// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include "common/color.h" #include "common/file_util.h" #include "common/math_util.h" #include "common/microprofile.h" #include "common/profiler.h" #include "core/memory.h" #include "core/settings.h" #include "core/hw/gpu.h" #include "video_core/pica.h" #include "video_core/pica_state.h" #include "video_core/utils.h" #include "video_core/renderer_opengl/gl_rasterizer.h" #include "video_core/renderer_opengl/gl_shader_gen.h" #include "video_core/renderer_opengl/gl_shader_util.h" #include "video_core/renderer_opengl/pica_to_gl.h" static bool IsPassThroughTevStage(const Pica::Regs::TevStageConfig& stage) { return (stage.color_op == Pica::Regs::TevStageConfig::Operation::Replace && stage.alpha_op == Pica::Regs::TevStageConfig::Operation::Replace && stage.color_source1 == Pica::Regs::TevStageConfig::Source::Previous && stage.alpha_source1 == Pica::Regs::TevStageConfig::Source::Previous && stage.color_modifier1 == Pica::Regs::TevStageConfig::ColorModifier::SourceColor && stage.alpha_modifier1 == Pica::Regs::TevStageConfig::AlphaModifier::SourceAlpha && stage.GetColorMultiplier() == 1 && stage.GetAlphaMultiplier() == 1); } RasterizerOpenGL::RasterizerOpenGL() : cached_fb_color_addr(0), cached_fb_depth_addr(0) { } RasterizerOpenGL::~RasterizerOpenGL() { } void RasterizerOpenGL::InitObjects() { // Create sampler objects for (size_t i = 0; i < texture_samplers.size(); ++i) { texture_samplers[i].Create(); state.texture_units[i].sampler = texture_samplers[i].sampler.handle; } // Generate VBO, VAO and UBO vertex_buffer.Create(); vertex_array.Create(); uniform_buffer.Create(); state.draw.vertex_array = vertex_array.handle; state.draw.vertex_buffer = vertex_buffer.handle; state.draw.uniform_buffer = uniform_buffer.handle; state.Apply(); // Bind the UBO to binding point 0 glBindBufferBase(GL_UNIFORM_BUFFER, 0, uniform_buffer.handle); uniform_block_data.dirty = true; // Set vertex attributes glVertexAttribPointer(GLShader::ATTRIBUTE_POSITION, 4, GL_FLOAT, GL_FALSE, sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, position)); glEnableVertexAttribArray(GLShader::ATTRIBUTE_POSITION); glVertexAttribPointer(GLShader::ATTRIBUTE_COLOR, 4, GL_FLOAT, GL_FALSE, sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, color)); glEnableVertexAttribArray(GLShader::ATTRIBUTE_COLOR); glVertexAttribPointer(GLShader::ATTRIBUTE_TEXCOORD0, 2, GL_FLOAT, GL_FALSE, sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, tex_coord0)); glVertexAttribPointer(GLShader::ATTRIBUTE_TEXCOORD1, 2, GL_FLOAT, GL_FALSE, sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, tex_coord1)); glVertexAttribPointer(GLShader::ATTRIBUTE_TEXCOORD2, 2, GL_FLOAT, GL_FALSE, sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, tex_coord2)); glEnableVertexAttribArray(GLShader::ATTRIBUTE_TEXCOORD0); glEnableVertexAttribArray(GLShader::ATTRIBUTE_TEXCOORD1); glEnableVertexAttribArray(GLShader::ATTRIBUTE_TEXCOORD2); glVertexAttribPointer(GLShader::ATTRIBUTE_NORMQUAT, 4, GL_FLOAT, GL_FALSE, sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, normquat)); glEnableVertexAttribArray(GLShader::ATTRIBUTE_NORMQUAT); glVertexAttribPointer(GLShader::ATTRIBUTE_VIEW, 3, GL_FLOAT, GL_FALSE, sizeof(HardwareVertex), (GLvoid*)offsetof(HardwareVertex, view)); glEnableVertexAttribArray(GLShader::ATTRIBUTE_VIEW); SetShader(); // Create textures for OGL framebuffer that will be rendered to, initially 1x1 to succeed in framebuffer creation fb_color_texture.texture.Create(); ReconfigureColorTexture(fb_color_texture, Pica::Regs::ColorFormat::RGBA8, 1, 1); state.texture_units[0].texture_2d = fb_color_texture.texture.handle; state.Apply(); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); state.texture_units[0].texture_2d = 0; state.Apply(); fb_depth_texture.texture.Create(); ReconfigureDepthTexture(fb_depth_texture, Pica::Regs::DepthFormat::D16, 1, 1); state.texture_units[0].texture_2d = fb_depth_texture.texture.handle; state.Apply(); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE); state.texture_units[0].texture_2d = 0; state.Apply(); // Configure OpenGL framebuffer framebuffer.Create(); state.draw.framebuffer = framebuffer.handle; state.Apply(); glActiveTexture(GL_TEXTURE0); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, fb_color_texture.texture.handle, 0); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, fb_depth_texture.texture.handle, 0); for (size_t i = 0; i < lighting_lut.size(); ++i) { lighting_lut[i].Create(); state.lighting_lut[i].texture_1d = lighting_lut[i].handle; glActiveTexture(GL_TEXTURE3 + i); glBindTexture(GL_TEXTURE_1D, state.lighting_lut[i].texture_1d); glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA32F, 256, 0, GL_RGBA, GL_FLOAT, nullptr); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); } state.Apply(); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); ASSERT_MSG(status == GL_FRAMEBUFFER_COMPLETE, "OpenGL rasterizer framebuffer setup failed, status %X", status); } void RasterizerOpenGL::Reset() { SyncCullMode(); SyncDepthModifiers(); SyncBlendEnabled(); SyncBlendFuncs(); SyncBlendColor(); SyncLogicOp(); SyncStencilTest(); SyncDepthTest(); SyncColorWriteMask(); SyncStencilWriteMask(); SyncDepthWriteMask(); SetShader(); res_cache.InvalidateAll(); } /** * This is a helper function to resolve an issue with opposite quaternions being interpolated by * OpenGL. See below for a detailed description of this issue (yuriks): * * For any rotation, there are two quaternions Q, and -Q, that represent the same rotation. If you * interpolate two