// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include "common/assert.h" #include "common/common_types.h" #include "video_core/engines/shader_bytecode.h" #include "video_core/renderer_opengl/gl_shader_decompiler.h" namespace GLShader { namespace Decompiler { using Tegra::Shader::Attribute; using Tegra::Shader::Instruction; using Tegra::Shader::OpCode; using Tegra::Shader::Register; using Tegra::Shader::SubOp; using Tegra::Shader::Uniform; constexpr u32 PROGRAM_END = MAX_PROGRAM_CODE_LENGTH; class DecompileFail : public std::runtime_error { public: using std::runtime_error::runtime_error; }; /// Describes the behaviour of code path of a given entry point and a return point. enum class ExitMethod { Undetermined, ///< Internal value. Only occur when analyzing JMP loop. AlwaysReturn, ///< All code paths reach the return point. Conditional, ///< Code path reaches the return point or an END instruction conditionally. AlwaysEnd, ///< All code paths reach a END instruction. }; /// A subroutine is a range of code refereced by a CALL, IF or LOOP instruction. struct Subroutine { /// Generates a name suitable for GLSL source code. std::string GetName() const { return "sub_" + std::to_string(begin) + "_" + std::to_string(end); } u32 begin; ///< Entry point of the subroutine. u32 end; ///< Return point of the subroutine. ExitMethod exit_method; ///< Exit method of the subroutine. std::set labels; ///< Addresses refereced by JMP instructions. bool operator<(const Subroutine& rhs) const { return std::tie(begin, end) < std::tie(rhs.begin, rhs.end); } }; /// Analyzes shader code and produces a set of subroutines. class ControlFlowAnalyzer { public: ControlFlowAnalyzer(const ProgramCode& program_code, u32 main_offset) : program_code(program_code) { // Recursively finds all subroutines. const Subroutine& program_main = AddSubroutine(main_offset, PROGRAM_END); if (program_main.exit_method != ExitMethod::AlwaysEnd) throw DecompileFail("Program does not always end"); } std::set GetSubroutines() { return std::move(subroutines); } private: const ProgramCode& program_code; std::set subroutines; std::map, ExitMethod> exit_method_map; /// Adds and analyzes a new subroutine if it is not added yet. const Subroutine& AddSubroutine(u32 begin, u32 end) { auto iter = subroutines.find(Subroutine{begin, end}); if (iter != subroutines.end()) return *iter; Subroutine subroutine{begin, end}; subroutine.exit_method = Scan(begin, end, subroutine.labels); if (subroutine.exit_method == ExitMethod::Undetermined) throw DecompileFail("Recursive function detected"); return *subroutines.insert(std::move(subroutine)).first; } /// Scans a range of code for labels and determines the exit method. ExitMethod Scan(u32 begin, u32 end, std::set& labels) { auto [iter, inserted] = exit_method_map.emplace(std::make_pair(begin, end), ExitMethod::Undetermined); ExitMethod& exit_method = iter->second; if (!inserted) return exit_method; for (u32 offset = begin; offset != end && offset != PROGRAM_END; ++offset) { const Instruction instr = {program_code[offset]}; switch (instr.opcode.EffectiveOpCode()) { case OpCode::Id::EXIT: { return exit_method = ExitMethod::AlwaysEnd; } } } return exit_method = ExitMethod::AlwaysReturn; } }; class ShaderWriter { public: void AddLine(const std::string& text) { DEBUG_ASSERT(scope >= 0); if (!text.empty()) { shader_source += std::string(static_cast(scope) * 4, ' '); } shader_source += text + '\n'; } std::string GetResult() { return std::move(shader_source); } int scope = 0; private: std::string shader_source; }; class GLSLGenerator { public: GLSLGenerator(const std::set& subroutines, const ProgramCode& program_code, u32 main_offset, Maxwell3D::Regs::ShaderStage stage) : subroutines(subroutines), program_code(program_code), main_offset(main_offset), stage(stage) { Generate(); } std::string GetShaderCode() { return declarations.GetResult() + shader.GetResult(); } private: /// Gets the Subroutine object corresponding to the specified address. const Subroutine& GetSubroutine(u32 begin, u32 end) const { auto iter = subroutines.find(Subroutine{begin, end}); ASSERT(iter != subroutines.end()); return *iter; } /// Generates code representing an input attribute register. std::string GetInputAttribute(Attribute::Index attribute) { declr_input_attribute.insert(attribute); const u32 index{static_cast(attribute) - static_cast(Attribute::Index::Attribute_0)}; if (attribute >= Attribute::Index::Attribute_0) { return "input_attribute_" + std::to_string(index); } LOG_CRITICAL(HW_GPU, "Unhandled input attribute: 0x%02x", index); UNREACHABLE(); } /// Generates code