// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/assert.h" #include "common/bit_field.h" #include "common/logging/log.h" #include "video_core/pica.h" #include "video_core/renderer_opengl/gl_rasterizer.h" #include "video_core/renderer_opengl/gl_shader_gen.h" #include "video_core/renderer_opengl/gl_shader_util.h" using Pica::Regs; using Pica::RasterizerRegs; using Pica::LightingRegs; using TevStageConfig = Pica::TexturingRegs::TevStageConfig; namespace GLShader { /// Detects if a TEV stage is configured to be skipped (to avoid generating unnecessary code) static bool IsPassThroughTevStage(const TevStageConfig& stage) { return (stage.color_op == TevStageConfig::Operation::Replace && stage.alpha_op == TevStageConfig::Operation::Replace && stage.color_source1 == TevStageConfig::Source::Previous && stage.alpha_source1 == TevStageConfig::Source::Previous && stage.color_modifier1 == TevStageConfig::ColorModifier::SourceColor && stage.alpha_modifier1 == TevStageConfig::AlphaModifier::SourceAlpha && stage.GetColorMultiplier() == 1 && stage.GetAlphaMultiplier() == 1); } /// Writes the specified TEV stage source component(s) static void AppendSource(std::string& out, const PicaShaderConfig& config, TevStageConfig::Source source, const std::string& index_name) { const auto& state = config.state; using Source = TevStageConfig::Source; switch (source) { case Source::PrimaryColor: out += "primary_color"; break; case Source::PrimaryFragmentColor: out += "primary_fragment_color"; break; case Source::SecondaryFragmentColor: out += "secondary_fragment_color"; break; case Source::Texture0: // Only unit 0 respects the texturing type (according to 3DBrew) switch (state.texture0_type) { case Pica::TexturingRegs::TextureConfig::Texture2D: out += "texture(tex[0], texcoord[0])"; break; case Pica::TexturingRegs::TextureConfig::Projection2D: out += "textureProj(tex[0], vec3(texcoord[0], texcoord0_w))"; break; default: out += "texture(tex[0], texcoord[0])"; LOG_CRITICAL(HW_GPU, "Unhandled texture type %x", static_cast(state.texture0_type)); UNIMPLEMENTED(); break; } break; case Source::Texture1: out += "texture(tex[1], texcoord[1])"; break; case Source::Texture2: out += "texture(tex[2], texcoord[2])"; break; case Source::PreviousBuffer: out += "combiner_buffer"; break; case Source::Constant: ((out += "const_color[") += index_name) += ']'; break; case Source::Previous: out += "last_tex_env_out"; break; default: out += "vec4(0.0)"; LOG_CRITICAL(Render_OpenGL, "Unknown source op %u", source); break; } } /// Writes the color components to use for the specified TEV stage color modifier static void AppendColorModifier(std::string& out, const PicaShaderConfig& config, TevStageConfig::ColorModifier modifier, TevStageConfig::Source source, const std::string& index_name) { using ColorModifier = TevStageConfig::ColorModifier; switch (modifier) { case ColorModifier::SourceColor: AppendSource(out, config, source, index_name); out += ".rgb"; break; case ColorModifier::OneMinusSourceColor: out += "vec3(1.0) - "; AppendSource(out, config, source, index_name); out += ".rgb"; break; case ColorModifier::SourceAlpha: AppendSource(out, config, source, index_name); out += ".aaa"; break; case ColorModifier::OneMinusSourceAlpha: out += "vec3(1.0) - "; AppendSource(out, config, source, index_name); out += ".aaa"; break; case ColorModifier::SourceRed: AppendSource(out, config, source, index_name); out += ".rrr"; break; case ColorModifier::OneMinusSourceRed: out += "vec3(1.0) - "; AppendSource(out, config, source, index_name); out += ".rrr"; break; case ColorModifier::SourceGreen: AppendSource(out, config, source, index_name); out += ".ggg"; break; case ColorModifier::OneMinusSourceGreen: out += "vec3(1.0) - "; AppendSource(out, config, source, index_name); out += ".ggg"; break; case ColorModifier::SourceBlue: AppendSource(out, config, source, index_name); out += ".bbb"; break; case ColorModifier::OneMinusSourceBlue: out += "vec3(1.0) - "; AppendSource(out, config, source, index_name); out += ".bbb"; break; default: out += "vec3(0.0)"; LOG_CRITICAL(Render_OpenGL, "Unknown color modifier op %u", modifier); break; } } /// Writes the alpha component to use for the specified TEV stage alpha modifier static void AppendAlphaModifier(std::string& out, const PicaShaderConfig& config, TevStageConfig::AlphaModifier modifier, TevStageConfig::Source source, const std::string& index_name) { using AlphaModifier = TevStageConfig::AlphaModifier; switch (modifier) { case AlphaModifier::SourceAlpha: AppendSource(out, config, source, index_name); out += ".a"; break; case AlphaModifier::OneMinusSourceAlpha: out += "1.0 - "; AppendSource(out, config, source, index_name); out += ".a"; break; case AlphaModifier::SourceRed: AppendSource(out, config, source, index_name); out += ".r"; break; case AlphaModifier::OneMinusSourceRed: out += "1.0 - "; AppendSource(out, config, source, index_name); out += ".r"; break; case AlphaModifier::SourceGreen: AppendSource(out, config, source, index_name); out += ".g"; break; case AlphaModifier::OneMinusSourceGreen: out += "1.0 - "; AppendSource(out, config, source, index_name); out += ".g"; break; case AlphaModifier::SourceBlue: AppendSource(out, config, source, index_name); out += ".b"; break; case AlphaModifier::OneMinusSourceBlue: out += "1.0 - "; AppendSource(out, config, source, index_name); out += ".b"; break; default: out += "0.0"; LOG_CRITICAL(Render_OpenGL, "Unknown alpha modifier op %u", modifier); break; } } /// Writes the combiner function for the color components for the specified TEV stage operation static void AppendColorCombiner(std::string& out, TevStageConfig::Operation operation, const std::string& variable_name) { out += "clamp("; using Operation = TevStageConfig::Operation; switch (operation) { case Operation::Replace: out += variable_name + "[0]"; break; case Operation::Modulate: out += variable_name + "[0] * " + variable_name + "[1]"; break; case Operation::Add: out += variable_name + "[0] + " + variable_name + "[1]"; break; case Operation::AddSigned: out += variable_name + "[0] + " + variable_name + "[1] - vec3(0.5)"; break; case Operation::Lerp: // TODO(bunnei): Verify if HW actually does this per-component, otherwise we can just use // builtin lerp out += variable_name + "[0] * " + variable_name + "[2] + " + variable_name + "[1] * (vec3(1.0) - " + variable_name + "[2])"; break; case Operation::Subtract: out += variable_name + "[0] - " + variable_name + "[1]"; break; case Operation::MultiplyThenAdd: out += variable_name + "[0] * " + variable_name + "[1] + " + variable_name + "[2]"; break; case Operation::AddThenMultiply: out += "min(" + variable_name + "[0] + " + variable_name + "[1], vec3(1.0)) * " + variable_name + "[2]"; break; case Operation::Dot3_RGB: out += "vec3(dot(" + variable_name + "[0] - vec3(0.5), " + variable_name + "[1] - vec3(0.5)) * 4.0)"; break; default: out += "vec3(0.0)"; LOG_CRITICAL(Render_OpenGL, "Unknown color combiner operation: %u", operation); break; } out += ", vec3(0.0), vec3(1.0))"; // Clamp result to 0.0, 1.0 } /// Writes the combiner function for the alpha component for the specified TEV stage operation static void AppendAlphaCombiner(std::string& out, TevStageConfig::Operation operation, const std::string& variable_name) { out += "clamp("; using Operation = TevStageConfig::Operation; switch (operation) { case Operation::Replace: out += variable_name + "[0]"; break; case Operation::Modulate: out += variable_name + "[0] * " + variable_name + "[1]"; break; case Operation::Add: out += variable_name + "[0] + " + variable_name + "[1]"; break; case Operation::AddSigned: out += variable_name + "[0] + " + variable_name + "[1] - 0.5"; break; case Operation::Lerp: out += variable_name + "[0] * " + variable_name + "[2] + " + variable_name + "[1] * (1.0 - " + variable_name + "[2])"; break; case Operation::Subtract: out += variable_name + "[0] - " + variable_name + "[1]"; break; case Operation::MultiplyThenAdd: out += variable_name + "[0] * " + variable_name + "[1] + " + variable_name + "[2]"; break; case Operation::AddThenMultiply: out += "min(" + variable_name + "[0] + " + variable_name + "[1], 1.0) * " + variable_name + "[2]"; break; default: out += "0.0"; LOG_CRITICAL(Render_OpenGL, "Unknown alpha combiner operation: %u", operation); break; } out += ", 0.0, 1.0)"; } /// Writes the if-statement condition used to evaluate alpha testing static void AppendAlphaTestCondition(std::string& out, Pica::FramebufferRegs::CompareFunc func) { using CompareFunc = Pica::FramebufferRegs::CompareFunc; switch (func) { case CompareFunc::Never: out += "true"; break; case CompareFunc::Always: out += "false"; break; case CompareFunc::Equal: case CompareFunc::NotEqual: case CompareFunc::LessThan: case CompareFunc::LessThanOrEqual: case CompareFunc::GreaterThan: case CompareFunc::GreaterThanOrEqual: { static const char* op[] = {"!=", "==", ">=", ">", "<=", "<"}; unsigned index = (unsigned)func - (unsigned)CompareFunc::Equal; out += "int(last_tex_env_out.a * 255.0) " + std::string(op[index]) + " alphatest_ref"; break; } default: out += "false"; LOG_CRITICAL(Render_OpenGL, "Unknown alpha test condition %u", func); break; } } /// Writes the code to emulate the specified TEV stage static void WriteTevStage(std::string& out, const PicaShaderConfig& config, unsigned index) { const auto stage = static_cast(config.state.tev_stages[index]); if (!IsPassThroughTevStage(stage)) { std::string index_name = std::to_string(index); out += "vec3 color_results_" + index_name + "[3] = vec3[3]("; AppendColorModifier(out, config, stage.color_modifier1, stage.color_source1, index_name); out += ", "; AppendColorModifier(out, config, stage.color_modifier2, stage.color_source2, index_name); out += ", "; AppendColorModifier(out, config, stage.color_modifier3, stage.color_source3, index_name); out += ");\n"; out += "vec3 color_output_" + index_name + " = "; AppendColorCombiner(out, stage.color_op, "color_results_" + index_name); out += ";\n"; out += "float alpha_results_" + index_name + "[3] = float[3]("; AppendAlphaModifier(out, config, stage.alpha_modifier1, stage.alpha_source1, index_name); out += ", "; AppendAlphaModifier(out, config, stage.alpha_modifier2, stage.alpha_source2, index_name); out += ", "; AppendAlphaModifier(out, config, stage.alpha_modifier3, stage.alpha_source3, index_name); out += ");\n"; out += "float alpha_output_" + index_name + " = "; AppendAlphaCombiner(out, stage.alpha_op, "alpha_results_" + index_name); out += ";\n"; out += "last_tex_env_out = vec4(" "clamp(color_output_" + index_name + " * " + std::to_string(stage.GetColorMultiplier()) + ".0, vec3(0.0), vec3(1.0))," "clamp(alpha_output_" + index_name + " * " + std::to_string(stage.GetAlphaMultiplier()) + ".0, 0.0, 1.0));\n"; } out += "combiner_buffer = next_combiner_buffer;\n"; if (config.TevStageUpdatesCombinerBufferColor(index)) out += "next_combiner_buffer.rgb = last_tex_env_out.rgb;\n"; if (config.TevStageUpdatesCombinerBufferAlpha(index)) out += "next_combiner_buffer.a = last_tex_env_out.a;\n"; } /// Writes the code to emulate fragment lighting static void WriteLighting(std::string& out, const PicaShaderConfig& config) { const auto& lighting = config.state.lighting; // Define lighting globals out += "vec4 diffuse_sum = vec4(0.0, 0.0, 0.0, 1.0);\n" "vec4 specular_sum = vec4(0.0, 0.0, 0.0, 1.0);\n" "vec3 light_vector = vec3(0.0);\n" "vec3 refl_value = vec3(0.0);\n"; // Compute fragment normals if (lighting.bump_mode == LightingRegs::LightingBumpMode::NormalMap) { // Bump mapping is enabled using a normal map, read perturbation vector from the selected // texture std::string bump_selector = std::to_string(lighting.bump_selector); out += "vec3 surface_normal = 2.0 * texture(tex[" + bump_selector + "], texcoord[" + bump_selector + "]).rgb - 1.0;\n"; // Recompute Z-component of perturbation if 'renorm' is enabled, this provides a higher // precision result if (lighting.bump_renorm) { std::string val = "(1.0 - (surface_normal.x*surface_normal.x + surface_normal.y*surface_normal.y))"; out += "surface_normal.z = sqrt(max(" + val + ", 0.0));\n"; } } else if (lighting.bump_mode == LightingRegs::LightingBumpMode::TangentMap) { // Bump mapping is enabled using a tangent map LOG_CRITICAL(HW_GPU, "unimplemented bump mapping mode (tangent mapping)"); UNIMPLEMENTED(); } else { // No bump mapping - surface local normal is just a unit normal out += "vec3 surface_normal = vec3(0.0, 0.0, 1.0);\n"; } // Rotate the surface-local normal by the interpolated normal quaternion to convert it to // eyespace out += "vec3 normal = normalize(quaternion_rotate(normquat, surface_normal));\n"; // Gets the index into the specified lookup table for specular lighting auto GetLutIndex = [&lighting](unsigned light_num, LightingRegs::LightingLutInput input, bool abs) { const std::string half_angle = "normalize(normalize(view) + light_vector)"; std::string index; switch (input) { case LightingRegs::LightingLutInput::NH: index = "dot(normal, " + half_angle + ")"; break; case LightingRegs::LightingLutInput::VH: index = std::string("dot(normalize(view), " + half_angle + ")"); break; case LightingRegs::LightingLutInput::NV: index = std::string("dot(normal, normalize(view))"); break; case LightingRegs::LightingLutInput::LN: index = std::string("dot(light_vector, normal)"); break; default: LOG_CRITICAL(HW_GPU, "Unknown lighting LUT input %d\n", (int)input); UNIMPLEMENTED(); index = "0.0"; break; } if (abs) { // LUT index is in the range of (0.0, 1.0) index = lighting.light[light_num].two_sided_diffuse ? "abs(" + index + ")" : "max(" + index + ", 0.0)"; } else { // LUT index is in the range of (-1.0, 1.0) index = "((" + index + " < 0) ? " + index + " + 2.0 : " + index + ") / 2.0"; } return "(OFFSET_256 + SCALE_256 * clamp(" + index + ", 0.0, 1.0))"; }; // Gets the lighting lookup table value given the specified sampler and index auto GetLutValue = [](LightingRegs::LightingSampler sampler, std::string lut_index) { return