quaternions that are opposite, instead of going from one rotation to another * using the shortest path, you'll go around the longest path. You can test if two quaternions are * opposite by checking if Dot(Q1, W2) < 0. In that case, you can flip either of them, therefore * making Dot(-Q1, W2) positive. * * NOTE: This solution corrects this issue per-vertex before passing the quaternions to OpenGL. This * should be correct for nearly all cases, however a more correct implementation (but less trivial * and perhaps unnecessary) would be to handle this per-fragment, by interpolating the quaternions * manually using two Lerps, and doing this correction before each Lerp. */ static bool AreQuaternionsOpposite(Math::Vec4 qa, Math::Vec4 qb) { Math::Vec4f a{ qa.x.ToFloat32(), qa.y.ToFloat32(), qa.z.ToFloat32(), qa.w.ToFloat32() }; Math::Vec4f b{ qb.x.ToFloat32(), qb.y.ToFloat32(), qb.z.ToFloat32(), qb.w.ToFloat32() }; return (Math::Dot(a, b) < 0.f); } void RasterizerOpenGL::AddTriangle(const Pica::Shader::OutputVertex& v0, const Pica::Shader::OutputVertex& v1, const Pica::Shader::OutputVertex& v2) { vertex_batch.emplace_back(v0, false); vertex_batch.emplace_back(v1, AreQuaternionsOpposite(v0.quat, v1.quat)); vertex_batch.emplace_back(v2, AreQuaternionsOpposite(v0.quat, v2.quat)); } void RasterizerOpenGL::DrawTriangles() { if (vertex_batch.empty()) return; SyncFramebuffer(); SyncDrawState(); if (state.draw.shader_dirty) { SetShader(); state.draw.shader_dirty = false; } for (unsigned index = 0; index < lighting_lut.size(); index++) { if (uniform_block_data.lut_dirty[index]) { SyncLightingLUT(index); uniform_block_data.lut_dirty[index] = false; } } if (uniform_block_data.dirty) { glBufferData(GL_UNIFORM_BUFFER, sizeof(UniformData), &uniform_block_data.data, GL_STATIC_DRAW); uniform_block_data.dirty = false; } glBufferData(GL_ARRAY_BUFFER, vertex_batch.size() * sizeof(HardwareVertex), vertex_batch.data(), GL_STREAM_DRAW); glDrawArrays(GL_TRIANGLES, 0, (GLsizei)vertex_batch.size()); vertex_batch.clear(); // Flush the resource cache at the current depth and color framebuffer addresses for render-to-texture const auto& regs = Pica::g_state.regs; u32 cached_fb_color_size = Pica::Regs::BytesPerColorPixel(fb_color_texture.format) * fb_color_texture.width * fb_color_texture.height; u32 cached_fb_depth_size = Pica::Regs::BytesPerDepthPixel(fb_depth_texture.format) * fb_depth_texture.width * fb_depth_texture.height; res_cache.InvalidateInRange(cached_fb_color_addr, cached_fb_color_size, true); res_cache.InvalidateInRange(cached_fb_depth_addr, cached_fb_depth_size, true); } void RasterizerOpenGL::FlushFramebuffer() { CommitColorBuffer(); CommitDepthBuffer(); } void RasterizerOpenGL::NotifyPicaRegisterChanged(u32 id) { const auto& regs = Pica::g_state.regs; switch(id) { // Culling case PICA_REG_INDEX(cull_mode): SyncCullMode(); break; // Depth modifiers case PICA_REG_INDEX(viewport_depth_range): case PICA_REG_INDEX(viewport_depth_far_plane): SyncDepthModifiers(); break; // Blending case PICA_REG_INDEX(output_merger.alphablend_enable): SyncBlendEnabled(); break; case PICA_REG_INDEX(output_merger.alpha_blending): SyncBlendFuncs(); break; case PICA_REG_INDEX(output_merger.blend_const): SyncBlendColor(); break; // Alpha test case PICA_REG_INDEX(output_merger.alpha_test): SyncAlphaTest(); state.draw.shader_dirty = true; break; // Sync GL stencil test + stencil write mask // (Pica stencil test function register also contains a stencil write mask) case PICA_REG_INDEX(output_merger.stencil_test.raw_func): SyncStencilTest(); SyncStencilWriteMask(); break; case PICA_REG_INDEX(output_merger.stencil_test.raw_op): case PICA_REG_INDEX(framebuffer.depth_format): SyncStencilTest(); break; // Sync GL depth test + depth and color write mask // (Pica depth test function register also contains a depth and color write mask) case PICA_REG_INDEX(output_merger.depth_test_enable): SyncDepthTest(); SyncDepthWriteMask(); SyncColorWriteMask(); break; // Sync GL depth and stencil write mask // (This is a dedicated combined depth / stencil write-enable register) case PICA_REG_INDEX(framebuffer.allow_depth_stencil_write): SyncDepthWriteMask(); SyncStencilWriteMask(); break; // Sync GL color write mask // (This is a dedicated color write-enable register) case PICA_REG_INDEX(framebuffer.allow_color_write): SyncColorWriteMask(); break; // Logic op case PICA_REG_INDEX(output_merger.logic_op): SyncLogicOp(); break; // TEV stages case PICA_REG_INDEX(tev_stage0.color_source1): case PICA_REG_INDEX(tev_stage0.color_modifier1): case PICA_REG_INDEX(tev_stage0.color_op): case PICA_REG_INDEX(tev_stage0.color_scale): case PICA_REG_INDEX(tev_stage1.color_source1): case PICA_REG_INDEX(tev_stage1.color_modifier1): case PICA_REG_INDEX(tev_stage1.color_op): case PICA_REG_INDEX(tev_stage1.color_scale): case PICA_REG_INDEX(tev_stage2.color_source1): case PICA_REG_INDEX(tev_stage2.color_modifier1): case PICA_REG_INDEX(tev_stage2.color_op): case PICA_REG_INDEX(tev_stage2.color_scale): case PICA_REG_INDEX(tev_stage3.color_source1): case PICA_REG_INDEX(tev_stage3.color_modifier1): case PICA_REG_INDEX(tev_stage3.color_op): case PICA_REG_INDEX(tev_stage3.color_scale): case PICA_REG_INDEX(tev_stage4.color_source1): case PICA_REG_INDEX(tev_stage4.color_modifier1): case PICA_REG_INDEX(tev_stage4.color_op): case PICA_REG_INDEX(tev_stage4.color_scale): case PICA_REG_INDEX(tev_stage5.color_source1): case PICA_REG_INDEX(tev_stage5.color_modifier1): case PICA_REG_INDEX(tev_stage5.color_op): case PICA_REG_INDEX(tev_stage5.color_scale): case