// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include #include #include #include #include "common/alignment.h" #include "common/assert.h" #include "common/logging/log.h" #include "common/math_util.h" #include "common/microprofile.h" #include "common/scope_exit.h" #include "core/core.h" #include "core/hle/kernel/process.h" #include "core/memory.h" #include "core/settings.h" #include "video_core/engines/kepler_compute.h" #include "video_core/engines/maxwell_3d.h" #include "video_core/engines/shader_type.h" #include "video_core/memory_manager.h" #include "video_core/renderer_opengl/gl_query_cache.h" #include "video_core/renderer_opengl/gl_rasterizer.h" #include "video_core/renderer_opengl/gl_shader_cache.h" #include "video_core/renderer_opengl/maxwell_to_gl.h" #include "video_core/renderer_opengl/renderer_opengl.h" namespace OpenGL { using Maxwell = Tegra::Engines::Maxwell3D::Regs; using Tegra::Engines::ShaderType; using VideoCore::Surface::PixelFormat; using VideoCore::Surface::SurfaceTarget; using VideoCore::Surface::SurfaceType; MICROPROFILE_DEFINE(OpenGL_VAO, "OpenGL", "Vertex Format Setup", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_VB, "OpenGL", "Vertex Buffer Setup", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_Shader, "OpenGL", "Shader Setup", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_UBO, "OpenGL", "Const Buffer Setup", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_Index, "OpenGL", "Index Buffer Setup", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_Texture, "OpenGL", "Texture Setup", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_Framebuffer, "OpenGL", "Framebuffer Setup", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_Drawing, "OpenGL", "Drawing", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_Blits, "OpenGL", "Blits", MP_RGB(128, 128, 192)); MICROPROFILE_DEFINE(OpenGL_CacheManagement, "OpenGL", "Cache Mgmt", MP_RGB(100, 255, 100)); MICROPROFILE_DEFINE(OpenGL_PrimitiveAssembly, "OpenGL", "Prim Asmbl", MP_RGB(255, 100, 100)); namespace { constexpr std::size_t NumSupportedVertexAttributes = 16; template Tegra::Texture::FullTextureInfo GetTextureInfo(const Engine& engine, const Entry& entry, ShaderType shader_type, std::size_t index = 0) { if (entry.IsBindless()) { const Tegra::Texture::TextureHandle tex_handle = engine.AccessConstBuffer32(shader_type, entry.GetBuffer(), entry.GetOffset()); return engine.GetTextureInfo(tex_handle); } const auto& gpu_profile = engine.AccessGuestDriverProfile(); const u32 offset = entry.GetOffset() + static_cast(index * gpu_profile.GetTextureHandlerSize()); if constexpr (std::is_same_v) { return engine.GetStageTexture(shader_type, offset); } else { return engine.GetTexture(offset); } } std::size_t GetConstBufferSize(const Tegra::Engines::ConstBufferInfo& buffer, const ConstBufferEntry& entry) { if (!entry.IsIndirect()) { return entry.GetSize(); } if (buffer.size > Maxwell::MaxConstBufferSize) { LOG_WARNING(Render_OpenGL, "Indirect constbuffer size {} exceeds maximum {}", buffer.size, Maxwell::MaxConstBufferSize); return Maxwell::MaxConstBufferSize; } return buffer.size; } void oglEnable(GLenum cap, bool state) { (state ? glEnable : glDisable)(cap); } } // Anonymous namespace RasterizerOpenGL::RasterizerOpenGL(Core::System& system, Core::Frontend::EmuWindow& emu_window, ScreenInfo& info, GLShader::ProgramManager& program_manager, StateTracker& state_tracker) : RasterizerAccelerated{system.Memory()}, texture_cache{system, *this, device, state_tracker}, shader_cache{*this, system, emu_window, device}, query_cache{system, *this}, system{system}, screen_info{info}, program_manager{program_manager}, state_tracker{state_tracker}, buffer_cache{*this, system, device, STREAM_BUFFER_SIZE} { CheckExtensions(); } RasterizerOpenGL::~RasterizerOpenGL() {} void RasterizerOpenGL::CheckExtensions() { if (!GLAD_GL_ARB_texture_filter_anisotropic && !GLAD_GL_EXT_texture_filter_anisotropic) { LOG_WARNING( Render_OpenGL, "Anisotropic filter is not supported! This can cause graphical issues in some games."); } } void RasterizerOpenGL::SetupVertexFormat() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::VertexFormats]) { return; } flags[Dirty::VertexFormats] = false; MICROPROFILE_SCOPE(OpenGL_VAO); // Use the vertex array as-is, assumes that the data is formatted correctly for OpenGL. Enables // the first 16 vertex attributes always, as we don't know which ones are actually used until // shader time. Note, Tegra technically supports 32, but we're capping this to 16 for now to // avoid OpenGL errors. // TODO(Subv): Analyze the shader to identify which attributes are actually used and don't // assume every shader uses them all. for (std::size_t index = 0; index < NumSupportedVertexAttributes; ++index) { if (!flags[Dirty::VertexFormat0 + index]) { continue; } flags[Dirty::VertexFormat0 + index] = false; const auto attrib = gpu.regs.vertex_attrib_format[index]; const auto gl_index = static_cast(index); // Ignore invalid attributes. if (!attrib.IsValid()) { glDisableVertexAttribArray(gl_index); continue; } glEnableVertexAttribArray(gl_index); if (attrib.type == Maxwell::VertexAttribute::Type::SignedInt || attrib.type == Maxwell::VertexAttribute::Type::UnsignedInt) { glVertexAttribIFormat(gl_index, attrib.ComponentCount(), MaxwellToGL::VertexType(attrib), attrib.offset); } else { glVertexAttribFormat(gl_index, attrib.ComponentCount(), MaxwellToGL::VertexType(attrib), attrib.IsNormalized() ? GL_TRUE : GL_FALSE, attrib.offset); } glVertexAttribBinding(gl_index, attrib.buffer); } } void RasterizerOpenGL::SetupVertexBuffer() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::VertexBuffers]) { return; } flags[Dirty::VertexBuffers] = false; MICROPROFILE_SCOPE(OpenGL_VB); // Upload all guest vertex arrays sequentially to our buffer const auto& regs = gpu.regs; for (std::size_t index = 0; index < Maxwell::NumVertexArrays; ++index) { if (!flags[Dirty::VertexBuffer0 + index]) { continue; } flags[Dirty::VertexBuffer0 + index] = false; const auto& vertex_array = regs.vertex_array[index]; if (!vertex_array.IsEnabled()) { continue; } const GPUVAddr start = vertex_array.StartAddress(); const GPUVAddr end = regs.vertex_array_limit[index].LimitAddress(); ASSERT(end > start); const u64 size = end - start + 1; const auto [vertex_buffer, vertex_buffer_offset] = buffer_cache.UploadMemory(start, size); // Bind the vertex array to the buffer at the current offset. vertex_array_pushbuffer.SetVertexBuffer(static_cast(index), vertex_buffer, vertex_buffer_offset, vertex_array.stride); } } void RasterizerOpenGL::SetupVertexInstances() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::VertexInstances]) { return; } flags[Dirty::VertexInstances] = false; const auto& regs = gpu.regs; for (std::size_t index = 0; index < NumSupportedVertexAttributes; ++index) { if (!flags[Dirty::VertexInstance0 + index]) { continue; } flags[Dirty::VertexInstance0 + index] = false; const auto gl_index = static_cast(index); const bool instancing_enabled = regs.instanced_arrays.IsInstancingEnabled(gl_index); const GLuint divisor = instancing_enabled ? regs.vertex_array[index].divisor : 0; glVertexBindingDivisor(gl_index, divisor); } } GLintptr RasterizerOpenGL::SetupIndexBuffer() { MICROPROFILE_SCOPE(OpenGL_Index); const auto& regs = system.GPU().Maxwell3D().regs; const std::size_t size = CalculateIndexBufferSize(); const auto [buffer, offset] = buffer_cache.UploadMemory(regs.index_array.IndexStart(), size); vertex_array_pushbuffer.SetIndexBuffer(buffer); return offset; } void RasterizerOpenGL::SetupShaders(GLenum primitive_mode) { MICROPROFILE_SCOPE(OpenGL_Shader); auto& gpu = system.GPU().Maxwell3D(); u32 clip_distances = 0; for (std::size_t index = 0; index < Maxwell::MaxShaderProgram; ++index) { const auto& shader_config = gpu.regs.shader_config[index]; const auto program{static_cast(index)}; // Skip stages that are not enabled if (!gpu.regs.IsShaderConfigEnabled(index)) { switch (program) { case Maxwell::ShaderProgram::Geometry: program_manager.UseGeometryShader(0); break; case Maxwell::ShaderProgram::Fragment: program_manager.UseFragmentShader(0); break; default: break; } continue; } // Currently this stages are not supported in the OpenGL backend. // Todo(Blinkhawk): Port tesselation shaders from Vulkan to OpenGL if (program == Maxwell::ShaderProgram::TesselationControl) { continue; } else if (program == Maxwell::ShaderProgram::TesselationEval) { continue; } Shader shader{shader_cache.GetStageProgram(program)}; // Stage indices are 0 - 5 const std::size_t stage = index == 0 ? 0 : index - 1; SetupDrawConstBuffers(stage, shader); SetupDrawGlobalMemory(stage, shader); SetupDrawTextures(stage, shader); SetupDrawImages(stage, shader); const GLuint program_handle = shader->GetHandle(); switch (program) { case Maxwell::ShaderProgram::VertexA: case Maxwell::ShaderProgram::VertexB: program_manager.UseVertexShader(program_handle); break; case Maxwell::ShaderProgram::Geometry: program_manager.UseGeometryShader(program_handle); break; case Maxwell::ShaderProgram::Fragment: program_manager.UseFragmentShader(program_handle); break; default: UNIMPLEMENTED_MSG("Unimplemented shader index={}, enable={}, offset=0x{:08X}", index, shader_config.enable.Value(), shader_config.offset); } // Workaround for Intel drivers. // When a clip distance is enabled but not set in the shader it crops parts of the screen // (sometimes it's half the screen, sometimes three quarters). To avoid this, enable the // clip distances only when it's written by a shader stage. clip_distances |= shader->GetEntries().clip_distances; // When VertexA is enabled, we have dual vertex shaders if (program == Maxwell::ShaderProgram::VertexA) { // VertexB was combined with VertexA, so we skip the VertexB iteration ++index; } } SyncClipEnabled(clip_distances); gpu.dirty.flags[Dirty::Shaders] = false; } std::size_t RasterizerOpenGL::CalculateVertexArraysSize() const { const auto& regs = system.GPU().Maxwell3D().regs; std::size_t size = 0; for (u32 index = 0; index < Maxwell::NumVertexArrays; ++index) { if (!regs.vertex_array[index].IsEnabled()) continue; const GPUVAddr start = regs.vertex_array[index].StartAddress(); const GPUVAddr end = regs.vertex_array_limit[index].LimitAddress(); ASSERT(end > start); size += end - start + 1; } return size; } std::size_t RasterizerOpenGL::CalculateIndexBufferSize() const { const auto& regs = system.GPU().Maxwell3D().regs; return static_cast(regs.index_array.count) * static_cast(regs.index_array.FormatSizeInBytes()); } void RasterizerOpenGL::LoadDiskResources(const std::atomic_bool& stop_loading, const VideoCore::DiskResourceLoadCallback& callback) { shader_cache.LoadDiskCache(stop_loading, callback); } void