std::string("texture(lut[" + std::to_string((unsigned)sampler / 4) + "], " + lut_index + ")[" + std::to_string((unsigned)sampler & 3) + "]"); }; // Write the code to emulate each enabled light for (unsigned light_index = 0; light_index < lighting.src_num; ++light_index) { const auto& light_config = lighting.light[light_index]; std::string light_src = "light_src[" + std::to_string(light_config.num) + "]"; // Compute light vector (directional or positional) if (light_config.directional) out += "light_vector = normalize(" + light_src + ".position);\n"; else out += "light_vector = normalize(" + light_src + ".position + view);\n"; // Compute dot product of light_vector and normal, adjust if lighting is one-sided or // two-sided std::string dot_product = light_config.two_sided_diffuse ? "abs(dot(light_vector, normal))" : "max(dot(light_vector, normal), 0.0)"; // If enabled, compute distance attenuation value std::string dist_atten = "1.0"; if (light_config.dist_atten_enable) { std::string index = "(" + light_src + ".dist_atten_scale * length(-view - " + light_src + ".position) + " + light_src + ".dist_atten_bias)"; index = "(OFFSET_256 + SCALE_256 * clamp(" + index + ", 0.0, 1.0))"; const unsigned lut_num = ((unsigned)LightingRegs::LightingSampler::DistanceAttenuation + light_config.num); dist_atten = GetLutValue((LightingRegs::LightingSampler)lut_num, index); } // If enabled, clamp specular component if lighting result is negative std::string clamp_highlights = lighting.clamp_highlights ? "(dot(light_vector, normal) <= 0.0 ? 0.0 : 1.0)" : "1.0"; // Specular 0 component std::string d0_lut_value = "1.0"; if (lighting.lut_d0.enable && LightingRegs::IsLightingSamplerSupported( lighting.config, LightingRegs::LightingSampler::Distribution0)) { // Lookup specular "distribution 0" LUT value std::string index = GetLutIndex(light_config.num, lighting.lut_d0.type, lighting.lut_d0.abs_input); d0_lut_value = "(" + std::to_string(lighting.lut_d0.scale) + " * " + GetLutValue(LightingRegs::LightingSampler::Distribution0, index) + ")"; } std::string specular_0 = "(" + d0_lut_value + " * " + light_src + ".specular_0)"; // If enabled, lookup ReflectRed value, otherwise, 1.0 is used if (lighting.lut_rr.enable && LightingRegs::IsLightingSamplerSupported(lighting.config, LightingRegs::LightingSampler::ReflectRed)) { std::string index = GetLutIndex(light_config.num, lighting.lut_rr.type, lighting.lut_rr.abs_input); std::string value = "(" + std::to_string(lighting.lut_rr.scale) + " * " + GetLutValue(LightingRegs::LightingSampler::ReflectRed, index) + ")"; out += "refl_value.r = " + value + ";\n"; } else { out += "refl_value.r = 1.0;\n"; } // If enabled, lookup ReflectGreen value, otherwise, ReflectRed value is used if (lighting.lut_rg.enable && LightingRegs::IsLightingSamplerSupported(lighting.config, LightingRegs::LightingSampler::ReflectGreen)) { std::string index = GetLutIndex(light_config.num, lighting.lut_rg.type, lighting.lut_rg.abs_input); std::string value = "(" + std::to_string(lighting.lut_rg.scale) + " * " + GetLutValue(LightingRegs::LightingSampler::ReflectGreen, index) + ")"; out += "refl_value.g = " + value + ";\n"; } else { out += "refl_value.g = refl_value.r;\n"; } // If enabled, lookup ReflectBlue value, otherwise, ReflectRed value is used if (lighting.lut_rb.enable && LightingRegs::IsLightingSamplerSupported(lighting.config, LightingRegs::LightingSampler::ReflectBlue)) { std::string index = GetLutIndex(light_config.num, lighting.lut_rb.type, lighting.lut_rb.abs_input); std::string