// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/alignment.h" #include "common/assert.h" #include "common/logging/log.h" #include "common/microprofile.h" #include "common/scope_exit.h" #include "core/core.h" #include "core/hle/kernel/process.h" #include "core/memory.h" #include "core/settings.h" #include "video_core/engines/maxwell_3d.h" #include "video_core/renderer_opengl/gl_rasterizer.h" #include "video_core/renderer_opengl/gl_rasterizer_cache.h" #include "video_core/renderer_opengl/gl_state.h" #include "video_core/renderer_opengl/utils.h" #include "video_core/surface.h" #include "video_core/textures/astc.h" #include "video_core/textures/decoders.h" #include "video_core/utils.h" namespace OpenGL { using VideoCore::Surface::ComponentTypeFromDepthFormat; using VideoCore::Surface::ComponentTypeFromRenderTarget; using VideoCore::Surface::ComponentTypeFromTexture; using VideoCore::Surface::PixelFormatFromDepthFormat; using VideoCore::Surface::PixelFormatFromRenderTargetFormat; using VideoCore::Surface::PixelFormatFromTextureFormat; using VideoCore::Surface::SurfaceTargetFromTextureType; struct FormatTuple { GLint internal_format; GLenum format; GLenum type; ComponentType component_type; bool compressed; }; void SurfaceParams::InitCacheParameters(Tegra::GPUVAddr gpu_addr_) { auto& memory_manager{Core::System::GetInstance().GPU().MemoryManager()}; const auto cpu_addr{memory_manager.GpuToCpuAddress(gpu_addr_)}; addr = cpu_addr ? *cpu_addr : 0; gpu_addr = gpu_addr_; size_in_bytes = SizeInBytesRaw(); if (IsPixelFormatASTC(pixel_format)) { // ASTC is uncompressed in software, in emulated as RGBA8 size_in_bytes_gl = width * height * depth * 4; } else { size_in_bytes_gl = SizeInBytesGL(); } } std::size_t SurfaceParams::InnerMipmapMemorySize(u32 mip_level, bool force_gl, bool layer_only, bool uncompressed) const { const u32 tile_x{GetDefaultBlockWidth(pixel_format)}; const u32 tile_y{GetDefaultBlockHeight(pixel_format)}; const u32 bytes_per_pixel{GetBytesPerPixel(pixel_format)}; u32 m_depth = (layer_only ? 1U : depth); u32 m_width = MipWidth(mip_level); u32 m_height = MipHeight(mip_level); m_width = uncompressed ? m_width : std::max(1U, (m_width + tile_x - 1) / tile_x); m_height = uncompressed ? m_height : std::max(1U, (m_height + tile_y - 1) / tile_y); m_depth = std::max(1U, m_depth >> mip_level); u32 m_block_height = MipBlockHeight(mip_level); u32 m_block_depth = MipBlockDepth(mip_level); return Tegra::Texture::CalculateSize(force_gl ? false : is_tiled, bytes_per_pixel, m_width, m_height, m_depth, m_block_height, m_block_depth); } std::size_t SurfaceParams::InnerMemorySize(bool force_gl, bool layer_only, bool uncompressed) const { std::size_t block_size_bytes = Tegra::Texture::GetGOBSize() * block_height * block_depth; std::size_t size = 0; for (u32 i = 0; i < max_mip_level; i++) { size += InnerMipmapMemorySize(i, force_gl, layer_only, uncompressed); } if (!force_gl && is_tiled) { size = Common::AlignUp(size, block_size_bytes); } return size; } /*static*/ SurfaceParams SurfaceParams::CreateForTexture( const Tegra::Texture::FullTextureInfo& config, const GLShader::SamplerEntry& entry) { SurfaceParams params{}; params.is_tiled = config.tic.IsTiled(); params.block_width = params.is_tiled ? config.tic.BlockWidth() : 0, params.block_height = params.is_tiled ? config.tic.BlockHeight() : 0, params.block_depth = params.is_tiled ? config.tic.BlockDepth() : 0, params.srgb_conversion = config.tic.IsSrgbConversionEnabled(); params.pixel_format = PixelFormatFromTextureFormat(config.tic.format, config.tic.r_type.Value(), params.srgb_conversion); params.component_type = ComponentTypeFromTexture(config.tic.r_type.Value()); params.type = GetFormatType(params.pixel_format); params.width = Common::AlignUp(config.tic.Width(), GetCompressionFactor(params.pixel_format)); params.height = Common::AlignUp(config.tic.Height(), GetCompressionFactor(params.pixel_format)); params.unaligned_height = config.tic.Height(); params.target = SurfaceTargetFromTextureType(config.tic.texture_type); switch (params.target) { case SurfaceTarget::Texture1D: case SurfaceTarget::Texture2D: params.depth = 1; break; case SurfaceTarget::TextureCubemap: params.depth = config.tic.Depth() * 6; break; case SurfaceTarget::Texture3D: params.depth = config.tic.Depth(); break; case SurfaceTarget::Texture2DArray: params.depth = config.tic.Depth(); if (!entry.IsArray()) { // TODO(bunnei): We have seen games re-use a Texture2D as Texture2DArray with depth of // one, but sample the texture in the shader as if it were not an array texture. This // probably is valid on hardware, but we still need to write a test to confirm this. In // emulation, the workaround here is to continue to treat this as a Texture2D. An // example game that does this is Super Mario Odyssey (in Cloud Kingdom). ASSERT(params.depth == 1); params.target = SurfaceTarget::Texture2D; } break; case SurfaceTarget::TextureCubeArray: params.depth = config.tic.Depth() * 6; if (!entry.IsArray()) { ASSERT(params.depth == 6); params.target = SurfaceTarget::TextureCubemap; } break; default: LOG_CRITICAL(HW_GPU, "Unknown depth for target={}", static_cast(params.target)); UNREACHABLE(); params.depth = 1; break; } params.is_layered = SurfaceTargetIsLayered(params.target); params.max_mip_level = config.tic.max_mip_level + 1; params.rt = {}; params.InitCacheParameters(config.tic.Address()); return params; } /*static*/ SurfaceParams SurfaceParams::CreateForFramebuffer(std::size_t index) { const auto& config{Core::System::GetInstance().GPU().Maxwell3D().regs.rt[index]}; SurfaceParams params{}; params.is_tiled = config.memory_layout.type == Tegra::Engines::Maxwell3D::Regs::InvMemoryLayout::BlockLinear; params.block_width = 1 << config.memory_layout.block_width; params.block_height = 1 << config.memory_layout.block_height; params.block_depth = 1 << config.memory_layout.block_depth; params.pixel_format = PixelFormatFromRenderTargetFormat(config.format); params.srgb_conversion = config.format == Tegra::RenderTargetFormat::BGRA8_SRGB || config.format == Tegra::RenderTargetFormat::RGBA8_SRGB; params.component_type = ComponentTypeFromRenderTarget(config.format); params.type = GetFormatType(params.pixel_format); params.width = config.width; params.height = config.height; params.unaligned_height = config.height; params.target = SurfaceTarget::Texture2D; params.depth = 1; params.max_mip_level = 1; params.is_layered = false; // Render target specific parameters, not used for caching params.rt.index = static_cast(index); params.rt.array_mode = config.array_mode; params.rt.layer_stride = config.layer_stride; params.rt.volume = config.volume; params.rt.base_layer = config.base_layer; params.InitCacheParameters(config.Address()); return params; } /*static*/ SurfaceParams SurfaceParams::CreateForDepthBuffer( u32 zeta_width, u32 zeta_height, Tegra::GPUVAddr zeta_address, Tegra::DepthFormat format, u32 block_width, u32 block_height, u32 block_depth, Tegra::Engines::Maxwell3D::Regs::InvMemoryLayout type) { SurfaceParams params{}; params.is_tiled = type == Tegra::Engines::Maxwell3D::Regs::InvMemoryLayout::BlockLinear; params.block_width = 1 << std::min(block_width, 5U); params.block_height = 1 << std::min(block_height, 5U); params.block_depth = 1 << std::min(block_depth, 5U); params.pixel_format = PixelFormatFromDepthFormat(format); params.component_type = ComponentTypeFromDepthFormat(format); params.type = GetFormatType(params.pixel_format); params.srgb_conversion = false; params.width = zeta_width; params.height = zeta_height; params.unaligned_height = zeta_height; params.target = SurfaceTarget::Texture2D; params.depth = 1; params.max_mip_level = 1; params.is_layered = false; params.rt = {}; params.InitCacheParameters(zeta_address); return params; } /*static*/ SurfaceParams SurfaceParams::CreateForFermiCopySurface( const Tegra::Engines::Fermi2D::Regs::Surface& config) { SurfaceParams params{}; params.is_tiled = !config.linear; params.block_width = params.is_tiled ? std::min(config.BlockWidth(), 32U) : 0, params.block_height = params.is_tiled ? std::min(config.BlockHeight(), 32U) : 0, params.block_depth = params.is_tiled ? std::min(config.BlockDepth(), 32U) : 0, params.pixel_format = PixelFormatFromRenderTargetFormat(config.format); params.srgb_conversion = config.format == Tegra::RenderTargetFormat::BGRA8_SRGB || config.format == Tegra::RenderTargetFormat::RGBA8_SRGB; params.component_type = ComponentTypeFromRenderTarget(config.format); params.type = GetFormatType(params.pixel_format); params.width = config.width; params.height = config.height; params.unaligned_height = config.height; params.target = SurfaceTarget::Texture2D; params.depth = 1; params.max_mip_level = 1; params.rt = {}; params.InitCacheParameters(config.Address()); return params; } static constexpr std::array tex_format_tuples = {{ {GL_RGBA8, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8_REV, ComponentType::UNorm, false}, // ABGR8U {GL_RGBA8, GL_RGBA, GL_BYTE, ComponentType::SNorm, false}, // ABGR8S {GL_RGBA8UI, GL_RGBA_INTEGER, GL_UNSIGNED_BYTE, ComponentType::UInt, false}, // ABGR8UI {GL_RGB8, GL_RGB, GL_UNSIGNED_SHORT_5_6_5_REV, ComponentType::UNorm, false}, // B5G6R5U {GL_RGB10_A2, GL_RGBA, GL_UNSIGNED_INT_2_10_10_10_REV, ComponentType::UNorm, false}, // A2B10G10R10U {GL_RGB5_A1, GL_RGBA, GL_UNSIGNED_SHORT_1_5_5_5_REV, ComponentType::UNorm, false}, // A1B5G5R5U {GL_R8, GL_RED, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // R8U {GL_R8UI, GL_RED_INTEGER, GL_UNSIGNED_BYTE, ComponentType::UInt, false}, // R8UI {GL_RGBA16F, GL_RGBA, GL_HALF_FLOAT, ComponentType::Float, false}, // RGBA16F {GL_RGBA16, GL_RGBA, GL_UNSIGNED_SHORT, ComponentType::UNorm, false}, // RGBA16U {GL_RGBA16UI, GL_RGBA, GL_UNSIGNED_SHORT, ComponentType::UInt, false}, // RGBA16UI {GL_R11F_G11F_B10F, GL_RGB, GL_UNSIGNED_INT_10F_11F_11F_REV, ComponentType::Float, false}, // R11FG11FB10F {GL_RGBA32UI, GL_RGBA_INTEGER, GL_UNSIGNED_INT, ComponentType::UInt, false}, // RGBA32UI {GL_COMPRESSED_RGBA_S3TC_DXT1_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm, true}, // DXT1 {GL_COMPRESSED_RGBA_S3TC_DXT3_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm, true}, // DXT23 {GL_COMPRESSED_RGBA_S3TC_DXT5_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm, true}, // DXT45 {GL_COMPRESSED_RED_RGTC1, GL_RED, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm, true}, // DXN1 {GL_COMPRESSED_RG_RGTC2, GL_RG, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm, true}, // DXN2UNORM {GL_COMPRESSED_SIGNED_RG_RGTC2, GL_RG, GL_INT, ComponentType::SNorm, true}, // DXN2SNORM {GL_COMPRESSED_RGBA_BPTC_UNORM_ARB, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm, true}, // BC7U {GL_COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT_ARB, GL_RGB, GL_UNSIGNED_INT_8_8_8_8, ComponentType::Float, true}, // BC6H_UF16 {GL_COMPRESSED_RGB_BPTC_SIGNED_FLOAT_ARB, GL_RGB, GL_UNSIGNED_INT_8_8_8_8, ComponentType::Float, true}, // BC6H_SF16 {GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_4X4 {GL_RG8, GL_RG, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // G8R8U {GL_RG8, GL_RG, GL_BYTE, ComponentType::SNorm, false}, // G8R8S {GL_RGBA8, GL_BGRA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // BGRA8 {GL_RGBA32F, GL_RGBA, GL_FLOAT, ComponentType::Float, false}, // RGBA32F {GL_RG32F, GL_RG, GL_FLOAT, ComponentType::Float, false}, // RG32F {GL_R32F, GL_RED, GL_FLOAT, ComponentType::Float, false}, // R32F {GL_R16F, GL_RED, GL_HALF_FLOAT, ComponentType::Float, false}, // R16F {GL_R16, GL_RED, GL_UNSIGNED_SHORT, ComponentType::UNorm, false}, // R16U {GL_R16_SNORM, GL_RED, GL_SHORT, ComponentType::SNorm, false}, // R16S {GL_R16UI, GL_RED_INTEGER, GL_UNSIGNED_SHORT, ComponentType::UInt, false}, // R16UI {GL_R16I, GL_RED_INTEGER, GL_SHORT, ComponentType::SInt, false}, // R16I {GL_RG16, GL_RG, GL_UNSIGNED_SHORT, ComponentType::UNorm, false}, // RG16 {GL_RG16F, GL_RG, GL_HALF_FLOAT, ComponentType::Float, false}, // RG16F {GL_RG16UI, GL_RG_INTEGER, GL_UNSIGNED_SHORT, ComponentType::UInt, false}, // RG16UI {GL_RG16I, GL_RG_INTEGER, GL_SHORT, ComponentType::SInt, false}, // RG16I {GL_RG16_SNORM, GL_RG, GL_SHORT, ComponentType::SNorm, false}, // RG16S {GL_RGB32F, GL_RGB, GL_FLOAT, ComponentType::Float, false}, // RGB32F {GL_SRGB8_ALPHA8, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8_REV, ComponentType::UNorm, false}, // RGBA8_SRGB {GL_RG8, GL_RG, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // RG8U {GL_RG8, GL_RG, GL_BYTE, ComponentType::SNorm, false}, // RG8S {GL_RG32UI, GL_RG_INTEGER, GL_UNSIGNED_INT, ComponentType::UInt, false}, // RG32UI {GL_R32UI, GL_RED_INTEGER, GL_UNSIGNED_INT, ComponentType::UInt, false}, // R32UI {GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_8X8 {GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_8X5 {GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_5X4 {GL_SRGB8_ALPHA8, GL_BGRA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // BGRA8 // Compressed sRGB formats {GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm, true}, // DXT1_SRGB {GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm, true}, // DXT23_SRGB {GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm, true}, // DXT45_SRGB {GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, ComponentType::UNorm, true}, // BC7U_SRGB {GL_SRGB8_ALPHA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_4X4_SRGB {GL_SRGB8_ALPHA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_8X8_SRGB {GL_SRGB8_ALPHA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_8X5_SRGB {GL_SRGB8_ALPHA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_5X4_SRGB {GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_5X5 {GL_SRGB8_ALPHA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_5X5_SRGB {GL_RGBA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_10X8 {GL_SRGB8_ALPHA8, GL_RGBA, GL_UNSIGNED_BYTE, ComponentType::UNorm, false}, // ASTC_2D_10X8_SRGB // Depth formats {GL_DEPTH_COMPONENT32F, GL_DEPTH_COMPONENT, GL_FLOAT, ComponentType::Float, false}, // Z32F {GL_DEPTH_COMPONENT16, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT, ComponentType::UNorm, false}, // Z16 // DepthStencil formats {GL_DEPTH24_STENCIL8, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, ComponentType::UNorm, false}, // Z24S8 {GL_DEPTH24_STENCIL8, GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, ComponentType::UNorm, false}, // S8Z24 {GL_DEPTH32F_STENCIL8, GL_DEPTH_STENCIL, GL_FLOAT_32_UNSIGNED_INT_24_8_REV, ComponentType::Float, false}, // Z32FS8 }}; static GLenum SurfaceTargetToGL(SurfaceTarget target) { switch (target) { case SurfaceTarget::Texture1D: return GL_TEXTURE_1D; case SurfaceTarget::Texture2D: return GL_TEXTURE_2D; case SurfaceTarget::Texture3D: return GL_TEXTURE_3D; case SurfaceTarget::Texture1DArray: return GL_TEXTURE_1D_ARRAY; case SurfaceTarget::Texture2DArray: return GL_TEXTURE_2D_ARRAY; case SurfaceTarget::TextureCubemap: return GL_TEXTURE_CUBE_MAP; case SurfaceTarget::TextureCubeArray: return GL_TEXTURE_CUBE_MAP_ARRAY_ARB; } LOG_CRITICAL(Render_OpenGL, "Unimplemented texture target={}", static_cast(target)); UNREACHABLE(); return {}; } static const FormatTuple& GetFormatTuple(PixelFormat pixel_format, ComponentType component_type) { ASSERT(static_cast(pixel_format) < tex_format_tuples.size()); auto& format = tex_format_tuples[static_cast(pixel_format)]; ASSERT(component_type == format.component_type); return format; } MathUtil::Rectangle SurfaceParams::GetRect(u32 mip_level) const { u32 actual_height{std::max(1U, unaligned_height >> mip_level)}; if (IsPixelFormatASTC(pixel_format)) { // ASTC formats must stop at the ATSC block size boundary actual_height = Common::AlignDown(actual_height, GetASTCBlockSize(pixel_format).second); } return {0, actual_height, MipWidth(mip_level), 0}; } template void MortonCopy(u32 stride, u32 block_height, u32 height, u32 block_depth, u32 depth, u8* gl_buffer, std::size_t gl_buffer_size, VAddr addr) { constexpr u32 bytes_per_pixel = GetBytesPerPixel(format); // With the BCn formats (DXT and DXN), each 4x4 tile is swizzled instead of just individual // pixel values. const u32 tile_size_x{GetDefaultBlockWidth(format)}; const u32 tile_size_y{GetDefaultBlockHeight(format)}; if (morton_to_gl) { Tegra::Texture::UnswizzleTexture(gl_buffer, addr, tile_size_x, tile_size_y, bytes_per_pixel, stride, height, depth, block_height, block_depth); } else { Tegra::Texture::CopySwizzledData((stride + tile_size_x - 1) / tile_size_x, (height + tile_size_y - 1) / tile_size_y, depth, bytes_per_pixel, bytes_per_pixel, Memory::GetPointer(addr), gl_buffer, false, block_height, block_depth); } } using GLConversionArray = std::array; static constexpr GLConversionArray morton_to_gl_fns = { // clang-format off MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, // clang-format on }; static constexpr GLConversionArray gl_to_morton_fns = { // clang-format off MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, // TODO(Subv): Swizzling ASTC formats are not supported nullptr, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, nullptr, nullptr, nullptr, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, MortonCopy, MortonCopy, MortonCopy, MortonCopy, MortonCopy, // clang-format on }; void SwizzleFunc(const GLConversionArray& functions, const SurfaceParams& params, std::vector& gl_buffer, u32 mip_level) { u32 depth = params.MipDepth(mip_level); if (params.target == SurfaceTarget::Texture2D) { // TODO(Blinkhawk): Eliminate this condition once all texture types are implemented. depth = 1U; } if (params.is_layered) { u64 offset = params.GetMipmapLevelOffset(mip_level); u64 offset_gl = 0; const u64 layer_size = params.LayerMemorySize(); const u64 gl_size = params.LayerSizeGL(mip_level); for (u32 i = 0; i < params.depth; i++) { functions[static_cast(params.pixel_format)]( params.MipWidth(mip_level), params.MipBlockHeight(mip_level), params.MipHeight(mip_level), params.MipBlockDepth(mip_level), 1, gl_buffer.data() + offset_gl, gl_size, params.addr + offset); offset += layer_size; offset_gl += gl_size; } } else { const u64 offset = params.GetMipmapLevelOffset(mip_level); functions[static_cast(params.pixel_format)]( params.MipWidth(mip_level), params.MipBlockHeight(mip_level), params.MipHeight(mip_level), params.MipBlockDepth(mip_level), depth, gl_buffer.data(), gl_buffer.size(), params.addr + offset); } } MICROPROFILE_DEFINE(OpenGL_BlitSurface, "OpenGL", "BlitSurface", MP_RGB(128, 192, 64)); static bool BlitSurface(const Surface& src_surface, const Surface& dst_surface, GLuint