PICA_REG_INDEX(tev_combiner_buffer_input): state.draw.shader_dirty = true; break; case PICA_REG_INDEX(tev_stage0.const_r): SyncTevConstColor(0, regs.tev_stage0); break; case PICA_REG_INDEX(tev_stage1.const_r): SyncTevConstColor(1, regs.tev_stage1); break; case PICA_REG_INDEX(tev_stage2.const_r): SyncTevConstColor(2, regs.tev_stage2); break; case PICA_REG_INDEX(tev_stage3.const_r): SyncTevConstColor(3, regs.tev_stage3); break; case PICA_REG_INDEX(tev_stage4.const_r): SyncTevConstColor(4, regs.tev_stage4); break; case PICA_REG_INDEX(tev_stage5.const_r): SyncTevConstColor(5, regs.tev_stage5); break; // TEV combiner buffer color case PICA_REG_INDEX(tev_combiner_buffer_color): SyncCombinerColor(); break; // Fragment lighting specular 0 color case PICA_REG_INDEX_WORKAROUND(lighting.light[0].specular_0, 0x140 + 0 * 0x10): SyncLightSpecular0(0); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[1].specular_0, 0x140 + 1 * 0x10): SyncLightSpecular0(1); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[2].specular_0, 0x140 + 2 * 0x10): SyncLightSpecular0(2); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[3].specular_0, 0x140 + 3 * 0x10): SyncLightSpecular0(3); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[4].specular_0, 0x140 + 4 * 0x10): SyncLightSpecular0(4); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[5].specular_0, 0x140 + 5 * 0x10): SyncLightSpecular0(5); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[6].specular_0, 0x140 + 6 * 0x10): SyncLightSpecular0(6); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[7].specular_0, 0x140 + 7 * 0x10): SyncLightSpecular0(7); break; // Fragment lighting specular 1 color case PICA_REG_INDEX_WORKAROUND(lighting.light[0].specular_1, 0x141 + 0 * 0x10): SyncLightSpecular1(0); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[1].specular_1, 0x141 + 1 * 0x10): SyncLightSpecular1(1); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[2].specular_1, 0x141 + 2 * 0x10): SyncLightSpecular1(2); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[3].specular_1, 0x141 + 3 * 0x10): SyncLightSpecular1(3); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[4].specular_1, 0x141 + 4 * 0x10): SyncLightSpecular1(4); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[5].specular_1, 0x141 + 5 * 0x10): SyncLightSpecular1(5); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[6].specular_1, 0x141 + 6 * 0x10): SyncLightSpecular1(6); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[7].specular_1, 0x141 + 7 * 0x10): SyncLightSpecular1(7); break; // Fragment lighting diffuse color case PICA_REG_INDEX_WORKAROUND(lighting.light[0].diffuse, 0x142 + 0 * 0x10): SyncLightDiffuse(0); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[1].diffuse, 0x142 + 1 * 0x10): SyncLightDiffuse(1); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[2].diffuse, 0x142 + 2 * 0x10): SyncLightDiffuse(2); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[3].diffuse, 0x142 + 3 * 0x10): SyncLightDiffuse(3); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[4].diffuse, 0x142 + 4 * 0x10): SyncLightDiffuse(4); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[5].diffuse, 0x142 + 5 * 0x10): SyncLightDiffuse(5); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[6].diffuse, 0x142 + 6 * 0x10): SyncLightDiffuse(6); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[7].diffuse, 0x142 + 7 * 0x10): SyncLightDiffuse(7); break; // Fragment lighting ambient color case PICA_REG_INDEX_WORKAROUND(lighting.light[0].ambient, 0x143 + 0 * 0x10): SyncLightAmbient(0); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[1].ambient, 0x143 + 1 * 0x10): SyncLightAmbient(1); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[2].ambient, 0x143 + 2 * 0x10): SyncLightAmbient(2); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[3].ambient, 0x143 + 3 * 0x10): SyncLightAmbient(3); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[4].ambient, 0x143 + 4 * 0x10): SyncLightAmbient(4); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[5].ambient, 0x143 + 5 * 0x10): SyncLightAmbient(5); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[6].ambient, 0x143 + 6 * 0x10): SyncLightAmbient(6); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[7].ambient, 0x143 + 7 * 0x10): SyncLightAmbient(7); break; // Fragment lighting position case PICA_REG_INDEX_WORKAROUND(lighting.light[0].x, 0x144 + 0 * 0x10): case PICA_REG_INDEX_WORKAROUND(lighting.light[0].z, 0x145 + 0 * 0x10): SyncLightPosition(0); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[1].x, 0x144 + 1 * 0x10): case PICA_REG_INDEX_WORKAROUND(lighting.light[1].z, 0x145 + 1 * 0x10): SyncLightPosition(1); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[2].x, 0x144 + 2 * 0x10): case PICA_REG_INDEX_WORKAROUND(lighting.light[2].z, 0x145 + 2 * 0x10): SyncLightPosition(2); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[3].x, 0x144 + 3 * 0x10): case PICA_REG_INDEX_WORKAROUND(lighting.light[3].z, 0x145 + 3 * 0x10): SyncLightPosition(3); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[4].x, 0x144 + 4 * 0x10): case PICA_REG_INDEX_WORKAROUND(lighting.light[4].z, 0x145 + 4 * 0x10): SyncLightPosition(4); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[5].x, 0x144 + 5 * 0x10): case PICA_REG_INDEX_WORKAROUND(lighting.light[5].z, 0x145 + 5 * 0x10): SyncLightPosition(5); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[6].x, 0x144 + 6 * 0x10): case PICA_REG_INDEX_WORKAROUND(lighting.light[6].z, 0x145 + 6 * 0x10): SyncLightPosition(6); break; case PICA_REG_INDEX_WORKAROUND(lighting.light[7].x, 0x144 + 7 * 0x10): case