value = "(" + std::to_string(lighting.lut_rb.scale) + " * " + GetLutValue(LightingRegs::LightingSampler::ReflectBlue, index) + ")"; out += "refl_value.b = " + value + ";\n"; } else { out += "refl_value.b = refl_value.r;\n"; } // Specular 1 component std::string d1_lut_value = "1.0"; if (lighting.lut_d1.enable && LightingRegs::IsLightingSamplerSupported( lighting.config, LightingRegs::LightingSampler::Distribution1)) { // Lookup specular "distribution 1" LUT value std::string index = GetLutIndex(light_config.num, lighting.lut_d1.type, lighting.lut_d1.abs_input); d1_lut_value = "(" + std::to_string(lighting.lut_d1.scale) + " * " + GetLutValue(LightingRegs::LightingSampler::Distribution1, index) + ")"; } std::string specular_1 = "(" + d1_lut_value + " * refl_value * " + light_src + ".specular_1)"; // Fresnel if (lighting.lut_fr.enable && LightingRegs::IsLightingSamplerSupported(lighting.config, LightingRegs::LightingSampler::Fresnel)) { // Lookup fresnel LUT value std::string index = GetLutIndex(light_config.num, lighting.lut_fr.type, lighting.lut_fr.abs_input); std::string value = "(" + std::to_string(lighting.lut_fr.scale) + " * " + GetLutValue(LightingRegs::LightingSampler::Fresnel, index) + ")"; // Enabled for difffuse lighting alpha component if (lighting.fresnel_selector == LightingRegs::LightingFresnelSelector::PrimaryAlpha || lighting.fresnel_selector == LightingRegs::LightingFresnelSelector::Both) { out += "diffuse_sum.a *= " + value + ";\n"; } // Enabled for the specular lighting alpha component if (lighting.fresnel_selector == LightingRegs::LightingFresnelSelector::SecondaryAlpha || lighting.fresnel_selector == LightingRegs::LightingFresnelSelector::Both) { out += "specular_sum.a *= " + value + ";\n"; } } // Compute primary fragment color (diffuse lighting) function out += "diffuse_sum.rgb += ((" + light_src + ".diffuse * " + dot_product + ") + " + light_src + ".ambient) * " + dist_atten + ";\n"; // Compute secondary fragment color (specular lighting) function out += "specular_sum.rgb += (" + specular_0 + " + " + specular_1 + ") * " + clamp_highlights + " * " + dist_atten + ";\n"; } // Sum final lighting result out += "diffuse_sum.rgb += lighting_global_ambient;\n"; out += "primary_fragment_color = clamp(diffuse_sum, vec4(0.0), vec4(1.0));\n"; out += "secondary_fragment_color = clamp(specular_sum, vec4(0.0), vec4(1.0));\n"; } std::string GenerateFragmentShader(const PicaShaderConfig& config) { const auto& state = config.state; std::string out = R"( #version 330 core #define NUM_TEV_STAGES 6 #define NUM_LIGHTS 8 // Texture coordinate offsets and scales #define OFFSET_256 (0.5 / 256.0) #define SCALE_256 (255.0 / 256.0) in vec4 primary_color; in vec2 texcoord[3]; in float texcoord0_w; in vec4 normquat; in vec3 view; in vec4 gl_FragCoord; out vec4 color; struct LightSrc { vec3 specular_0; vec3 specular_1; vec3 diffuse; vec3 ambient; vec3 position; float dist_atten_bias; float dist_atten_scale; }; layout (std140) uniform shader_data { vec2 framebuffer_scale; int alphatest_ref; float depth_scale; float depth_offset; int scissor_x1; int scissor_y1; int scissor_x2; int scissor_y2; vec3 fog_color; vec3 lighting_global_ambient; LightSrc light_src[NUM_LIGHTS]; vec4 const_color[NUM_TEV_STAGES]; vec4 tev_combiner_buffer_color; }; uniform sampler2D tex[3]; uniform sampler1D lut[6]; uniform usampler1D fog_lut; // Rotate the vector v by the quaternion q vec3 quaternion_rotate(vec4 q, vec3 v) { return