RasterizerOpenGL::SetupDirtyFlags() { state_tracker.Initialize(); } void RasterizerOpenGL::ConfigureFramebuffers() { MICROPROFILE_SCOPE(OpenGL_Framebuffer); auto& gpu = system.GPU().Maxwell3D(); if (!gpu.dirty.flags[VideoCommon::Dirty::RenderTargets]) { return; } gpu.dirty.flags[VideoCommon::Dirty::RenderTargets] = false; texture_cache.GuardRenderTargets(true); View depth_surface = texture_cache.GetDepthBufferSurface(true); const auto& regs = gpu.regs; UNIMPLEMENTED_IF(regs.rt_separate_frag_data == 0); // Bind the framebuffer surfaces FramebufferCacheKey key; const auto colors_count = static_cast(regs.rt_control.count); for (std::size_t index = 0; index < colors_count; ++index) { View color_surface{texture_cache.GetColorBufferSurface(index, true)}; if (!color_surface) { continue; } // Assume that a surface will be written to if it is used as a framebuffer, even // if the shader doesn't actually write to it. texture_cache.MarkColorBufferInUse(index); key.SetAttachment(index, regs.rt_control.GetMap(index)); key.colors[index] = std::move(color_surface); } if (depth_surface) { // Assume that a surface will be written to if it is used as a framebuffer, even if // the shader doesn't actually write to it. texture_cache.MarkDepthBufferInUse(); key.zeta = std::move(depth_surface); } texture_cache.GuardRenderTargets(false); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, framebuffer_cache.GetFramebuffer(key)); } void RasterizerOpenGL::ConfigureClearFramebuffer(bool using_color_fb, bool using_depth_fb, bool using_stencil_fb) { auto& gpu = system.GPU().Maxwell3D(); const auto& regs = gpu.regs; texture_cache.GuardRenderTargets(true); View color_surface; if (using_color_fb) { const std::size_t index = regs.clear_buffers.RT; color_surface = texture_cache.GetColorBufferSurface(index, true); texture_cache.MarkColorBufferInUse(index); } View depth_surface; if (using_depth_fb || using_stencil_fb) { depth_surface = texture_cache.GetDepthBufferSurface(true); texture_cache.MarkDepthBufferInUse(); } texture_cache.GuardRenderTargets(false); FramebufferCacheKey key; key.colors[0] = color_surface; key.zeta = depth_surface; state_tracker.NotifyFramebuffer(); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, framebuffer_cache.GetFramebuffer(key)); } void RasterizerOpenGL::Clear() { const auto& gpu = system.GPU().Maxwell3D(); if (!gpu.ShouldExecute()) { return; } const auto& regs = gpu.regs; bool use_color{}; bool use_depth{}; bool use_stencil{}; if (regs.clear_buffers.R || regs.clear_buffers.G || regs.clear_buffers.B || regs.clear_buffers.A) { use_color = true; } if (use_color) { state_tracker.NotifyColorMask0(); glColorMaski(0, regs.clear_buffers.R != 0, regs.clear_buffers.G != 0, regs.clear_buffers.B != 0, regs.clear_buffers.A != 0); // TODO(Rodrigo): Determine if clamping is used on clears SyncFragmentColorClampState(); SyncFramebufferSRGB(); } if (regs.clear_buffers.Z) { ASSERT_MSG(regs.zeta_enable != 0, "Tried to clear Z but buffer is not enabled!"); use_depth = true; state_tracker.NotifyDepthMask(); glDepthMask(GL_TRUE); } if (regs.clear_buffers.S) { ASSERT_MSG(regs.zeta_enable, "Tried to clear stencil but buffer is not enabled!"); use_stencil = true; } if (!use_color && !use_depth && !use_stencil) { // No color surface nor depth/stencil surface are enabled return; } SyncRasterizeEnable(); SyncStencilTestState(); if (regs.clear_flags.scissor) { SyncScissorTest(); } else { state_tracker.NotifyScissor0(); glDisablei(GL_SCISSOR_TEST, 0); } UNIMPLEMENTED_IF(regs.clear_flags.viewport); ConfigureClearFramebuffer(use_color, use_depth, use_stencil); if (use_color) { glClearBufferfv(GL_COLOR, 0, regs.clear_color); } if (use_depth && use_stencil) { glClearBufferfi(GL_DEPTH_STENCIL, 0, regs.clear_depth, regs.clear_stencil); } else if (use_depth) { glClearBufferfv(GL_DEPTH, 0, ®s.clear_depth); } else if (use_stencil) { glClearBufferiv(GL_STENCIL, 0, ®s.clear_stencil); } ++num_queued_commands; } void RasterizerOpenGL::Draw(bool is_indexed, bool is_instanced) { MICROPROFILE_SCOPE(OpenGL_Drawing); auto& gpu = system.GPU().Maxwell3D(); query_cache.UpdateCounters(); SyncViewport(); SyncRasterizeEnable(); SyncPolygonModes(); SyncColorMask(); SyncFragmentColorClampState(); SyncMultiSampleState(); SyncDepthTestState(); SyncDepthClamp(); SyncStencilTestState(); SyncBlendState(); SyncLogicOpState(); SyncCullMode(); SyncPrimitiveRestart(); SyncScissorTest(); SyncPointState(); SyncPolygonOffset(); SyncAlphaTest(); SyncFramebufferSRGB(); buffer_cache.Acquire(); std::size_t buffer_size = CalculateVertexArraysSize(); // Add space for index buffer if (is_indexed) { buffer_size = Common::AlignUp(buffer_size, 4) + CalculateIndexBufferSize(); } // Uniform space for the 5 shader stages buffer_size = Common::AlignUp(buffer_size, 4) + (sizeof(GLShader::MaxwellUniformData) + device.GetUniformBufferAlignment()) * Maxwell::MaxShaderStage; // Add space for at least 18 constant buffers buffer_size += Maxwell::MaxConstBuffers * (Maxwell::MaxConstBufferSize + device.GetUniformBufferAlignment()); // Prepare the vertex array. buffer_cache.Map(buffer_size); // Prepare vertex array format. SetupVertexFormat(); vertex_array_pushbuffer.Setup(); // Upload vertex and index data. SetupVertexBuffer(); SetupVertexInstances(); GLintptr index_buffer_offset = 0; if (is_indexed) { index_buffer_offset = SetupIndexBuffer(); } // Prepare