PICA_REG_INDEX_WORKAROUND(lighting.light[7].z, 0x145 + 7 * 0x10): SyncLightPosition(7); break; // Fragment lighting global ambient color (emission + ambient * ambient) case PICA_REG_INDEX_WORKAROUND(lighting.global_ambient, 0x1c0): SyncGlobalAmbient(); break; // Fragment lighting lookup tables case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[0], 0x1c8): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[1], 0x1c9): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[2], 0x1ca): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[3], 0x1cb): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[4], 0x1cc): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[5], 0x1cd): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[6], 0x1ce): case PICA_REG_INDEX_WORKAROUND(lighting.lut_data[7], 0x1cf): { auto& lut_config = regs.lighting.lut_config; uniform_block_data.lut_dirty[lut_config.type / 4] = true; break; } } } void RasterizerOpenGL::FlushRegion(PAddr addr, u32 size) { const auto& regs = Pica::g_state.regs; u32 cached_fb_color_size = Pica::Regs::BytesPerColorPixel(fb_color_texture.format) * fb_color_texture.width * fb_color_texture.height; u32 cached_fb_depth_size = Pica::Regs::BytesPerDepthPixel(fb_depth_texture.format) * fb_depth_texture.width * fb_depth_texture.height; // If source memory region overlaps 3DS framebuffers, commit them before the copy happens if (MathUtil::IntervalsIntersect(addr, size, cached_fb_color_addr, cached_fb_color_size)) CommitColorBuffer(); if (MathUtil::IntervalsIntersect(addr, size, cached_fb_depth_addr, cached_fb_depth_size)) CommitDepthBuffer(); } void RasterizerOpenGL::InvalidateRegion(PAddr addr, u32 size) { const auto& regs = Pica::g_state.regs; u32 cached_fb_color_size = Pica::Regs::BytesPerColorPixel(fb_color_texture.format) * fb_color_texture.width * fb_color_texture.height; u32 cached_fb_depth_size = Pica::Regs::BytesPerDepthPixel(fb_depth_texture.format) * fb_depth_texture.width * fb_depth_texture.height; // If modified memory region overlaps 3DS framebuffers, reload their contents into OpenGL if (MathUtil::IntervalsIntersect(addr, size, cached_fb_color_addr, cached_fb_color_size)) ReloadColorBuffer(); if (MathUtil::IntervalsIntersect(addr, size, cached_fb_depth_addr, cached_fb_depth_size)) ReloadDepthBuffer(); // Notify cache of flush in case the region touches a cached resource res_cache.InvalidateInRange(addr, size); } void RasterizerOpenGL::SamplerInfo::Create() { sampler.Create(); mag_filter = min_filter = TextureConfig::Linear; wrap_s = wrap_t = TextureConfig::Repeat; border_color = 0; glSamplerParameteri(sampler.handle, GL_TEXTURE_MIN_FILTER, GL_LINEAR); // default is GL_LINEAR_MIPMAP_LINEAR // Other attributes have correct defaults } void RasterizerOpenGL::SamplerInfo::SyncWithConfig(const Pica::Regs::TextureConfig& config) { GLuint s = sampler.handle; if (mag_filter != config.mag_filter) { mag_filter = config.mag_filter; glSamplerParameteri(s, GL_TEXTURE_MAG_FILTER, PicaToGL::TextureFilterMode(mag_filter)); } if (min_filter != config.min_filter) { min_filter = config.min_filter; glSamplerParameteri(s, GL_TEXTURE_MIN_FILTER, PicaToGL::TextureFilterMode(min_filter)); } if (wrap_s != config.wrap_s) { wrap_s = config.wrap_s; glSamplerParameteri(s, GL_TEXTURE_WRAP_S, PicaToGL::WrapMode(wrap_s)); } if (wrap_t != config.wrap_t) { wrap_t = config.wrap_t; glSamplerParameteri(s, GL_TEXTURE_WRAP_T, PicaToGL::WrapMode(wrap_t)); } if (wrap_s == TextureConfig::ClampToBorder || wrap_t == TextureConfig::ClampToBorder) { if (border_color != config.border_color.raw) { auto gl_color = PicaToGL::ColorRGBA8(border_color); glSamplerParameterfv(s, GL_TEXTURE_BORDER_COLOR, gl_color.data()); } } } void RasterizerOpenGL::ReconfigureColorTexture(TextureInfo& texture, Pica::Regs::ColorFormat format, u32 width, u32 height) { GLint internal_format; texture.format = format; texture.width = width; texture.height = height; switch (format) { case Pica::Regs::ColorFormat::RGBA8: internal_format = GL_RGBA; texture.gl_format = GL_RGBA; texture.gl_type = GL_UNSIGNED_INT_8_8_8_8; break; case Pica::Regs::ColorFormat::RGB8: // This pixel format uses BGR since GL_UNSIGNED_BYTE specifies byte-order, unlike every // specific OpenGL type used in this function using native-endian (that is, little-endian // mostly everywhere) for words or half-words. // TODO: check how those behave on big-endian processors. internal_format = GL_RGB; texture.gl_format = GL_BGR; texture.gl_type = GL_UNSIGNED_BYTE; break; case Pica::Regs::ColorFormat::RGB5A1: internal_format = GL_RGBA; texture.gl_format = GL_RGBA; texture.gl_type = GL_UNSIGNED_SHORT_5_5_5_1; break; case Pica::Regs::ColorFormat::RGB565: internal_format = GL_RGB; texture.gl_format = GL_RGB; texture.gl_type = GL_UNSIGNED_SHORT_5_6_5; break; case Pica::Regs::ColorFormat::RGBA4: internal_format = GL_RGBA; texture.gl_format = GL_RGBA; texture.gl_type = GL_UNSIGNED_SHORT_4_4_4_4; break; default: LOG_CRITICAL(Render_OpenGL, "Unknown framebuffer texture color format %x", format); UNIMPLEMENTED(); break; } state.texture_units[0].texture_2d = texture.texture.handle; state.Apply(); glActiveTexture(GL_TEXTURE0); glTexImage2D(GL_TEXTURE_2D, 0, internal_format, texture.width, texture.height, 0, texture.gl_format, texture.gl_type, nullptr); state.texture_units[0].texture_2d = 0; state.Apply(); } void RasterizerOpenGL::ReconfigureDepthTexture(DepthTextureInfo& texture, Pica::Regs::DepthFormat format, u32 width, u32 height) { GLint internal_format; texture.format = format; texture.width = width; texture.height = height; switch (format) { case Pica::Regs::DepthFormat::D16: internal_format = GL_DEPTH_COMPONENT16; texture.gl_format = GL_DEPTH_COMPONENT; texture.gl_type = GL_UNSIGNED_SHORT; break; case Pica::Regs::DepthFormat::D24: internal_format = GL_DEPTH_COMPONENT24; texture.gl_format = GL_DEPTH_COMPONENT; texture.gl_type = GL_UNSIGNED_INT; break; case Pica::Regs::DepthFormat::D24S8: internal_format = GL_DEPTH24_STENCIL8; texture.gl_format = GL_DEPTH_STENCIL; texture.gl_type = GL_UNSIGNED_INT_24_8; break; default: LOG_CRITICAL(Render_OpenGL, "Unknown framebuffer texture depth format %x", format); UNIMPLEMENTED(); break; } state.texture_units[0].texture_2d = texture.texture.handle; state.Apply(); glActiveTexture(GL_TEXTURE0); glTexImage2D(GL_TEXTURE_2D, 0, internal_format, texture.width, texture.height, 0, texture.gl_format, texture.gl_type, nullptr); state.texture_units[0].texture_2d = 0; state.Apply(); } void RasterizerOpenGL::SetShader() { PicaShaderConfig config = PicaShaderConfig::CurrentConfig(); std::unique_ptr shader = std::make_unique(); // Find (or generate) the GLSL shader for the current TEV state auto cached_shader = shader_cache.find(config); if (cached_shader != shader_cache.end()) { current_shader = cached_shader->second.get(); state.draw.shader_program = current_shader->shader.handle; state.Apply(); } else { LOG_DEBUG(Render_OpenGL, "Creating new shader"); shader->shader.Create(GLShader::GenerateVertexShader().c_str(), GLShader::GenerateFragmentShader(config).c_str()); state.draw.shader_program = shader->shader.handle; state.Apply(); // Set the texture samplers to correspond to different texture units GLuint uniform_tex = glGetUniformLocation(shader->shader.handle, "tex[0]"); if (uniform_tex != -1) { glUniform1i(uniform_tex, 0); } uniform_tex = glGetUniformLocation(shader->shader.handle, "tex[1]"); if (uniform_tex != -1) { glUniform1i(uniform_tex, 1); } uniform_tex = glGetUniformLocation(shader->shader.handle, "tex[2]"); if (uniform_tex != -1) { glUniform1i(uniform_tex, 2); } // Set the texture samplers to correspond to different lookup table texture units GLuint uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[0]"); if (uniform_lut != -1) { glUniform1i(uniform_lut, 3); } uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[1]"); if (uniform_lut != -1) { glUniform1i(uniform_lut, 4); } uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[2]"); if (uniform_lut != -1) { glUniform1i(uniform_lut, 5); } uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[3]"); if (uniform_lut != -1) { glUniform1i(uniform_lut, 6); } uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[4]"); if (uniform_lut != -1) { glUniform1i(uniform_lut, 7); } uniform_lut = glGetUniformLocation(shader->shader.handle, "lut[5]"); if (uniform_lut != -1) { glUniform1i(uniform_lut, 8); } current_shader = shader_cache.emplace(config, std::move(shader)).first->second.get(); unsigned int block_index = glGetUniformBlockIndex(current_shader->shader.handle, "shader_data"); glUniformBlockBinding(current_shader->shader.handle, block_index, 0); // Update uniforms SyncAlphaTest(); SyncCombinerColor(); auto& tev_stages = Pica::g_state.regs.GetTevStages(); for (int index = 0; index < tev_stages.size(); ++index) SyncTevConstColor(index, tev_stages[index]); SyncGlobalAmbient(); for (int light_index = 0; light_index < 8; light_index++) { SyncLightDiffuse(light_index); SyncLightAmbient(light_index); SyncLightPosition(light_index); } } } void RasterizerOpenGL::SyncFramebuffer() { const auto& regs = Pica::g_state.regs; PAddr new_fb_color_addr = regs.framebuffer.GetColorBufferPhysicalAddress(); Pica::Regs::ColorFormat new_fb_color_format = regs.framebuffer.color_format; PAddr new_fb_depth_addr = regs.framebuffer.GetDepthBufferPhysicalAddress(); Pica::Regs::DepthFormat new_fb_depth_format = regs.framebuffer.depth_format; bool fb_size_changed = fb_color_texture.width != static_cast(regs.framebuffer.GetWidth()) || fb_color_texture.height != static_cast(regs.framebuffer.GetHeight()); bool color_fb_prop_changed = fb_color_texture.format != new_fb_color_format || fb_size_changed; bool depth_fb_prop_changed = fb_depth_texture.format != new_fb_depth_format || fb_size_changed; bool color_fb_modified = cached_fb_color_addr != new_fb_color_addr || color_fb_prop_changed; bool depth_fb_modified = cached_fb_depth_addr != new_fb_depth_addr || depth_fb_prop_changed; // Commit if framebuffer modified in any way if (color_fb_modified) CommitColorBuffer(); if (depth_fb_modified) CommitDepthBuffer(); // Reconfigure framebuffer textures if any property has changed if (color_fb_prop_changed) { ReconfigureColorTexture(fb_color_texture, new_fb_color_format, regs.framebuffer.GetWidth(), regs.framebuffer.GetHeight()); } if (depth_fb_prop_changed) { ReconfigureDepthTexture(fb_depth_texture, new_fb_depth_format, regs.framebuffer.GetWidth(), regs.framebuffer.GetHeight()); // Only attach depth buffer as stencil if it supports stencil switch (new_fb_depth_format) { case Pica::Regs::DepthFormat::D16: case Pica::Regs::DepthFormat::D24: glFramebufferTexture2D(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0); break; case Pica::Regs::DepthFormat::D24S8: glFramebufferTexture2D(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, fb_depth_texture.texture.handle, 0); break; default: LOG_CRITICAL(Render_OpenGL, "Unknown framebuffer depth format %x", new_fb_depth_format); UNIMPLEMENTED(); break; } } // Load buffer data again if fb modified in any way if (color_fb_modified) { cached_fb_color_addr = new_fb_color_addr; ReloadColorBuffer(); } if (depth_fb_modified) { cached_fb_depth_addr = new_fb_depth_addr; ReloadDepthBuffer(); } GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); ASSERT_MSG(status == GL_FRAMEBUFFER_COMPLETE, "OpenGL rasterizer framebuffer setup failed, status %X", status); } void RasterizerOpenGL::SyncCullMode() { const auto& regs = Pica::g_state.regs; switch (regs.cull_mode) { case Pica::Regs::CullMode::KeepAll: state.cull.enabled = false; break; case Pica::Regs::CullMode::KeepClockWise: state.cull.enabled = true; state.cull.front_face = GL_CW; break; case Pica::Regs::CullMode::KeepCounterClockWise: state.cull.enabled = true; state.cull.front_face = GL_CCW; break; default: LOG_CRITICAL(Render_OpenGL, "Unknown cull mode %d", regs.cull_mode.Value()); UNIMPLEMENTED(); break; } } void RasterizerOpenGL::SyncDepthModifiers() { float depth_scale = -Pica::float24::FromRaw(Pica::g_state.regs.viewport_depth_range).ToFloat32(); float depth_offset = Pica::float24::FromRaw(Pica::g_state.regs.viewport_depth_far_plane).ToFloat32() / 2.0f; // TODO: Implement scale modifier uniform_block_data.data.depth_offset = depth_offset; uniform_block_data.dirty = true; } void RasterizerOpenGL::SyncBlendEnabled() { state.blend.enabled = (Pica::g_state.regs.output_merger.alphablend_enable == 1); } void RasterizerOpenGL::SyncBlendFuncs() { const auto& regs = Pica::g_state.regs; state.blend.src_rgb_func = PicaToGL::BlendFunc(regs.output_merger.alpha_blending.factor_source_rgb); state.blend.dst_rgb_func = PicaToGL::BlendFunc(regs.output_merger.alpha_blending.factor_dest_rgb); state.blend.src_a_func = PicaToGL::BlendFunc(regs.output_merger.alpha_blending.factor_source_a); state.blend.dst_a_func = PicaToGL::BlendFunc(regs.output_merger.alpha_blending.factor_dest_a); } void RasterizerOpenGL::SyncBlendColor() { auto blend_color = PicaToGL::ColorRGBA8(Pica::g_state.regs.output_merger.blend_const.raw); state.blend.color.red = blend_color[0]; state.blend.color.green = blend_color[1]; state.blend.color.blue = blend_color[2]; state.blend.color.alpha = blend_color[3]; } void RasterizerOpenGL::SyncAlphaTest() { const auto& regs = Pica::g_state.regs; if (regs.output_merger.alpha_test.ref != uniform_block_data.data.alphatest_ref) { uniform_block_data.data.alphatest_ref = regs.output_merger.alpha_test.ref; uniform_block_data.dirty = true; } } void RasterizerOpenGL::SyncLogicOp() { state.logic_op = PicaToGL::LogicOp(Pica::g_state.regs.output_merger.logic_op); } void RasterizerOpenGL::SyncColorWriteMask() { const auto& regs = Pica::g_state.regs; auto IsColorWriteEnabled = [&](u32 value) { return (regs.framebuffer.allow_color_write != 0 && value != 0) ? GL_TRUE : GL_FALSE; }; state.color_mask.red_enabled = IsColorWriteEnabled(regs.output_merger.red_enable); state.color_mask.green_enabled = IsColorWriteEnabled(regs.output_merger.green_enable); state.color_mask.blue_enabled = IsColorWriteEnabled(regs.output_merger.blue_enable); state.color_mask.alpha_enabled = IsColorWriteEnabled(regs.output_merger.alpha_enable); } void RasterizerOpenGL::SyncStencilWriteMask() { const auto& regs = Pica::g_state.regs; state.stencil.write_mask = (regs.framebuffer.allow_depth_stencil_write != 0) ? static_cast(regs.output_merger.stencil_test.write_mask) : 0; } void RasterizerOpenGL::SyncDepthWriteMask() { const auto& regs = Pica::g_state.regs; state.depth.write_mask = (regs.framebuffer.allow_depth_stencil_write != 0 && regs.output_merger.depth_write_enable) ? GL_TRUE : GL_FALSE; } void RasterizerOpenGL::SyncStencilTest() { const auto& regs = Pica::g_state.regs; state.stencil.test_enabled = regs.output_merger.stencil_test.enable && regs.framebuffer.depth_format == Pica::Regs::DepthFormat::D24S8; state.stencil.test_func = PicaToGL::CompareFunc(regs.output_merger.stencil_test.func); state.stencil.test_ref = regs.output_merger.stencil_test.reference_value; state.stencil.test_mask = regs.output_merger.stencil_test.input_mask; state.stencil.action_stencil_fail = PicaToGL::StencilOp(regs.output_merger.stencil_test.action_stencil_fail); state.stencil.action_depth_fail = PicaToGL::StencilOp(regs.output_merger.stencil_test.action_depth_fail); state.stencil.action_depth_pass = PicaToGL::StencilOp(regs.output_merger.stencil_test.action_depth_pass); } void RasterizerOpenGL::SyncDepthTest() { const auto& regs = Pica::g_state.regs; state.depth.test_enabled = regs.output_merger.depth_test_enable == 1 || regs.output_merger.depth_write_enable == 1; state.depth.test_func = regs.output_merger.depth_test_enable == 1 ? PicaToGL::CompareFunc(regs.output_merger.depth_test_func) : GL_ALWAYS; } void RasterizerOpenGL::SyncCombinerColor() { auto combiner_color = PicaToGL::ColorRGBA8(Pica::g_state.regs.tev_combiner_buffer_color.raw); if (combiner_color != uniform_block_data.data.tev_combiner_buffer_color) { uniform_block_data.data.tev_combiner_buffer_color = combiner_color; uniform_block_data.dirty = true; } } void RasterizerOpenGL::SyncTevConstColor(int stage_index, const Pica::Regs::TevStageConfig& tev_stage) { auto const_color = PicaToGL::ColorRGBA8(tev_stage.const_color); if (const_color != uniform_block_data.data.const_color[stage_index]) { uniform_block_data.data.const_color[stage_index] = const_color; uniform_block_data.dirty = true; } } void RasterizerOpenGL::SyncGlobalAmbient() { auto color = PicaToGL::LightColor(Pica::g_state.regs.lighting.global_ambient); if (color != uniform_block_data.data.lighting_global_ambient) { uniform_block_data.data.lighting_global_ambient = color; uniform_block_data.dirty = true; } } void RasterizerOpenGL::SyncLightingLUT(unsigned lut_index) { std::array new_data; for (unsigned offset = 0; offset < new_data.size(); ++offset) { new_data[offset][0] = Pica::g_state.lighting.luts[(lut_index * 4) + 0][offset].ToFloat(); new_data[offset][1] = Pica::g_state.lighting.luts[(lut_index * 4) + 1][offset].ToFloat(); new_data[offset][2] = Pica::g_state.lighting.luts[(lut_index * 4) + 2][offset].ToFloat(); new_data[offset][3] = Pica::g_state.lighting.luts[(lut_index * 4) + 3][offset].ToFloat(); } if (new_data != lighting_lut_data[lut_index]) { lighting_lut_data[lut_index] = new_data; glActiveTexture(GL_TEXTURE3 + lut_index); glTexSubImage1D(GL_TEXTURE_1D, 0, 0, 256, GL_RGBA, GL_FLOAT, lighting_lut_data[lut_index].data()); } } void RasterizerOpenGL::SyncLightSpecular0(int light_index) { auto color = PicaToGL::LightColor(Pica::g_state.regs.lighting.light[light_index].specular_0); if (color != uniform_block_data.data.light_src[light_index].specular_0) { uniform_block_data.data.light_src[light_index].specular_0 = color; uniform_block_data.dirty = true; } } void RasterizerOpenGL::SyncLightSpecular1(int light_index) { auto color = PicaToGL::LightColor(Pica::g_state.regs.lighting.light[light_index].specular_1); if (color != uniform_block_data.data.light_src[light_index].specular_1) { uniform_block_data.data.light_src[light_index].specular_1 = color; uniform_block_data.dirty = true; } } void RasterizerOpenGL::SyncLightDiffuse(int light_index) { auto color = PicaToGL::LightColor(Pica::g_state.regs.lighting.light[light_index].diffuse); if (color != uniform_block_data.data.light_src[light_index].diffuse) { uniform_block_data.data.light_src[light_index].diffuse = color; uniform_block_data.dirty = true; } } void RasterizerOpenGL::SyncLightAmbient(int light_index) { auto color = PicaToGL::LightColor(Pica::g_state.regs.lighting.light[light_index].ambient); if (color != uniform_block_data.data.light_src[light_index].ambient) { uniform_block_data.data.light_src[light_index].ambient = color; uniform_block_data.dirty = true; } } void RasterizerOpenGL::SyncLightPosition(int light_index) { GLvec3 position = { Pica::float16::FromRaw(Pica::g_state.regs.lighting.light[light_index].x).ToFloat32(), Pica::float16::FromRaw(Pica::g_state.regs.lighting.light[light_index].y).ToFloat32(), Pica::float16::FromRaw(Pica::g_state.regs.lighting.light[light_index].z).ToFloat32() }; if (position != uniform_block_data.data.light_src[light_index].position) { uniform_block_data.data.light_src[light_index].position = position; uniform_block_data.dirty = true; } } void RasterizerOpenGL::SyncDrawState() { const auto& regs = Pica::g_state.regs; // Sync the viewport GLsizei viewport_width = (GLsizei)Pica::float24::FromRaw(regs.viewport_size_x).ToFloat32() * 2; GLsizei viewport_height = (GLsizei)Pica::float24::FromRaw(regs.viewport_size_y).ToFloat32() * 2; // OpenGL uses different y coordinates, so negate corner offset and flip origin // TODO: Ensure viewport_corner.x should not be negated or origin flipped // TODO: Use floating-point viewports for accuracy if supported glViewport((GLsizei)regs.viewport_corner.x, (GLsizei)regs.viewport_corner.y, viewport_width, viewport_height); // Sync bound texture(s), upload if not cached const auto pica_textures = regs.GetTextures(); for (unsigned texture_index = 0; texture_index < pica_textures.size(); ++texture_index) { const auto& texture = pica_textures[texture_index]; if (texture.enabled) { texture_samplers[texture_index].SyncWithConfig(texture.config); res_cache.LoadAndBindTexture(state, texture_index, texture); } else { state.texture_units[texture_index].texture_2d = 0; } } state.draw.uniform_buffer = uniform_buffer.handle; state.Apply(); } MICROPROFILE_DEFINE(OpenGL_FramebufferReload, "OpenGL", "FB Reload", MP_RGB(70, 70, 200)); void RasterizerOpenGL::ReloadColorBuffer() { u8* color_buffer = Memory::GetPhysicalPointer(cached_fb_color_addr); if (color_buffer == nullptr) return; MICROPROFILE_SCOPE(OpenGL_FramebufferReload); u32 bytes_per_pixel = Pica::Regs::BytesPerColorPixel(fb_color_texture.format); std::unique_ptr temp_fb_color_buffer(new u8[fb_color_texture.width * fb_color_texture.height * bytes_per_pixel]); // Directly copy pixels. Internal OpenGL color formats are consistent so no conversion is necessary. for (int y = 0; y < fb_color_texture.height; ++y) { for (int x = 0; x < fb_color_texture.width; ++x) { const u32 coarse_y = y & ~7; u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * fb_color_texture.width * bytes_per_pixel; u32 gl_pixel_index = (x + (fb_color_texture.height - 1 - y) * fb_color_texture.width) * bytes_per_pixel; u8* pixel = color_buffer + dst_offset; memcpy(&temp_fb_color_buffer[gl_pixel_index], pixel, bytes_per_pixel); } } state.texture_units[0].texture_2d = fb_color_texture.texture.handle; state.Apply(); glActiveTexture(GL_TEXTURE0); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, fb_color_texture.width, fb_color_texture.height, fb_color_texture.gl_format, fb_color_texture.gl_type, temp_fb_color_buffer.get()); state.texture_units[0].texture_2d = 0; state.Apply(); } void RasterizerOpenGL::ReloadDepthBuffer() { if (cached_fb_depth_addr == 0) return; // TODO: Appears to work, but double-check endianness of depth values and order of depth-stencil u8* depth_buffer = Memory::GetPhysicalPointer(cached_fb_depth_addr); if (depth_buffer == nullptr) return; MICROPROFILE_SCOPE(OpenGL_FramebufferReload); u32 bytes_per_pixel = Pica::Regs::BytesPerDepthPixel(fb_depth_texture.format); // OpenGL needs 4 bpp alignment for D24 u32 gl_bpp = bytes_per_pixel == 3 ? 