representing an output attribute register. std::string GetOutputAttribute(Attribute::Index attribute) { switch (attribute) { case Attribute::Index::Position: return "gl_Position"; default: const u32 index{static_cast(attribute) - static_cast(Attribute::Index::Attribute_0)}; if (attribute >= Attribute::Index::Attribute_0) { declr_output_attribute.insert(attribute); return "output_attribute_" + std::to_string(index); } LOG_CRITICAL(HW_GPU, "Unhandled output attribute: 0x%02x", index); UNREACHABLE(); } } /// Generates code representing a temporary (GPR) register. std::string GetRegister(const Register& reg) { return *declr_register.insert("register_" + std::to_string(reg)).first; } /// Generates code representing a uniform (C buffer) register. std::string GetUniform(const Uniform& reg) const { std::string index = std::to_string(reg.index); return "uniform_" + index + "[" + std::to_string(reg.offset >> 2) + "][" + std::to_string(reg.offset & 3) + "]"; } /** * Adds code that calls a subroutine. * @param subroutine the subroutine to call. */ void CallSubroutine(const Subroutine& subroutine) { if (subroutine.exit_method == ExitMethod::AlwaysEnd) { shader.AddLine(subroutine.GetName() + "();"); shader.AddLine("return true;"); } else if (subroutine.exit_method == ExitMethod::Conditional) { shader.AddLine("if (" + subroutine.GetName() + "()) { return true; }"); } else { shader.AddLine(subroutine.GetName() + "();"); } } /** * Writes code that does an assignment operation. * @param reg the destination register code. * @param value the code representing the value to assign. */ void SetDest(u64 elem, const std::string& reg, const std::string& value, u64 dest_num_components, u64 value_num_components) { std::string swizzle = "."; swizzle += "xyzw"[elem]; std::string dest = reg + (dest_num_components != 1 ? swizzle : ""); std::string src = "(" + value + ")" + (value_num_components != 1 ? swizzle : ""); shader.AddLine(dest + " = " + src + ";"); } /** * Compiles a single instruction from Tegra to GLSL. * @param offset the offset of the Tegra shader instruction. * @return the offset of the next instruction to execute. Usually it is the current offset * + 1. If the current instruction always terminates the program, returns PROGRAM_END. */ u32 CompileInstr(u32 offset) { const Instruction instr = {program_code[offset]}; shader.AddLine("// " + std::to_string(offset) + ": " + OpCode::GetInfo(instr.opcode).name); switch (OpCode::GetInfo(instr.opcode).type) { case OpCode::Type::Arithmetic: { ASSERT(!instr.alu.abs_d); std::string dest = GetRegister(instr.gpr0); std::string op_a = instr.alu.negate_a ? "-" : ""; op_a += GetRegister(instr.gpr8); if (instr.alu.abs_a) { op_a = "abs(" + op_a + ")"; } std::string op_b = instr.alu.negate_b ? "-" : ""; if (instr.is_b_gpr) { op_b += GetRegister(instr.gpr20); } else { op_b += GetUniform(instr.uniform); } if (instr.alu.abs_b) { op_b = "abs(" + op_b + ")"; } switch (instr.opcode.EffectiveOpCode()) { case OpCode::Id::FMUL_C: case OpCode::Id::FMUL_R: { SetDest(0, dest, op_a + " * " + op_b, 1, 1); break; } case OpCode::Id::FADD_C: case OpCode::Id::FADD_R: { SetDest(0, dest, op_a + " + " + op_b, 1, 1); break; } default: { LOG_CRITICAL(HW_GPU, "Unhandled arithmetic instruction: 0x%02x (%s): 0x%08x", static_cast(instr.opcode.EffectiveOpCode()), OpCode::GetInfo(instr.opcode).name.c_str(), instr.hex); throw DecompileFail("Unhandled instruction"); break; } } break; } case OpCode::Type::Ffma: { ASSERT_MSG(!instr.ffma.negate_b, "untested"); ASSERT_MSG(!instr.ffma.negate_c, "untested"); std::string dest = GetRegister(instr.gpr0); std::string op_a = GetRegister(instr.gpr8); std::string op_b = instr.ffma.negate_b ? "-" : ""; op_b += GetUniform(instr.uniform); std::string op_c = instr.ffma.negate_c ? "-" : ""; op_c += GetRegister(instr.gpr39); switch (instr.opcode.EffectiveOpCode()) { case OpCode::Id::FFMA_CR: { SetDest(0, dest, op_a + " * " + op_b + " + " + op_c, 1, 1); break; } default: { LOG_CRITICAL(HW_GPU, "Unhandled arithmetic FFMA instruction: 0x%02x (%s): 0x%08x", static_cast(instr.opcode.EffectiveOpCode()), OpCode::GetInfo(instr.opcode).name.c_str(), instr.hex); throw DecompileFail("Unhandled instruction"); break; } } break; } case OpCode::Type::Memory: { std::string gpr0 = GetRegister(instr.gpr0); const Attribute::Index attribute = instr.attribute.fmt20.index; switch (instr.opcode.EffectiveOpCode()) { case OpCode::Id::LD_A: { ASSERT(instr.attribute.fmt20.size == 0); SetDest(instr.attribute.fmt20.element, gpr0, GetInputAttribute(attribute), 1, 4); break; } case OpCode::Id::ST_A: { ASSERT(instr.attribute.fmt20.size == 