packed bindings. bind_ubo_pushbuffer.Setup(); bind_ssbo_pushbuffer.Setup(); // Setup emulation uniform buffer. GLShader::MaxwellUniformData ubo; ubo.SetFromRegs(gpu); const auto [buffer, offset] = buffer_cache.UploadHostMemory(&ubo, sizeof(ubo), device.GetUniformBufferAlignment()); bind_ubo_pushbuffer.Push(EmulationUniformBlockBinding, buffer, offset, static_cast(sizeof(ubo))); // Setup shaders and their used resources. texture_cache.GuardSamplers(true); const GLenum primitive_mode = MaxwellToGL::PrimitiveTopology(gpu.regs.draw.topology); SetupShaders(primitive_mode); texture_cache.GuardSamplers(false); ConfigureFramebuffers(); // Signal the buffer cache that we are not going to upload more things. buffer_cache.Unmap(); // Now that we are no longer uploading data, we can safely bind the buffers to OpenGL. vertex_array_pushbuffer.Bind(); bind_ubo_pushbuffer.Bind(); bind_ssbo_pushbuffer.Bind(); program_manager.BindGraphicsPipeline(); if (texture_cache.TextureBarrier()) { glTextureBarrier(); } BeginTransformFeedback(primitive_mode); const GLuint base_instance = static_cast(gpu.regs.vb_base_instance); const GLsizei num_instances = static_cast(is_instanced ? gpu.mme_draw.instance_count : 1); if (is_indexed) { const GLint base_vertex = static_cast(gpu.regs.vb_element_base); const GLsizei num_vertices = static_cast(gpu.regs.index_array.count); const GLvoid* offset = reinterpret_cast(index_buffer_offset); const GLenum format = MaxwellToGL::IndexFormat(gpu.regs.index_array.format); if (num_instances == 1 && base_instance == 0 && base_vertex == 0) { glDrawElements(primitive_mode, num_vertices, format, offset); } else if (num_instances == 1 && base_instance == 0) { glDrawElementsBaseVertex(primitive_mode, num_vertices, format, offset, base_vertex); } else if (base_vertex == 0 && base_instance == 0) { glDrawElementsInstanced(primitive_mode, num_vertices, format, offset, num_instances); } else if (base_vertex == 0) { glDrawElementsInstancedBaseInstance(primitive_mode, num_vertices, format, offset, num_instances, base_instance); } else if (base_instance == 0) { glDrawElementsInstancedBaseVertex(primitive_mode, num_vertices, format, offset, num_instances, base_vertex); } else { glDrawElementsInstancedBaseVertexBaseInstance(primitive_mode, num_vertices, format, offset, num_instances, base_vertex, base_instance); } } else { const GLint base_vertex = static_cast(gpu.regs.vertex_buffer.first); const GLsizei num_vertices = static_cast(gpu.regs.vertex_buffer.count); if (num_instances == 1 && base_instance == 0) { glDrawArrays(primitive_mode, base_vertex, num_vertices); } else if (base_instance == 0) { glDrawArraysInstanced(primitive_mode, base_vertex, num_vertices, num_instances); } else { glDrawArraysInstancedBaseInstance(primitive_mode, base_vertex, num_vertices, num_instances, base_instance); } } EndTransformFeedback(); ++num_queued_commands; } void RasterizerOpenGL::DispatchCompute(GPUVAddr code_addr) { if (device.HasBrokenCompute()) { return; } buffer_cache.Acquire(); auto kernel = shader_cache.GetComputeKernel(code_addr); SetupComputeTextures(kernel); SetupComputeImages(kernel); program_manager.BindComputeShader(kernel->GetHandle()); const std::size_t buffer_size = Tegra::Engines::KeplerCompute::NumConstBuffers * (Maxwell::MaxConstBufferSize + device.GetUniformBufferAlignment()); buffer_cache.Map(buffer_size); bind_ubo_pushbuffer.Setup(); bind_ssbo_pushbuffer.Setup(); SetupComputeConstBuffers(kernel); SetupComputeGlobalMemory(kernel); buffer_cache.Unmap(); bind_ubo_pushbuffer.Bind(); bind_ssbo_pushbuffer.Bind(); const auto& launch_desc = system.GPU().KeplerCompute().launch_description; glDispatchCompute(launch_desc.grid_dim_x, launch_desc.grid_dim_y, launch_desc.grid_dim_z); ++num_queued_commands; } void RasterizerOpenGL::ResetCounter(VideoCore::QueryType type) { query_cache.ResetCounter(type); } void RasterizerOpenGL::Query(GPUVAddr gpu_addr, VideoCore::QueryType type, std::optional timestamp) { query_cache.Query(gpu_addr, type, timestamp); } void RasterizerOpenGL::FlushAll() {} void RasterizerOpenGL::FlushRegion(VAddr addr, u64 size) { MICROPROFILE_SCOPE(OpenGL_CacheManagement); if (addr == 0 || size == 0) { return; } texture_cache.FlushRegion(addr, size); buffer_cache.FlushRegion(addr, size); query_cache.FlushRegion(addr, size); } void RasterizerOpenGL::InvalidateRegion(VAddr addr, u64 size) { MICROPROFILE_SCOPE(OpenGL_CacheManagement); if (addr == 0 || size == 0) { return; } texture_cache.InvalidateRegion(addr, size); shader_cache.InvalidateRegion(addr, size); buffer_cache.InvalidateRegion(addr, size); query_cache.InvalidateRegion(addr, size); } void RasterizerOpenGL::FlushAndInvalidateRegion(VAddr addr, u64 size) { if (Settings::values.use_accurate_gpu_emulation) { FlushRegion(addr, size); } InvalidateRegion(addr, size); } void RasterizerOpenGL::FlushCommands() { // Only flush when we have commands queued to OpenGL. if (num_queued_commands == 0) { return; } num_queued_commands = 0; glFlush(); } void RasterizerOpenGL::TickFrame() { // Ticking a frame means that buffers will be swapped, calling glFlush implicitly. num_queued_commands = 0; buffer_cache.TickFrame(); } bool RasterizerOpenGL::AccelerateSurfaceCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src, const Tegra::Engines::Fermi2D::Regs::Surface& dst, const