushRegion(GPUVAddr gpu_addr, size_t size) const { size_t remaining_size{size}; size_t page_index{gpu_addr >> page_bits}; size_t page_offset{gpu_addr & page_mask}; while (remaining_size > 0) { const size_t num_bytes{std::min(page_size - page_offset, remaining_size)}; if (const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; page_addr) { rasterizer->FlushRegion(*page_addr + page_offset, num_bytes); } ++page_index; page_offset = 0; remaining_size -= num_bytes; } } void MemoryManager::CopyBlock(GPUVAddr gpu_dest_addr, GPUVAddr gpu_src_addr, std::size_t size) { std::vector tmp_buffer(size); ReadBlock(gpu_src_addr, tmp_buffer.data(), size); // The output block must be flushed in case it has data modified from the GPU. // Fixes NPC geometry in Zombie Panic in Wonderland DX FlushRegion(gpu_dest_addr, size); WriteBlock(gpu_dest_addr, tmp_buffer.data(), size); } bool MemoryManager::IsGranularRange(GPUVAddr gpu_addr, std::size_t size) const { const auto cpu_addr{GpuToCpuAddress(gpu_addr)}; if (!cpu_addr) { return false; } const std::size_t page{(*cpu_addr & Core::Memory::YUZU_PAGEMASK) + size}; return page <= Core::Memory::YUZU_PAGESIZE; } bool MemoryManager::IsContinousRange(GPUVAddr gpu_addr, std::size_t size) const { size_t page_index{gpu_addr >> page_bits}; const size_t page_last{(gpu_addr + size + page_size - 1) >> page_bits}; std::optional old_page_addr{}; while (page_index != page_last) { const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; if (!page_addr || *page_addr == 0) { return false; } if (old_page_addr) { if (*old_page_addr + page_size != *page_addr) { return false; } } old_page_addr = page_addr; ++page_index; } return true; } bool MemoryManager::IsFullyMappedRange(GPUVAddr gpu_addr, std::size_t size) const { size_t page_index{gpu_addr >> page_bits}; const size_t page_last{(gpu_addr + size + page_size - 1) >> page_bits}; while (page_index < page_last) { if (!page_table[page_index].IsValid() || page_table[page_index].ToAddress() == 0) { return false; } ++page_index; } return true; } std::vector> MemoryManager::GetSubmappedRange( GPUVAddr gpu_addr, std::size_t size) const { std::vector> result{}; size_t page_index{gpu_addr >> page_bits}; size_t remaining_size{size}; size_t page_offset{gpu_addr & page_mask}; std::optional> last_segment{}; std::optional old_page_addr{}; const auto extend_size = [&last_segment, &page_index, &page_offset](std::size_t bytes) { if (!last_segment) { const GPUVAddr new_base_addr = (page_index << page_bits) + page_offset; last_segment = {new_base_addr, bytes}; } else { last_segment->second += bytes; } }; const auto split = [&last_segment, &result] { if (last_segment) { result.push_back(*last_segment); last_segment = std::nullopt; } }; while (remaining_size > 0) { const size_t num_bytes{std::min(page_size - page_offset, remaining_size)}; const auto page_addr{GpuToCpuAddress(page_index << page_bits)}; if (!page_addr || *page_addr == 0) { split(); } else if (old_page_addr) { if (*old_page_addr + page_size != *page_addr) { split(); } extend_size(num_bytes); } else { extend_size(num_bytes); } ++page_index; page_offset = 0; remaining_size -= num_bytes; old_page_addr = page_addr; } split(); return result; } } // namespace Tegra