0); SetDest(instr.attribute.fmt20.element, GetOutputAttribute(attribute), gpr0, 4, 1); break; } default: { LOG_CRITICAL(HW_GPU, "Unhandled memory instruction: 0x%02x (%s): 0x%08x", static_cast(instr.opcode.EffectiveOpCode()), OpCode::GetInfo(instr.opcode).name.c_str(), instr.hex); throw DecompileFail("Unhandled instruction"); break; } } break; } default: { switch (instr.opcode.EffectiveOpCode()) { case OpCode::Id::EXIT: { shader.AddLine("return true;"); offset = PROGRAM_END - 1; break; } default: { LOG_CRITICAL(HW_GPU, "Unhandled instruction: 0x%02x (%s): 0x%08x", static_cast(instr.opcode.EffectiveOpCode()), OpCode::GetInfo(instr.opcode).name.c_str(), instr.hex); throw DecompileFail("Unhandled instruction"); break; } } break; } } return offset + 1; } /** * Compiles a range of instructions from Tegra to GLSL. * @param begin the offset of the starting instruction. * @param end the offset where the compilation should stop (exclusive). * @return the offset of the next instruction to compile. PROGRAM_END if the program * terminates. */ u32 CompileRange(u32 begin, u32 end) { u32 program_counter; for (program_counter = begin; program_counter < (begin > end ? PROGRAM_END : end);) { program_counter = CompileInstr(program_counter); } return program_counter; } void Generate() { // Add declarations for all subroutines for (const auto& subroutine : subroutines) { shader.AddLine("bool " + subroutine.GetName() + "();"); } shader.AddLine(""); // Add the main entry point shader.AddLine("bool exec_shader() {"); ++shader.scope; CallSubroutine(GetSubroutine(main_offset, PROGRAM_END)); --shader.scope; shader.AddLine("}\n"); // Add definitions for all subroutines for (const auto& subroutine : subroutines) { std::set labels = subroutine.labels; shader.AddLine("bool " + subroutine.GetName() + "() {"); ++shader.scope; if (labels.empty()) { if (CompileRange(subroutine.begin, subroutine.end) != PROGRAM_END) { shader.AddLine("return false;"); } } else { labels.insert(subroutine.begin); shader.AddLine("uint jmp_to = " + std::to_string(subroutine.begin) + "u;"); shader.AddLine("while (true) {"); ++shader.scope; shader.AddLine("switch (jmp_to) {"); for (auto label : labels) { shader.AddLine("case " + std::to_string(label) + "u: {"); ++shader.scope; auto next_it = labels.lower_bound(label + 1); u32 next_label = next_it == labels.end() ? subroutine.end : *next_it; u32 compile_end = CompileRange(label, next_label); if (compile_end > next_label && compile_end != PROGRAM_END) { // This happens only when there is a label inside a IF/LOOP block shader.AddLine("{ jmp_to = " + std::to_string(compile_end) + "u; break; }"); labels.emplace(compile_end); } --shader.scope; shader.AddLine("}"); } shader.AddLine("default: return false;"); shader.AddLine("}"); --shader.scope; shader.AddLine("}"); shader.AddLine("return false;"); } --shader.scope; shader.AddLine("}\n"); DEBUG_ASSERT(shader.scope == 0); } GenerateDeclarations(); } /// Add declarations for registers void GenerateDeclarations() { for (const auto& reg : declr_register) { declarations.AddLine("float " + reg + " = 0.0;"); } declarations.AddLine(""); for (const auto& index : declr_input_attribute) { // TODO(bunnei): Use proper number of elements for these declarations.AddLine("layout(location = " + std::to_string(static_cast(index) - static_cast(Attribute::Index::Attribute_0)) + ") in vec4 " + GetInputAttribute(index) + ";"); } declarations.AddLine(""); for (const auto& index : declr_output_attribute) { // TODO(bunnei): Use proper number of elements for these declarations.AddLine("layout(location = " + std::to_string(static_cast(index) - static_cast(Attribute::Index::Attribute_0)) + ") out vec4 " + GetOutputAttribute(index) + ";"); } declarations.AddLine(""); } private: const std::set& subroutines; const ProgramCode& program_code; const u32 main_offset; Maxwell3D::Regs::ShaderStage stage; ShaderWriter shader; ShaderWriter declarations; // Declarations std::set declr_register; std::set declr_input_attribute; std::set declr_output_attribute; }; // namespace Decompiler std::string GetCommonDeclarations() { return "bool exec_shader();"; } boost::optional DecompileProgram(const ProgramCode& program_code, u32 main_offset, Maxwell3D::Regs::ShaderStage stage) { try { auto subroutines = ControlFlowAnalyzer(program_code, main_offset).GetSubroutines(); GLSLGenerator generator(subroutines, program_code, main_offset, stage); return generator.GetShaderCode(); } catch (const DecompileFail& exception) { LOG_ERROR(HW_GPU, "Shader decompilation failed: %s", exception.what()); } return boost::none; } } // namespace Decompiler } // namespace GLShader