Tegra::Engines::Fermi2D::Config& copy_config) { MICROPROFILE_SCOPE(OpenGL_Blits); texture_cache.DoFermiCopy(src, dst, copy_config); return true; } bool RasterizerOpenGL::AccelerateDisplay(const Tegra::FramebufferConfig& config, VAddr framebuffer_addr, u32 pixel_stride) { if (!framebuffer_addr) { return {}; } MICROPROFILE_SCOPE(OpenGL_CacheManagement); const auto surface{texture_cache.TryFindFramebufferSurface(framebuffer_addr)}; if (!surface) { return {}; } // Verify that the cached surface is the same size and format as the requested framebuffer const auto& params{surface->GetSurfaceParams()}; const auto& pixel_format{ VideoCore::Surface::PixelFormatFromGPUPixelFormat(config.pixel_format)}; ASSERT_MSG(params.width == config.width, "Framebuffer width is different"); ASSERT_MSG(params.height == config.height, "Framebuffer height is different"); if (params.pixel_format != pixel_format) { LOG_DEBUG(Render_OpenGL, "Framebuffer pixel_format is different"); } screen_info.display_texture = surface->GetTexture(); screen_info.display_srgb = surface->GetSurfaceParams().srgb_conversion; return true; } void RasterizerOpenGL::SetupDrawConstBuffers(std::size_t stage_index, const Shader& shader) { MICROPROFILE_SCOPE(OpenGL_UBO); const auto& stages = system.GPU().Maxwell3D().state.shader_stages; const auto& shader_stage = stages[stage_index]; u32 binding = device.GetBaseBindings(stage_index).uniform_buffer; for (const auto& entry : shader->GetEntries().const_buffers) { const auto& buffer = shader_stage.const_buffers[entry.GetIndex()]; SetupConstBuffer(binding++, buffer, entry); } } void RasterizerOpenGL::SetupComputeConstBuffers(const Shader& kernel) { MICROPROFILE_SCOPE(OpenGL_UBO); const auto& launch_desc = system.GPU().KeplerCompute().launch_description; u32 binding = 0; for (const auto& entry : kernel->GetEntries().const_buffers) { const auto& config = launch_desc.const_buffer_config[entry.GetIndex()]; const std::bitset<8> mask = launch_desc.const_buffer_enable_mask.Value(); Tegra::Engines::ConstBufferInfo buffer; buffer.address = config.Address(); buffer.size = config.size; buffer.enabled = mask[entry.GetIndex()]; SetupConstBuffer(binding++, buffer, entry); } } void RasterizerOpenGL::SetupConstBuffer(u32 binding, const Tegra::Engines::ConstBufferInfo& buffer, const ConstBufferEntry& entry) { if (!buffer.enabled) { // Set values to zero to unbind buffers bind_ubo_pushbuffer.Push(binding, buffer_cache.GetEmptyBuffer(sizeof(float)), 0, sizeof(float)); return; } // Align the actual size so it ends up being a multiple of vec4 to meet the OpenGL std140 // UBO alignment requirements. const std::size_t size = Common::AlignUp(GetConstBufferSize(buffer, entry), sizeof(GLvec4)); const auto alignment = device.GetUniformBufferAlignment(); const auto [cbuf, offset] = buffer_cache.UploadMemory(buffer.address, size, alignment, false, device.HasFastBufferSubData()); bind_ubo_pushbuffer.Push(binding, cbuf, offset, size); } void RasterizerOpenGL::SetupDrawGlobalMemory(std::size_t stage_index, const Shader& shader) { auto& gpu{system.GPU()}; auto& memory_manager{gpu.MemoryManager()}; const auto cbufs{gpu.Maxwell3D().state.shader_stages[stage_index]}; u32 binding = device.GetBaseBindings(stage_index).shader_storage_buffer; for (const auto& entry : shader->GetEntries().global_memory_entries) { const auto addr{cbufs.const_buffers[entry.GetCbufIndex()].address + entry.GetCbufOffset()}; const auto gpu_addr{memory_manager.Read(addr)}; const auto size{memory_manager.Read(addr + 8)}; SetupGlobalMemory(binding++, entry, gpu_addr, size); } } void RasterizerOpenGL::SetupComputeGlobalMemory(const Shader& kernel) { auto& gpu{system.GPU()}; auto& memory_manager{gpu.MemoryManager()}; const auto cbufs{gpu.KeplerCompute().launch_description.const_buffer_config}; u32 binding = 0; for (const auto& entry : kernel->GetEntries().global_memory_entries) { const auto addr{cbufs[entry.GetCbufIndex()].Address() + entry.GetCbufOffset()}; const auto gpu_addr{memory_manager.Read(addr)}; const auto size{memory_manager.Read(addr + 8)}; SetupGlobalMemory(binding++, entry, gpu_addr, size); } } void RasterizerOpenGL::SetupGlobalMemory(u32 binding, const GlobalMemoryEntry& entry, GPUVAddr gpu_addr, std::size_t size) { const auto alignment{device.GetShaderStorageBufferAlignment()}; const auto [ssbo, buffer_offset] = buffer_cache.UploadMemory(gpu_addr, size, alignment, entry.IsWritten()); bind_ssbo_pushbuffer.Push(binding, ssbo, buffer_offset, static_cast(size)); } void RasterizerOpenGL::SetupDrawTextures(std::size_t stage_index, const Shader& shader) { MICROPROFILE_SCOPE(OpenGL_Texture); const auto& maxwell3d = system.GPU().Maxwell3D(); u32 binding = device.GetBaseBindings(stage_index).sampler; for (const auto& entry : shader->GetEntries().samplers) { const auto shader_type = static_cast(stage_index); for (std::size_t i = 0; i < entry.Size(); ++i) { const auto texture = GetTextureInfo(maxwell3d, entry, shader_type, i); SetupTexture(binding++, texture, entry); } } } void RasterizerOpenGL::SetupComputeTextures(const Shader& kernel) { MICROPROFILE_SCOPE(OpenGL_Texture); const auto& compute = system.GPU().KeplerCompute(); u32 binding = 0; for (const auto& entry : kernel->GetEntries().samplers) { for (std::size_t i = 0; i < entry.Size(); ++i) { const auto texture = GetTextureInfo(compute, entry, ShaderType::Compute, i); SetupTexture(binding++, texture, entry); } } } void RasterizerOpenGL::SetupTexture(u32 