read_fb_handle, GLuint draw_fb_handle, GLenum src_attachment = 0, GLenum dst_attachment = 0, std::size_t cubemap_face = 0) { MICROPROFILE_SCOPE(OpenGL_BlitSurface); const auto& src_params{src_surface->GetSurfaceParams()}; const auto& dst_params{dst_surface->GetSurfaceParams()}; OpenGLState prev_state{OpenGLState::GetCurState()}; SCOPE_EXIT({ prev_state.Apply(); }); OpenGLState state; state.draw.read_framebuffer = read_fb_handle; state.draw.draw_framebuffer = draw_fb_handle; // Set sRGB enabled if the destination surfaces need it state.framebuffer_srgb.enabled = dst_params.srgb_conversion; state.ApplyFramebufferState(); u32 buffers{}; if (src_params.type == SurfaceType::ColorTexture) { switch (src_params.target) { case SurfaceTarget::Texture2D: glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + src_attachment, GL_TEXTURE_2D, src_surface->Texture().handle, 0); glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0); break; case SurfaceTarget::TextureCubemap: glFramebufferTexture2D( GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + src_attachment, static_cast(GL_TEXTURE_CUBE_MAP_POSITIVE_X + cubemap_face), src_surface->Texture().handle, 0); glFramebufferTexture2D( GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, static_cast(GL_TEXTURE_CUBE_MAP_POSITIVE_X + cubemap_face), 0, 0); break; case SurfaceTarget::Texture2DArray: glFramebufferTextureLayer(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + src_attachment, src_surface->Texture().handle, 0, 0); glFramebufferTextureLayer(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, 0, 0, 0); break; case SurfaceTarget::Texture3D: glFramebufferTexture3D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + src_attachment, SurfaceTargetToGL(src_params.target), src_surface->Texture().handle, 0, 0); glFramebufferTexture3D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, SurfaceTargetToGL(src_params.target), 0, 0, 0); break; default: glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + src_attachment, GL_TEXTURE_2D, src_surface->Texture().handle, 0); glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0); break; } switch (dst_params.target) { case SurfaceTarget::Texture2D: glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + dst_attachment, GL_TEXTURE_2D, dst_surface->Texture().handle, 0); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0); break; case SurfaceTarget::TextureCubemap: glFramebufferTexture2D( GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + dst_attachment, static_cast(GL_TEXTURE_CUBE_MAP_POSITIVE_X + cubemap_face), dst_surface->Texture().handle, 0); glFramebufferTexture2D( GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, static_cast(GL_TEXTURE_CUBE_MAP_POSITIVE_X + cubemap_face), 0, 0); break; case SurfaceTarget::Texture2DArray: glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + dst_attachment, dst_surface->Texture().handle, 0, 0); glFramebufferTextureLayer(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, 0, 0, 0); break; case SurfaceTarget::Texture3D: glFramebufferTexture3D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + dst_attachment, SurfaceTargetToGL(dst_params.target), dst_surface->Texture().handle, 0, 0); glFramebufferTexture3D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, SurfaceTargetToGL(dst_params.target), 0, 0, 0); break; default: glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + dst_attachment, GL_TEXTURE_2D, dst_surface->Texture().handle, 0); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0); break; } buffers = GL_COLOR_BUFFER_BIT; } else if (src_params.type == SurfaceType::Depth) { glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + src_attachment, GL_TEXTURE_2D, 0, 0); glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, src_surface->Texture().handle, 0); glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + dst_attachment, GL_TEXTURE_2D, 0, 0); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, dst_surface->Texture().handle, 0); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_STENCIL_ATTACHMENT, GL_TEXTURE_2D, 0, 0); buffers = GL_DEPTH_BUFFER_BIT; } else if (src_params.type == SurfaceType::DepthStencil) { glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + src_attachment, GL_TEXTURE_2D, 0, 0); glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, src_surface->Texture().handle, 0); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + dst_attachment, GL_TEXTURE_2D, 0, 0); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, dst_surface->Texture().handle, 0); buffers = GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT; } const auto& rect{src_params.GetRect()}; glBlitFramebuffer(rect.left, rect.bottom, rect.right, rect.top, rect.left, rect.bottom, rect.right, rect.top, buffers, buffers == GL_COLOR_BUFFER_BIT ? GL_LINEAR : GL_NEAREST); return true; } static void FastCopySurface(const Surface& src_surface, const Surface& dst_surface) { const auto& src_params{src_surface->GetSurfaceParams()}; const auto& dst_params{dst_surface->GetSurfaceParams()}; const u32 width{std::min(src_params.width, dst_params.width)}; const u32 height{std::min(src_params.height, dst_params.height)}; glCopyImageSubData(src_surface->Texture().handle, SurfaceTargetToGL(src_params.target), 0, 0, 0, 0, dst_surface->Texture().handle, SurfaceTargetToGL(dst_params.target), 0, 0, 0, 0, width, height, 1); } MICROPROFILE_DEFINE(OpenGL_CopySurface, "OpenGL", "CopySurface", MP_RGB(128, 192, 64)); static void CopySurface(const Surface& src_surface, const Surface& dst_surface, const GLuint copy_pbo_handle, const GLenum src_attachment = 0, const GLenum dst_attachment = 0, const std::size_t cubemap_face = 0) { MICROPROFILE_SCOPE(OpenGL_CopySurface); ASSERT_MSG(dst_attachment == 0, "Unimplemented"); const auto& src_params{src_surface->GetSurfaceParams()}; const auto& dst_params{dst_surface->GetSurfaceParams()}; const auto source_format = GetFormatTuple(src_params.pixel_format, src_params.component_type); const auto dest_format = GetFormatTuple(dst_params.pixel_format, dst_params.component_type); const std::size_t buffer_size = std::max(src_params.size_in_bytes, dst_params.size_in_bytes); glBindBuffer(GL_PIXEL_PACK_BUFFER, copy_pbo_handle); glBufferData(GL_PIXEL_PACK_BUFFER, buffer_size, nullptr, GL_STREAM_DRAW_ARB); if (source_format.compressed) { glGetCompressedTextureImage(src_surface->Texture().handle, src_attachment, static_cast(src_params.size_in_bytes), nullptr); } else { glGetTextureImage(src_surface->Texture().handle, src_attachment, source_format.format, source_format.type, static_cast(src_params.size_in_bytes), nullptr); } // If the new texture is bigger than the previous one, we need to fill in the rest with data // from the CPU. if (src_params.size_in_bytes < dst_params.size_in_bytes) { // Upload the rest of the memory. if (dst_params.is_tiled) { // TODO(Subv): We might have to de-tile the subtexture and re-tile it with the rest // of the data in this case. Games like Super Mario Odyssey seem to hit this case // when drawing, it re-uses the memory of a previous texture as a bigger framebuffer // but it doesn't clear it beforehand, the texture is already full of zeros. LOG_DEBUG(HW_GPU, "Trying to upload extra texture data from the CPU during " "reinterpretation but the texture is tiled."); } const std::size_t remaining_size = dst_params.size_in_bytes - src_params.size_in_bytes; glBufferSubData(GL_PIXEL_PACK_BUFFER, src_params.size_in_bytes, remaining_size, Memory::GetPointer(dst_params.addr + src_params.size_in_bytes)); } glBindBuffer(GL_PIXEL_PACK_BUFFER, 0); const GLsizei width{static_cast( std::min(src_params.GetRect().GetWidth(), dst_params.GetRect().GetWidth()))}; const GLsizei height{static_cast( std::min(src_params.GetRect().GetHeight(), dst_params.GetRect().GetHeight()))}; glBindBuffer(GL_PIXEL_UNPACK_BUFFER, copy_pbo_handle); if (dest_format.compressed) { LOG_CRITICAL(HW_GPU, "Compressed copy is unimplemented!"); UNREACHABLE(); } else { switch (dst_params.target) { case SurfaceTarget::Texture1D: glTextureSubImage1D(dst_surface->Texture().handle, 0, 0, width, dest_format.format, dest_format.type, nullptr); break; case SurfaceTarget::Texture2D: glTextureSubImage2D(dst_surface->Texture().handle, 0, 0, 0, width, height, dest_format.format, dest_format.type, nullptr); break; case SurfaceTarget::Texture3D: case SurfaceTarget::Texture2DArray: case SurfaceTarget::TextureCubeArray: glTextureSubImage3D(dst_surface->Texture().handle, 0, 0, 0, 0, width, height, static_cast(dst_params.depth), dest_format.format, dest_format.type, nullptr); break; case SurfaceTarget::TextureCubemap: glTextureSubImage3D(dst_surface->Texture().handle, 0, 0, 0, static_cast(cubemap_face), width, height, 1, dest_format.format, dest_format.type, nullptr); break; default: LOG_CRITICAL(Render_OpenGL, "Unimplemented surface target={}", static_cast(dst_params.target)); UNREACHABLE(); } glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); } } CachedSurface::CachedSurface(const SurfaceParams& params) : params(params), gl_target(SurfaceTargetToGL(params.target)), cached_size_in_bytes(params.size_in_bytes) { texture.Create(); const auto& rect{params.GetRect()}; // Keep track of previous texture bindings OpenGLState cur_state = OpenGLState::GetCurState(); const auto& old_tex = cur_state.texture_units[0]; SCOPE_EXIT({ cur_state.texture_units[0] = old_tex; cur_state.Apply(); }); cur_state.texture_units[0].texture = texture.handle; cur_state.texture_units[0].target = SurfaceTargetToGL(params.target); cur_state.Apply(); glActiveTexture(GL_TEXTURE0); const auto& format_tuple = GetFormatTuple(params.pixel_format, params.component_type); if (!format_tuple.compressed) { // Only pre-create the texture for non-compressed textures. switch (params.target) { case SurfaceTarget::Texture1D: glTexStorage1D(SurfaceTargetToGL(params.target), params.max_mip_level, format_tuple.internal_format, rect.GetWidth()); break; case SurfaceTarget::Texture2D: case SurfaceTarget::TextureCubemap: glTexStorage2D(SurfaceTargetToGL(params.target), params.max_mip_level, format_tuple.internal_format, rect.GetWidth(), rect.GetHeight()); break; case SurfaceTarget::Texture3D: case SurfaceTarget::Texture2DArray: case SurfaceTarget::TextureCubeArray: glTexStorage3D(SurfaceTargetToGL(params.target), params.max_mip_level, format_tuple.internal_format, rect.GetWidth(), rect.GetHeight(), params.depth); break; default: LOG_CRITICAL(Render_OpenGL, "Unimplemented surface target={}", static_cast(params.target)); UNREACHABLE(); glTexStorage2D(GL_TEXTURE_2D, params.max_mip_level, format_tuple.internal_format, rect.GetWidth(), rect.GetHeight()); } } glTexParameteri(SurfaceTargetToGL(params.target), GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(SurfaceTargetToGL(params.target), GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(SurfaceTargetToGL(params.target), GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(SurfaceTargetToGL(params.target), GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(SurfaceTargetToGL(params.target), GL_TEXTURE_MAX_LEVEL, params.max_mip_level - 1); if (params.max_mip_level == 1) { glTexParameterf(SurfaceTargetToGL(params.target), GL_TEXTURE_LOD_BIAS, 1000.0); } LabelGLObject(GL_TEXTURE, texture.handle, params.addr, SurfaceParams::SurfaceTargetName(params.target)); // Clamp size to mapped GPU memory region // TODO(bunnei): Super Mario Odyssey maps a 0x40000 byte region and then uses it for a 0x80000 // R32F render buffer. We do not yet know if this is a game bug or something else, but this // check is necessary to prevent flushing from overwriting unmapped memory. auto& memory_manager{Core::System::GetInstance().GPU().MemoryManager()}; const u64 max_size{memory_manager.GetRegionEnd(params.gpu_addr) - params.gpu_addr}; if (cached_size_in_bytes > max_size) { LOG_ERROR(HW_GPU, "Surface size {} exceeds region size {}", params.size_in_bytes, max_size); cached_size_in_bytes = max_size; } } static void ConvertS8Z24ToZ24S8(std::vector& data, u32 width, u32 height, bool reverse) { union S8Z24 { BitField<0, 24, u32> z24; BitField<24, 8, u32> s8; }; static_assert(sizeof(S8Z24) == 4, "S8Z24 is incorrect size"); union Z24S8 { BitField<0, 8, u32> s8; BitField<8, 24, u32> z24; }; static_assert(sizeof(Z24S8) == 4, "Z24S8 is incorrect size"); S8Z24 s8z24_pixel{}; Z24S8 z24s8_pixel{}; constexpr auto bpp{GetBytesPerPixel(PixelFormat::S8Z24)}; for (std::size_t y = 0; y < height; ++y) { for (std::size_t x = 0; x < width; ++x) { const std::size_t offset{bpp * (y * width + x)}; if (reverse) { std::memcpy(&z24s8_pixel, &data[offset], sizeof(Z24S8)); s8z24_pixel.s8.Assign(z24s8_pixel.s8); s8z24_pixel.z24.Assign(z24s8_pixel.z24); std::memcpy(&data[offset], &s8z24_pixel, sizeof(S8Z24)); } else { std::memcpy(&s8z24_pixel, &data[offset], sizeof(S8Z24)); z24s8_pixel.s8.Assign(s8z24_pixel.s8); z24s8_pixel.z24.Assign(s8z24_pixel.z24); std::memcpy(&data[offset], &z24s8_pixel, sizeof(Z24S8)); } } } } static void ConvertG8R8ToR8G8(std::vector& data, u32 width, u32 height) { constexpr auto bpp{GetBytesPerPixel(PixelFormat::G8R8U)}; for (std::size_t y = 0; y < height; ++y) { for (std::size_t x = 0; x < width; ++x) { const std::size_t offset{bpp * (y * width + x)}; const u8 temp{data[offset]}; data[offset] = data[offset + 1]; data[offset + 1] = temp; } } } /** * Helper function to perform software conversion (as needed) when loading a buffer from Switch * memory. This is for Maxwell pixel formats that cannot be represented as-is in OpenGL or with * typical desktop GPUs. */ static void ConvertFormatAsNeeded_LoadGLBuffer(std::vector& data, PixelFormat pixel_format, u32 width, u32 height, u32 depth) { switch (pixel_format) { case PixelFormat::ASTC_2D_4X4: case PixelFormat::ASTC_2D_8X8: case PixelFormat::ASTC_2D_8X5: case PixelFormat::ASTC_2D_5X4: case PixelFormat::ASTC_2D_5X5: case PixelFormat::ASTC_2D_4X4_SRGB: case PixelFormat::ASTC_2D_8X8_SRGB: case PixelFormat::ASTC_2D_8X5_SRGB: case PixelFormat::ASTC_2D_5X4_SRGB: case PixelFormat::ASTC_2D_5X5_SRGB: case PixelFormat::ASTC_2D_10X8: case PixelFormat::ASTC_2D_10X8_SRGB: { // Convert ASTC pixel formats to RGBA8, as most desktop GPUs do not support ASTC. u32 block_width{}; u32 block_height{}; std::tie(block_width, block_height) = GetASTCBlockSize(pixel_format); data = Tegra::Texture::ASTC::Decompress(data, width, height, depth, block_width, block_height); break; } case PixelFormat::S8Z24: // Convert the S8Z24 depth format to Z24S8, as OpenGL does not support S8Z24. ConvertS8Z24ToZ24S8(data, width, height, false); break; case PixelFormat::G8R8U: case PixelFormat::G8R8S: // Convert the G8R8 color format to R8G8, as OpenGL does not support G8R8. ConvertG8R8ToR8G8(data, width, height); break; } } /** * Helper function to perform software conversion (as needed) when flushing a buffer from OpenGL to * Switch memory. This is for Maxwell pixel formats that cannot be represented as-is in OpenGL or * with typical desktop GPUs. */ static void ConvertFormatAsNeeded_FlushGLBuffer(std::vector& data, PixelFormat pixel_format, u32 width, u32 height) { switch (pixel_format) { case PixelFormat::G8R8U: case PixelFormat::G8R8S: case PixelFormat::ASTC_2D_4X4: case PixelFormat::ASTC_2D_8X8: case PixelFormat::ASTC_2D_4X4_SRGB: case PixelFormat::ASTC_2D_8X8_SRGB: case PixelFormat::ASTC_2D_5X5: case PixelFormat::ASTC_2D_5X5_SRGB: case PixelFormat::ASTC_2D_10X8: case PixelFormat::ASTC_2D_10X8_SRGB: { LOG_CRITICAL(HW_GPU, "Conversion of format {} after texture flushing is not implemented", static_cast(pixel_format)); UNREACHABLE(); break; } case PixelFormat::S8Z24: // Convert the Z24S8 depth format to S8Z24, as OpenGL does not support S8Z24. ConvertS8Z24ToZ24S8(data, width, height, true); break; } } MICROPROFILE_DEFINE(OpenGL_SurfaceLoad, "OpenGL", "Surface Load", MP_RGB(128, 192, 64)); void CachedSurface::LoadGLBuffer() { MICROPROFILE_SCOPE(OpenGL_SurfaceLoad); gl_buffer.resize(params.max_mip_level); for (u32 i = 0; i < params.max_mip_level; i++) gl_buffer[i].resize(params.GetMipmapSizeGL(i)); if (params.is_tiled) { ASSERT_MSG(params.block_width == 1, "Block width is defined as {} on texture type {}", params.block_width, static_cast(params.target)); for (u32 i = 0; i < params.max_mip_level; i++) SwizzleFunc(morton_to_gl_fns, params, gl_buffer[i], i); } else { const auto texture_src_data{Memory::GetPointer(params.addr)}; const auto texture_src_data_end{texture_src_data + params.size_in_bytes_gl}; gl_buffer[0].assign(texture_src_data, texture_src_data_end); } for (u32 i = 0; i < params.max_mip_level; i++) ConvertFormatAsNeeded_LoadGLBuffer(gl_buffer[i], params.pixel_format, params.MipWidth(i), params.MipHeight(i), params.MipDepth(i)); } MICROPROFILE_DEFINE(OpenGL_SurfaceFlush, "OpenGL", "Surface Flush", MP_RGB(128, 192, 64)); void CachedSurface::FlushGLBuffer() { MICROPROFILE_SCOPE(OpenGL_SurfaceFlush); ASSERT_MSG(!IsPixelFormatASTC(params.pixel_format), "Unimplemented"); // OpenGL temporary buffer needs to be big enough to store raw texture size gl_buffer.resize(1); gl_buffer[0].resize(GetSizeInBytes()); const FormatTuple& tuple = GetFormatTuple(params.pixel_format, params.component_type); // Ensure no bad interactions with GL_UNPACK_ALIGNMENT ASSERT(params.width * GetBytesPerPixel(params.pixel_format) % 4 == 0); glPixelStorei(GL_PACK_ROW_LENGTH, static_cast(params.width)); ASSERT(!tuple.compressed); glBindBuffer(GL_PIXEL_PACK_BUFFER, 0); glGetTextureImage(texture.handle, 0, tuple.format, tuple.type, static_cast(gl_buffer[0].size()), gl_buffer[0].data()); glPixelStorei(GL_PACK_ROW_LENGTH, 0); ConvertFormatAsNeeded_FlushGLBuffer(gl_buffer[0], params.pixel_format, params.width, params.height); ASSERT(params.type != SurfaceType::Fill); const u8* const texture_src_data = Memory::GetPointer(params.addr); ASSERT(texture_src_data); if (params.is_tiled) { ASSERT_MSG(params.block_width == 1, "Block width is defined as {} on texture type {}", params.block_width, static_cast(params.target)); SwizzleFunc(gl_to_morton_fns, params, gl_buffer[0], 0); } else { std::memcpy(Memory::GetPointer(GetAddr()), gl_buffer[0].data(), GetSizeInBytes()); } } void CachedSurface::UploadGLMipmapTexture(u32 mip_map, GLuint read_fb_handle, GLuint draw_fb_handle) { const auto& rect{params.GetRect(mip_map)}; // Load data from memory to the surface const GLint x0 = static_cast(rect.left); const GLint y0 = static_cast(rect.bottom); std::size_t buffer_offset = static_cast(static_cast(y0) * params.MipWidth(mip_map) + static_cast(x0)) * GetBytesPerPixel(params.pixel_format); const FormatTuple& tuple = GetFormatTuple(params.pixel_format, params.component_type); const