4 : bytes_per_pixel; std::unique_ptr temp_fb_depth_buffer(new u8[fb_depth_texture.width * fb_depth_texture.height * gl_bpp]); u8* temp_fb_depth_data = bytes_per_pixel == 3 ? (temp_fb_depth_buffer.get() + 1) : temp_fb_depth_buffer.get(); if (fb_depth_texture.format == Pica::Regs::DepthFormat::D24S8) { for (int y = 0; y < fb_depth_texture.height; ++y) { for (int x = 0; x < fb_depth_texture.width; ++x) { const u32 coarse_y = y & ~7; u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * fb_depth_texture.width * bytes_per_pixel; u32 gl_pixel_index = (x + (fb_depth_texture.height - 1 - y) * fb_depth_texture.width); u8* pixel = depth_buffer + dst_offset; u32 depth_stencil = *(u32*)pixel; ((u32*)temp_fb_depth_data)[gl_pixel_index] = (depth_stencil << 8) | (depth_stencil >> 24); } } } else { for (int y = 0; y < fb_depth_texture.height; ++y) { for (int x = 0; x < fb_depth_texture.width; ++x) { const u32 coarse_y = y & ~7; u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * fb_depth_texture.width * bytes_per_pixel; u32 gl_pixel_index = (x + (fb_depth_texture.height - 1 - y) * fb_depth_texture.width) * gl_bpp; u8* pixel = depth_buffer + dst_offset; memcpy(&temp_fb_depth_data[gl_pixel_index], pixel, bytes_per_pixel); } } } state.texture_units[0].texture_2d = fb_depth_texture.texture.handle; state.Apply(); glActiveTexture(GL_TEXTURE0); if (fb_depth_texture.format == Pica::Regs::DepthFormat::D24S8) { // TODO(Subv): There is a bug with Intel Windows drivers that makes glTexSubImage2D not change the stencil buffer. // The bug has been reported to Intel (https://communities.intel.com/message/324464) glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH24_STENCIL8, fb_depth_texture.width, fb_depth_texture.height, 0, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, temp_fb_depth_buffer.get()); } else { glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, fb_depth_texture.width, fb_depth_texture.height, fb_depth_texture.gl_format, fb_depth_texture.gl_type, temp_fb_depth_buffer.get()); } state.texture_units[0].texture_2d = 0; state.Apply(); } Common::Profiling::TimingCategory buffer_commit_category("Framebuffer Commit"); MICROPROFILE_DEFINE(OpenGL_FramebufferCommit, "OpenGL", "FB Commit", MP_RGB(70, 70, 200)); void RasterizerOpenGL::CommitColorBuffer() { if (cached_fb_color_addr != 0) { u8* color_buffer = Memory::GetPhysicalPointer(cached_fb_color_addr); if (color_buffer != nullptr) { Common::Profiling::ScopeTimer timer(buffer_commit_category); MICROPROFILE_SCOPE(OpenGL_FramebufferCommit); u32 bytes_per_pixel = Pica::Regs::BytesPerColorPixel(fb_color_texture.format); std::unique_ptr temp_gl_color_buffer(new u8[fb_color_texture.width * fb_color_texture.height * bytes_per_pixel]); state.texture_units[0].texture_2d = fb_color_texture.texture.handle; state.Apply(); glActiveTexture(GL_TEXTURE0); glGetTexImage(GL_TEXTURE_2D, 0, fb_color_texture.gl_format, fb_color_texture.gl_type, temp_gl_color_buffer.get()); state.texture_units[0].texture_2d = 0; state.Apply(); // Directly copy pixels. Internal OpenGL color formats are consistent so no conversion is necessary. for (int y = 0; y < fb_color_texture.height; ++y) { for (int x = 0; x < fb_color_texture.width; ++x) { const u32 coarse_y = y & ~7; u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * fb_color_texture.width * bytes_per_pixel; u32 gl_pixel_index = x * bytes_per_pixel + (fb_color_texture.height - 1 - y) * fb_color_texture.width * bytes_per_pixel; u8* pixel = color_buffer + dst_offset; memcpy(pixel, &temp_gl_color_buffer[gl_pixel_index], bytes_per_pixel); } } } } } void RasterizerOpenGL::CommitDepthBuffer() { if (cached_fb_depth_addr != 0) { // TODO: Output seems correct visually, but doesn't quite match sw renderer output. One of them is wrong. u8* depth_buffer = Memory::GetPhysicalPointer(cached_fb_depth_addr); if (depth_buffer != nullptr) { Common::Profiling::ScopeTimer timer(buffer_commit_category); MICROPROFILE_SCOPE(OpenGL_FramebufferCommit); u32 bytes_per_pixel = Pica::Regs::BytesPerDepthPixel(fb_depth_texture.format); // OpenGL needs 4 bpp alignment for D24 u32 gl_bpp = bytes_per_pixel == 3 ? 4 : bytes_per_pixel; std::unique_ptr temp_gl_depth_buffer(new u8[fb_depth_texture.width * fb_depth_texture.height * gl_bpp]); state.texture_units[0].texture_2d = fb_depth_texture.texture.handle; state.Apply(); glActiveTexture(GL_TEXTURE0); glGetTexImage(GL_TEXTURE_2D, 0, fb_depth_texture.gl_format, fb_depth_texture.gl_type, temp_gl_depth_buffer.get()); state.texture_units[0].texture_2d = 0; state.Apply(); u8* temp_gl_depth_data = bytes_per_pixel == 3 ? (temp_gl_depth_buffer.get() + 1) : temp_gl_depth_buffer.get(); if (fb_depth_texture.format == Pica::Regs::DepthFormat::D24S8) { for (int y = 0; y < fb_depth_texture.height; ++y) { for (int x = 0; x < fb_depth_texture.width; ++x) { const u32 coarse_y = y & ~7; u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * fb_depth_texture.width * bytes_per_pixel; u32 gl_pixel_index = (x + (fb_depth_texture.height - 1 - y) * fb_depth_texture.width); u8* pixel = depth_buffer + dst_offset; u32 depth_stencil = ((u32*)temp_gl_depth_data)[gl_pixel_index]; *(u32*)pixel = (depth_stencil >> 8) | (depth_stencil << 24); } } } else { for (int y = 0; y < fb_depth_texture.height; ++y) { for (int x = 0; x < fb_depth_texture.width; ++x) { const u32 coarse_y = y & ~7; u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * fb_depth_texture.width * bytes_per_pixel; u32 gl_pixel_index = (x + (fb_depth_texture.height - 1 - y) * fb_depth_texture.width) * gl_bpp; u8* pixel = depth_buffer + dst_offset; memcpy(pixel, &temp_gl_depth_data[gl_pixel_index], bytes_per_pixel); } } } } } }