binding, const Tegra::Texture::FullTextureInfo& texture, const SamplerEntry& entry) { const auto view = texture_cache.GetTextureSurface(texture.tic, entry); if (!view) { // Can occur when texture addr is null or its memory is unmapped/invalid glBindSampler(binding, 0); glBindTextureUnit(binding, 0); return; } glBindTextureUnit(binding, view->GetTexture()); if (view->GetSurfaceParams().IsBuffer()) { return; } // Apply swizzle to textures that are not buffers. view->ApplySwizzle(texture.tic.x_source, texture.tic.y_source, texture.tic.z_source, texture.tic.w_source); glBindSampler(binding, sampler_cache.GetSampler(texture.tsc)); } void RasterizerOpenGL::SetupDrawImages(std::size_t stage_index, const Shader& shader) { const auto& maxwell3d = system.GPU().Maxwell3D(); u32 binding = device.GetBaseBindings(stage_index).image; for (const auto& entry : shader->GetEntries().images) { const auto shader_type = static_cast(stage_index); const auto tic = GetTextureInfo(maxwell3d, entry, shader_type).tic; SetupImage(binding++, tic, entry); } } void RasterizerOpenGL::SetupComputeImages(const Shader& shader) { const auto& compute = system.GPU().KeplerCompute(); u32 binding = 0; for (const auto& entry : shader->GetEntries().images) { const auto tic = GetTextureInfo(compute, entry, Tegra::Engines::ShaderType::Compute).tic; SetupImage(binding++, tic, entry); } } void RasterizerOpenGL::SetupImage(u32 binding, const Tegra::Texture::TICEntry& tic, const ImageEntry& entry) { const auto view = texture_cache.GetImageSurface(tic, entry); if (!view) { glBindImageTexture(binding, 0, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R8); return; } if (!tic.IsBuffer()) { view->ApplySwizzle(tic.x_source, tic.y_source, tic.z_source, tic.w_source); } if (entry.IsWritten()) { view->MarkAsModified(texture_cache.Tick()); } glBindImageTexture(binding, view->GetTexture(), 0, GL_TRUE, 0, GL_READ_WRITE, view->GetFormat()); } void RasterizerOpenGL::SyncViewport() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; const auto& regs = gpu.regs; const bool dirty_viewport = flags[Dirty::Viewports]; if (dirty_viewport || flags[Dirty::ClipControl]) { flags[Dirty::ClipControl] = false; bool flip_y = false; if (regs.viewport_transform[0].scale_y < 0.0) { flip_y = !flip_y; } if (regs.screen_y_control.y_negate != 0) { flip_y = !flip_y; } glClipControl(flip_y ? GL_UPPER_LEFT : GL_LOWER_LEFT, regs.depth_mode == Maxwell::DepthMode::ZeroToOne ? GL_ZERO_TO_ONE : GL_NEGATIVE_ONE_TO_ONE); } if (dirty_viewport) { flags[Dirty::Viewports] = false; const bool force = flags[Dirty::ViewportTransform]; flags[Dirty::ViewportTransform] = false; for (std::size_t i = 0; i < Maxwell::NumViewports; ++i) { if (!force && !flags[Dirty::Viewport0 + i]) { continue; } flags[Dirty::Viewport0 + i] = false; const auto& src = regs.viewport_transform[i]; const Common::Rectangle rect{src.GetRect()}; glViewportIndexedf(static_cast(i), rect.left, rect.bottom, rect.GetWidth(), rect.GetHeight()); const GLdouble reduce_z = regs.depth_mode == Maxwell::DepthMode::MinusOneToOne; const GLdouble near_depth = src.translate_z - src.scale_z * reduce_z; const GLdouble far_depth = src.translate_z + src.scale_z; glDepthRangeIndexed(static_cast(i), near_depth, far_depth); } } } void RasterizerOpenGL::SyncDepthClamp() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::DepthClampEnabled]) { return; } flags[Dirty::DepthClampEnabled] = false; const auto& state = gpu.regs.view_volume_clip_control; UNIMPLEMENTED_IF_MSG(state.depth_clamp_far != state.depth_clamp_near, "Unimplemented depth clamp separation!"); oglEnable(GL_DEPTH_CLAMP, state.depth_clamp_far || state.depth_clamp_near); } void RasterizerOpenGL::SyncClipEnabled(u32 clip_mask) { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::ClipDistances] && !flags[Dirty::Shaders]) { return; } flags[Dirty::ClipDistances] = false; clip_mask &= gpu.regs.clip_distance_enabled; if (clip_mask == last_clip_distance_mask) { return; } last_clip_distance_mask = clip_mask; for (std::size_t i = 0; i < Maxwell::Regs::NumClipDistances; ++i) { oglEnable(static_cast(GL_CLIP_DISTANCE0 + i), (clip_mask >> i) & 1); } } void RasterizerOpenGL::SyncClipCoef() { UNIMPLEMENTED(); } void RasterizerOpenGL::SyncCullMode() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; const auto& regs = gpu.regs; if (flags[Dirty::CullTest]) { flags[Dirty::CullTest] = false; if (regs.cull_test_enabled) { glEnable(GL_CULL_FACE); glCullFace(MaxwellToGL::CullFace(regs.cull_face)); } else { glDisable(GL_CULL_FACE); } } if (flags[Dirty::FrontFace]) { flags[Dirty::FrontFace] = false; glFrontFace(MaxwellToGL::FrontFace(regs.front_face)); } } void RasterizerOpenGL::SyncPrimitiveRestart() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::PrimitiveRestart]) { return; } flags[Dirty::PrimitiveRestart] = false; if (gpu.regs.primitive_restart.enabled) { glEnable(GL_PRIMITIVE_RESTART); glPrimitiveRestartIndex(gpu.regs.primitive_restart.index); } else { glDisable(GL_PRIMITIVE_RESTART); } } void RasterizerOpenGL::SyncDepthTestState() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; const auto& regs = gpu.regs; if (flags[Dirty::DepthMask]) { flags[Dirty::DepthMask] = false; glDepthMask(regs.depth_write_enabled ? GL_TRUE : GL_FALSE); } if (flags[Dirty::DepthTest]) { flags[Dirty::DepthTest] = false; if (regs.depth_test_enable) { glEnable(GL_DEPTH_TEST); glDepthFunc(MaxwellToGL::ComparisonOp(regs.depth_test_func)); } else { glDisable(GL_DEPTH_TEST); } } } void RasterizerOpenGL::SyncStencilTestState() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::StencilTest]) { return; } flags[Dirty::StencilTest] = false; const auto& regs = gpu.regs; oglEnable(GL_STENCIL_TEST, regs.stencil_enable); glStencilFuncSeparate(GL_FRONT, MaxwellToGL::ComparisonOp(regs.stencil_front_func_func), regs.stencil_front_func_ref, regs.stencil_front_func_mask); glStencilOpSeparate(GL_FRONT, MaxwellToGL::StencilOp(regs.stencil_front_op_fail), MaxwellToGL::StencilOp(regs.stencil_front_op_zfail), MaxwellToGL::StencilOp(regs.stencil_front_op_zpass)); glStencilMaskSeparate(GL_FRONT, regs.stencil_front_mask); if (regs.stencil_two_side_enable) { glStencilFuncSeparate(GL_BACK, MaxwellToGL::ComparisonOp(regs.stencil_back_func_func), regs.stencil_back_func_ref, regs.stencil_back_func_mask); glStencilOpSeparate(GL_BACK, MaxwellToGL::StencilOp(regs.stencil_back_op_fail), MaxwellToGL::StencilOp(regs.stencil_back_op_zfail), MaxwellToGL::StencilOp(regs.stencil_back_op_zpass)); glStencilMaskSeparate(GL_BACK, regs.stencil_back_mask); } else { glStencilFuncSeparate(GL_BACK, GL_ALWAYS, 0, 0xFFFFFFFF); glStencilOpSeparate(GL_BACK, GL_KEEP, GL_KEEP, GL_KEEP); glStencilMaskSeparate(GL_BACK, 0xFFFFFFFF); } } void RasterizerOpenGL::SyncRasterizeEnable() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::RasterizeEnable]) { return; } flags[Dirty::RasterizeEnable] = false; oglEnable(GL_RASTERIZER_DISCARD, gpu.regs.rasterize_enable == 0); } void RasterizerOpenGL::SyncPolygonModes() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::PolygonModes]) { return; } flags[Dirty::PolygonModes] = false; if (gpu.regs.fill_rectangle) { if (!GLAD_GL_NV_fill_rectangle) { LOG_ERROR(Render_OpenGL, "GL_NV_fill_rectangle used and not supported"); glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); return; } flags[Dirty::PolygonModeFront] = true; flags[Dirty::PolygonModeBack] = true; glPolygonMode(GL_FRONT_AND_BACK, GL_FILL_RECTANGLE_NV); return; } if (gpu.regs.polygon_mode_front == gpu.regs.polygon_mode_back) { flags[Dirty::PolygonModeFront] = false; flags[Dirty::PolygonModeBack] = false; glPolygonMode(GL_FRONT_AND_BACK, MaxwellToGL::PolygonMode(gpu.regs.polygon_mode_front)); return; } if (flags[Dirty::PolygonModeFront]) { flags[Dirty::PolygonModeFront] = false; glPolygonMode(GL_FRONT, MaxwellToGL::PolygonMode(gpu.regs.polygon_mode_front)); } if (flags[Dirty::PolygonModeBack]) { flags[Dirty::PolygonModeBack] = false; glPolygonMode(GL_BACK, MaxwellToGL::PolygonMode(gpu.regs.polygon_mode_back)); } } void RasterizerOpenGL::SyncColorMask() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::ColorMasks]) { return; } flags[Dirty::ColorMasks] = false; const bool force = flags[Dirty::ColorMaskCommon]; flags[Dirty::ColorMaskCommon] = false; const auto& regs = gpu.regs; if (regs.color_mask_common) { if (!force && !flags[Dirty::ColorMask0]) { return; } flags[Dirty::ColorMask0] = false; auto& mask = regs.color_mask[0]; glColorMask(mask.R != 0, mask.B != 0, mask.G != 0, mask.A != 0); return; } // Path without color_mask_common set for (std::size_t i = 0; i < Maxwell::NumRenderTargets; ++i) { if (!force && !flags[Dirty::ColorMask0 + i]) { continue; } flags[Dirty::ColorMask0 + i] = false; const auto& mask = regs.color_mask[i]; glColorMaski(static_cast(i), mask.R != 0, mask.G != 0, mask.B != 0, mask.A != 0); } } void RasterizerOpenGL::SyncMultiSampleState() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::MultisampleControl]) { return; } flags[Dirty::MultisampleControl] = false; const auto& regs = system.GPU().Maxwell3D().regs; oglEnable(GL_SAMPLE_ALPHA_TO_COVERAGE, regs.multisample_control.alpha_to_coverage); oglEnable(GL_SAMPLE_ALPHA_TO_ONE, regs.multisample_control.alpha_to_one); } void RasterizerOpenGL::SyncFragmentColorClampState() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::FragmentClampColor]) { return; } flags[Dirty::FragmentClampColor] = false; glClampColor(GL_CLAMP_FRAGMENT_COLOR, gpu.regs.frag_color_clamp ? GL_TRUE : GL_FALSE); } void RasterizerOpenGL::SyncBlendState() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; const auto& regs = gpu.regs; if (flags[Dirty::BlendColor]) { flags[Dirty::BlendColor] = false; glBlendColor(regs.blend_color.r, regs.blend_color.g, regs.blend_color.b, regs.blend_color.a); } // TODO(Rodrigo): Revisit blending, there are several registers we are not reading if (!flags[Dirty::BlendStates]) { return; } flags[Dirty::BlendStates] = false; if (!regs.independent_blend_enable) { if (!regs.blend.enable[0]) { glDisable(GL_BLEND); return; } glEnable(GL_BLEND); glBlendFuncSeparate(MaxwellToGL::BlendFunc(regs.blend.factor_source_rgb), MaxwellToGL::BlendFunc(regs.blend.factor_dest_rgb), MaxwellToGL::BlendFunc(regs.blend.factor_source_a), MaxwellToGL::BlendFunc(regs.blend.factor_dest_a)); glBlendEquationSeparate(MaxwellToGL::BlendEquation(regs.blend.equation_rgb), MaxwellToGL::BlendEquation(regs.blend.equation_a)); return; } const bool force = flags[Dirty::BlendIndependentEnabled]; flags[Dirty::BlendIndependentEnabled] = false; for (std::size_t i = 0; i < Maxwell::NumRenderTargets; ++i) { if (!force && !flags[Dirty::BlendState0 + i]) { continue; } flags[Dirty::BlendState0 + i] = false; if (!regs.blend.enable[i]) { glDisablei(GL_BLEND, static_cast(i)); continue; } glEnablei(GL_BLEND, static_cast(i)); const auto& src = regs.independent_blend[i]; glBlendFuncSeparatei(static_cast(i), MaxwellToGL::BlendFunc(src.factor_source_rgb), MaxwellToGL::BlendFunc(src.factor_dest_rgb), MaxwellToGL::BlendFunc(src.factor_source_a), MaxwellToGL::BlendFunc(src.factor_dest_a)); glBlendEquationSeparatei(static_cast(i), MaxwellToGL::BlendEquation(src.equation_rgb), MaxwellToGL::BlendEquation(src.equation_a)); } } void RasterizerOpenGL::SyncLogicOpState() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::LogicOp]) { return; } flags[Dirty::LogicOp] = false; const auto& regs = gpu.regs; if (regs.logic_op.enable) { glEnable(GL_COLOR_LOGIC_OP); glLogicOp(MaxwellToGL::LogicOp(regs.logic_op.operation)); } else { glDisable(GL_COLOR_LOGIC_OP); } } void RasterizerOpenGL::SyncScissorTest() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::Scissors]) { return; } flags[Dirty::Scissors] = false; const auto& regs = gpu.regs; for (std::size_t index = 0; index < Maxwell::NumViewports; ++index) { if (!flags[Dirty::Scissor0 + index]) { continue; } flags[Dirty::Scissor0 + index] = false; const auto& src = regs.scissor_test[index]; if (src.enable) { glEnablei(GL_SCISSOR_TEST, static_cast(index)); glScissorIndexed(static_cast(index), src.min_x, src.min_y, src.max_x - src.min_x, src.max_y - src.min_y); } else { glDisablei(GL_SCISSOR_TEST, static_cast(index)); } } } void RasterizerOpenGL::SyncPointState() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::PointSize]) { return; } flags[Dirty::PointSize] = false; oglEnable(GL_POINT_SPRITE, gpu.regs.point_sprite_enable); if (gpu.regs.vp_point_size.enable) { // By definition of GL_POINT_SIZE, it only matters if GL_PROGRAM_POINT_SIZE is disabled. glEnable(GL_PROGRAM_POINT_SIZE); return; } // Limit the point size to 1 since nouveau sometimes sets a point size of 0 (and that's invalid // in OpenGL). glPointSize(std::max(1.0f, gpu.regs.point_size)); glDisable(GL_PROGRAM_POINT_SIZE); } void RasterizerOpenGL::SyncPolygonOffset() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::PolygonOffset]) { return; } flags[Dirty::PolygonOffset] = false; const auto& regs = gpu.regs; oglEnable(GL_POLYGON_OFFSET_FILL, regs.polygon_offset_fill_enable); oglEnable(GL_POLYGON_OFFSET_LINE, regs.polygon_offset_line_enable); oglEnable(GL_POLYGON_OFFSET_POINT, regs.polygon_offset_point_enable); if (regs.polygon_offset_fill_enable || regs.polygon_offset_line_enable || regs.polygon_offset_point_enable) { // Hardware divides polygon offset units by two glPolygonOffsetClamp(regs.polygon_offset_factor, regs.polygon_offset_units / 2.0f, regs.polygon_offset_clamp); } } void RasterizerOpenGL::SyncAlphaTest() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::AlphaTest]) { return; } flags[Dirty::AlphaTest] = false; const auto& regs = gpu.regs; if (regs.alpha_test_enabled && regs.rt_control.count > 1) { LOG_WARNING(Render_OpenGL, "Alpha testing with more than one render target is not tested"); } if (regs.alpha_test_enabled) { glEnable(GL_ALPHA_TEST); glAlphaFunc(MaxwellToGL::ComparisonOp(regs.alpha_test_func), regs.alpha_test_ref); } else { glDisable(GL_ALPHA_TEST); } } void RasterizerOpenGL::SyncFramebufferSRGB() { auto& gpu = system.GPU().Maxwell3D(); auto& flags = gpu.dirty.flags; if (!flags[Dirty::FramebufferSRGB]) { return; } flags[Dirty::FramebufferSRGB] = false; oglEnable(GL_FRAMEBUFFER_SRGB, gpu.regs.framebuffer_srgb); } void RasterizerOpenGL::BeginTransformFeedback(GLenum primitive_mode) { const auto& regs = system.GPU().Maxwell3D().regs; if (regs.tfb_enabled == 0) { return; } UNIMPLEMENTED_IF(regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationControl) || regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::TesselationEval) || regs.IsShaderConfigEnabled(Maxwell::ShaderProgram::Geometry)); for (std::size_t index = 0; index < Maxwell::NumTransformFeedbackBuffers; ++index) { const auto& binding = regs.tfb_bindings[index]; if (!binding.buffer_enable) { if (enabled_transform_feedback_buffers[index]) { glBindBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, static_cast(index), 0, 0, 0); } enabled_transform_feedback_buffers[index] = false; continue; } enabled_transform_feedback_buffers[index] = true; auto& tfb_buffer = transform_feedback_buffers[index]; tfb_buffer.Create(); const GLuint handle = tfb_buffer.handle; const std::size_t size = binding.buffer_size; glNamedBufferData(handle, static_cast(size), nullptr, GL_STREAM_COPY); glBindBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, static_cast(index), handle, 0, static_cast(size)); } glBeginTransformFeedback(GL_POINTS); } void RasterizerOpenGL::EndTransformFeedback() { const auto& regs = system.GPU().Maxwell3D().regs; if (regs.tfb_enabled == 0) { return; } glEndTransformFeedback(); for (std::size_t index = 0; index < Maxwell::NumTransformFeedbackBuffers; ++index) { const auto& binding = regs.tfb_bindings[index]; if (!binding.buffer_enable) { continue; } UNIMPLEMENTED_IF(binding.buffer_offset != 0); const GLuint handle = transform_feedback_buffers[index].handle; const GPUVAddr gpu_addr = binding.Address(); const std::size_t size = binding.buffer_size; const auto [dest_buffer, offset] = buffer_cache.UploadMemory(gpu_addr, size, 4, true); glCopyNamedBufferSubData(handle, *dest_buffer, 0, offset, static_cast(size)); } } } // namespace OpenGL