GLuint target_tex = texture.handle; OpenGLState cur_state = OpenGLState::GetCurState(); const auto& old_tex = cur_state.texture_units[0]; SCOPE_EXIT({ cur_state.texture_units[0] = old_tex; cur_state.Apply(); }); cur_state.texture_units[0].texture = target_tex; cur_state.texture_units[0].target = SurfaceTargetToGL(params.target); cur_state.Apply(); // Ensure no bad interactions with GL_UNPACK_ALIGNMENT ASSERT(params.MipWidth(mip_map) * GetBytesPerPixel(params.pixel_format) % 4 == 0); glPixelStorei(GL_UNPACK_ROW_LENGTH, static_cast(params.MipWidth(mip_map))); GLsizei image_size = static_cast(params.GetMipmapSizeGL(mip_map, false)); glActiveTexture(GL_TEXTURE0); if (tuple.compressed) { switch (params.target) { case SurfaceTarget::Texture2D: glCompressedTexImage2D(SurfaceTargetToGL(params.target), mip_map, tuple.internal_format, static_cast(params.MipWidth(mip_map)), static_cast(params.MipHeight(mip_map)), 0, image_size, &gl_buffer[mip_map][buffer_offset]); break; case SurfaceTarget::Texture3D: glCompressedTexImage3D(SurfaceTargetToGL(params.target), mip_map, tuple.internal_format, static_cast(params.MipWidth(mip_map)), static_cast(params.MipHeight(mip_map)), static_cast(params.MipDepth(mip_map)), 0, image_size, &gl_buffer[mip_map][buffer_offset]); break; case SurfaceTarget::Texture2DArray: case SurfaceTarget::TextureCubeArray: glCompressedTexImage3D(SurfaceTargetToGL(params.target), mip_map, tuple.internal_format, static_cast(params.MipWidth(mip_map)), static_cast(params.MipHeight(mip_map)), static_cast(params.depth), 0, image_size, &gl_buffer[mip_map][buffer_offset]); break; case SurfaceTarget::TextureCubemap: { GLsizei layer_size = static_cast(params.LayerSizeGL(mip_map)); for (std::size_t face = 0; face < params.depth; ++face) { glCompressedTexImage2D(static_cast(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face), mip_map, tuple.internal_format, static_cast(params.MipWidth(mip_map)), static_cast(params.MipHeight(mip_map)), 0, layer_size, &gl_buffer[mip_map][buffer_offset]); buffer_offset += layer_size; } break; } default: LOG_CRITICAL(Render_OpenGL, "Unimplemented surface target={}", static_cast(params.target)); UNREACHABLE(); glCompressedTexImage2D(GL_TEXTURE_2D, mip_map, tuple.internal_format, static_cast(params.MipWidth(mip_map)), static_cast(params.MipHeight(mip_map)), 0, static_cast(params.size_in_bytes_gl), &gl_buffer[mip_map][buffer_offset]); } } else { switch (params.target) { case SurfaceTarget::Texture1D: glTexSubImage1D(SurfaceTargetToGL(params.target), mip_map, x0, static_cast(rect.GetWidth()), tuple.format, tuple.type, &gl_buffer[mip_map][buffer_offset]); break; case SurfaceTarget::Texture2D: glTexSubImage2D(SurfaceTargetToGL(params.target), mip_map, x0, y0, static_cast(rect.GetWidth()), static_cast(rect.GetHeight()), tuple.format, tuple.type, &gl_buffer[mip_map][buffer_offset]); break; case SurfaceTarget::Texture3D: glTexSubImage3D(SurfaceTargetToGL(params.target), mip_map, x0, y0, 0, static_cast(rect.GetWidth()), static_cast(rect.GetHeight()), params.MipDepth(mip_map), tuple.format, tuple.type, &gl_buffer[mip_map][buffer_offset]); break; case SurfaceTarget::Texture2DArray: case SurfaceTarget::TextureCubeArray: glTexSubImage3D(SurfaceTargetToGL(params.target), mip_map, x0, y0, 0, static_cast(rect.GetWidth()), static_cast(rect.GetHeight()), params.depth, tuple.format, tuple.type, &gl_buffer[mip_map][buffer_offset]); break; case SurfaceTarget::TextureCubemap: { std::size_t start = buffer_offset; for (std::size_t face = 0; face < params.depth; ++face) { glTexSubImage2D(static_cast(GL_TEXTURE_CUBE_MAP_POSITIVE_X + face), mip_map, x0, y0, static_cast(rect.GetWidth()), static_cast(rect.GetHeight()), tuple.format, tuple.type, &gl_buffer[mip_map][buffer_offset]); buffer_offset += params.LayerSizeGL(mip_map); } break; } default: LOG_CRITICAL(Render_OpenGL, "Unimplemented surface target={}", static_cast(params.target)); UNREACHABLE(); glTexSubImage2D(GL_TEXTURE_2D, mip_map, x0, y0, static_cast(rect.GetWidth()), static_cast(rect.GetHeight()), tuple.format, tuple.type, &gl_buffer[mip_map][buffer_offset]); } } glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); } MICROPROFILE_DEFINE(OpenGL_TextureUL, "OpenGL", "Texture Upload", MP_RGB(128, 192, 64)); void CachedSurface::UploadGLTexture(GLuint read_fb_handle, GLuint draw_fb_handle) { if (params.type == SurfaceType::Fill) return; MICROPROFILE_SCOPE(OpenGL_TextureUL); for (u32 i = 0; i < params.max_mip_level; i++) UploadGLMipmapTexture(i, read_fb_handle, draw_fb_handle); } RasterizerCacheOpenGL::RasterizerCacheOpenGL(RasterizerOpenGL& rasterizer) : RasterizerCache{rasterizer} { read_framebuffer.Create(); draw_framebuffer.Create(); copy_pbo.Create(); } Surface RasterizerCacheOpenGL::GetTextureSurface(const Tegra::Texture::FullTextureInfo& config, const GLShader::SamplerEntry& entry) { return GetSurface(SurfaceParams::CreateForTexture(config, entry)); } Surface RasterizerCacheOpenGL::GetDepthBufferSurface(bool preserve_contents) { const auto& regs{Core::System::GetInstance().GPU().Maxwell3D().regs}; if (!regs.zeta.Address() || !regs.zeta_enable) { return {}; } SurfaceParams depth_params{SurfaceParams::CreateForDepthBuffer( regs.zeta_width, regs.zeta_height, regs.zeta.Address(), regs.zeta.format, regs.zeta.memory_layout.block_width, regs.zeta.memory_layout.block_height, regs.zeta.memory_layout.block_depth, regs.zeta.memory_layout.type)}; return GetSurface(depth_params, preserve_contents); } Surface RasterizerCacheOpenGL::GetColorBufferSurface(std::size_t index, bool preserve_contents) { const auto& regs{Core::System::GetInstance().GPU().Maxwell3D().regs}; ASSERT(index < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets); if (index >= regs.rt_control.count) { return {}; } if (regs.rt[index].Address() == 0 || regs.rt[index].format == Tegra::RenderTargetFormat::NONE) { return {}; } const SurfaceParams color_params{SurfaceParams::CreateForFramebuffer(index)}; return GetSurface(color_params, preserve_contents); } void RasterizerCacheOpenGL::LoadSurface(const Surface& surface) { surface->LoadGLBuffer(); surface->UploadGLTexture(read_framebuffer.handle, draw_framebuffer.handle); surface->MarkAsModified(false, *this); } Surface RasterizerCacheOpenGL::GetSurface(const SurfaceParams& params, bool preserve_contents) { if (params.addr == 0 || params.height * params.width == 0) { return {}; } // Look up surface in the cache based on address Surface surface{TryGet(params.addr)}; if (surface) { if (surface->GetSurfaceParams().IsCompatibleSurface(params)) { // Use the cached surface as-is return surface; } else if (preserve_contents) { // If surface parameters changed and we care about keeping the previous data, recreate // the surface from the old one Surface new_surface{RecreateSurface(surface, params)}; Unregister(surface); Register(new_surface); return new_surface; } else { // Delete the old surface before creating a new one to prevent collisions. Unregister(surface); } } // No cached surface found - get a new one surface = GetUncachedSurface(params); Register(surface); // Only load surface from memory if we care about the contents if (preserve_contents) { LoadSurface(surface); } return surface; } Surface RasterizerCacheOpenGL::GetUncachedSurface(const SurfaceParams& params) { Surface surface{TryGetReservedSurface(params)}; if (!surface) { // No reserved surface available, create a new one and reserve it surface = std::make_shared(params); ReserveSurface(surface); } return surface; } void RasterizerCacheOpenGL::FastLayeredCopySurface(const Surface& src_surface, const Surface& dst_surface) { const auto& init_params{src_surface->GetSurfaceParams()}; const auto& dst_params{dst_surface->GetSurfaceParams()}; VAddr address = init_params.addr; const std::size_t layer_size = dst_params.LayerMemorySize(); for (u32 layer = 0; layer < dst_params.depth; layer++) { for (u32 mipmap = 0; mipmap < dst_params.max_mip_level; mipmap++) { const VAddr sub_address = address + dst_params.GetMipmapLevelOffset(mipmap); const Surface& copy = TryGet(sub_address); if (!copy) continue; const auto& src_params{copy->GetSurfaceParams()}; const u32 width{std::min(src_params.width, dst_params.MipWidth(mipmap))}; const u32 height{std::min(src_params.height, dst_params.MipHeight(mipmap))}; glCopyImageSubData(copy->Texture().handle, SurfaceTargetToGL(src_params.target), 0, 0, 0, 0, dst_surface->Texture().handle, SurfaceTargetToGL(dst_params.target), mipmap, 0, 0, layer, width, height, 1); } address += layer_size; } } void RasterizerCacheOpenGL::FermiCopySurface( const Tegra::Engines::Fermi2D::Regs::Surface& src_config, const Tegra::Engines::Fermi2D::Regs::Surface& dst_config) { const auto& src_params = SurfaceParams::CreateForFermiCopySurface(src_config); const auto& dst_params = SurfaceParams::CreateForFermiCopySurface(dst_config); ASSERT(src_params.width == dst_params.width); ASSERT(src_params.height == dst_params.height); ASSERT(src_params.pixel_format == dst_params.pixel_format); ASSERT(src_params.block_height == dst_params.block_height); ASSERT(src_params.is_tiled == dst_params.is_tiled); ASSERT(src_params.depth == dst_params.depth); ASSERT(src_params.depth == 1); // Currently, FastCopySurface only works with 2D surfaces ASSERT(src_params.target == dst_params.target); ASSERT(src_params.rt.index == dst_params.rt.index); FastCopySurface(GetSurface(src_params, true), GetSurface(dst_params, false)); } void RasterizerCacheOpenGL::AccurateCopySurface(const Surface& src_surface, const Surface& dst_surface) { const auto& src_params{src_surface->GetSurfaceParams()}; const auto& dst_params{dst_surface->GetSurfaceParams()}; FlushRegion(src_params.addr, dst_params.MemorySize()); LoadSurface(dst_surface); } Surface RasterizerCacheOpenGL::RecreateSurface(const Surface& old_surface, const SurfaceParams& new_params) { // Verify surface is compatible for blitting auto old_params{old_surface->GetSurfaceParams()}; // Get a new surface with the new parameters, and blit the previous surface to it Surface new_surface{GetUncachedSurface(new_params)}; // With use_accurate_gpu_emulation enabled, do an accurate surface copy if (Settings::values.use_accurate_gpu_emulation) { AccurateCopySurface(old_surface, new_surface); return new_surface; } // For compatible surfaces, we can just do fast glCopyImageSubData based copy if (old_params.target == new_params.target && old_params.type == new_params.type && old_params.depth == new_params.depth && old_params.depth == 1 && GetFormatBpp(old_params.pixel_format) == GetFormatBpp(new_params.pixel_format)) { FastCopySurface(old_surface, new_surface); return new_surface; } // If the format is the same, just do a framebuffer blit. This is significantly faster than // using PBOs. The is also likely less accurate, as textures will be converted rather than // reinterpreted. When use_accurate_gpu_emulation setting is enabled, perform a more accurate // surface copy, where pixels are reinterpreted as a new format (without conversion). This // code path uses OpenGL PBOs and is quite slow. const bool is_blit{old_params.pixel_format == new_params.pixel_format}; switch (new_params.target) { case SurfaceTarget::Texture2D: if (is_blit) { BlitSurface(old_surface, new_surface, read_framebuffer.handle, draw_framebuffer.handle); } else { CopySurface(old_surface, new_surface, copy_pbo.handle); } break; case SurfaceTarget::Texture3D: AccurateCopySurface(old_surface, new_surface); break; case SurfaceTarget::TextureCubemap: case SurfaceTarget::Texture2DArray: case SurfaceTarget::TextureCubeArray: FastLayeredCopySurface(old_surface, new_surface); break; default: LOG_CRITICAL(Render_OpenGL, "Unimplemented surface target={}", static_cast(new_params.target)); UNREACHABLE(); } return new_surface; } Surface RasterizerCacheOpenGL::TryFindFramebufferSurface(VAddr addr) const { return TryGet(addr); } void RasterizerCacheOpenGL::ReserveSurface(const Surface& surface) { const auto& surface_reserve_key{SurfaceReserveKey::Create(surface->GetSurfaceParams())}; surface_reserve[surface_reserve_key] = surface; } Surface RasterizerCacheOpenGL::TryGetReservedSurface(const SurfaceParams& params) { const auto& surface_reserve_key{SurfaceReserveKey::Create(params)}; auto search{surface_reserve.find(surface_reserve_key)}; if (search != surface_reserve.end()) { return search->second; } return {}; } } // namespace OpenGL