v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v); } void main() { vec4 primary_fragment_color = vec4(0.0); vec4 secondary_fragment_color = vec4(0.0); )"; // Do not do any sort of processing if it's obvious we're not going to pass the alpha test if (state.alpha_test_func == Pica::FramebufferRegs::CompareFunc::Never) { out += "discard; }"; return out; } // Append the scissor test if (state.scissor_test_mode != RasterizerRegs::ScissorMode::Disabled) { out += "if ("; // Negate the condition if we have to keep only the pixels outside the scissor box if (state.scissor_test_mode == RasterizerRegs::ScissorMode::Include) out += "!"; out += "(gl_FragCoord.x >= scissor_x1 && " "gl_FragCoord.y >= scissor_y1 && " "gl_FragCoord.x < scissor_x2 && " "gl_FragCoord.y < scissor_y2)) discard;\n"; } out += "float z_over_w = 1.0 - gl_FragCoord.z * 2.0;\n"; out += "float depth = z_over_w * depth_scale + depth_offset;\n"; if (state.depthmap_enable == Pica::RasterizerRegs::DepthBuffering::WBuffering) { out += "depth /= gl_FragCoord.w;\n"; } if (state.lighting.enable) WriteLighting(out, config); out += "vec4 combiner_buffer = vec4(0.0);\n"; out += "vec4 next_combiner_buffer = tev_combiner_buffer_color;\n"; out += "vec4 last_tex_env_out = vec4(0.0);\n"; for (size_t index = 0; index < state.tev_stages.size(); ++index) WriteTevStage(out, config, (unsigned)index); if (state.alpha_test_func != Pica::FramebufferRegs::CompareFunc::Always) { out += "if ("; AppendAlphaTestCondition(out, state.alpha_test_func); out += ") discard;\n"; } // Append fog combiner if (state.fog_mode == Pica::TexturingRegs::FogMode::Fog) { // Get index into fog LUT if (state.fog_flip) { out += "float fog_index = (1.0 - depth) * 128.0;\n"; } else { out += "float fog_index = depth * 128.0;\n"; } // Generate clamped fog factor from LUT for given fog index out += "float fog_i = clamp(floor(fog_index), 0.0, 127.0);\n"; out += "float fog_f = fog_index - fog_i;\n"; out += "uint fog_lut_entry = texelFetch(fog_lut, int(fog_i), 0).r;\n"; out += "float fog_lut_entry_difference = float(int((fog_lut_entry & 0x1FFFU) << 19U) >> " "19);\n"; // Extract signed difference out += "float fog_lut_entry_value = float((fog_lut_entry >> 13U) & 0x7FFU);\n"; out += "float fog_factor = (fog_lut_entry_value + fog_lut_entry_difference * fog_f) / " "2047.0;\n"; out += "fog_factor = clamp(fog_factor, 0.0, 1.0);\n"; // Blend the fog out += "last_tex_env_out.rgb = mix(fog_color.rgb, last_tex_env_out.rgb, fog_factor);\n"; } out += "gl_FragDepth = depth;\n"; out += "color = last_tex_env_out;\n"; out += "}"; return out; } std::string GenerateVertexShader() { std::string out = "#version 330 core\n"; out += "layout(location = " + std::to_string((int)ATTRIBUTE_POSITION) + ") in vec4 vert_position;\n"; out += "layout(location = " + std::to_string((int)ATTRIBUTE_COLOR) + ") in vec4 vert_color;\n"; out += "layout(location = " + std::to_string((int)ATTRIBUTE_TEXCOORD0) + ") in vec2 vert_texcoord0;\n"; out += "layout(location = " + std::to_string((int)ATTRIBUTE_TEXCOORD1) + ") in vec2 vert_texcoord1;\n"; out += "layout(location = " + std::to_string((int)ATTRIBUTE_TEXCOORD2) + ") in vec2 vert_texcoord2;\n"; out += "layout(location = " + std::to_string((int)ATTRIBUTE_TEXCOORD0_W) + ") in float vert_texcoord0_w;\n"; out += "layout(location = " + std::to_string((int)ATTRIBUTE_NORMQUAT) + ") in vec4 vert_normquat;\n"; out += "layout(location = " + std::to_string((int)ATTRIBUTE_VIEW) + ") in vec3 vert_view;\n"; out += R"( out vec4 primary_color; out vec2 texcoord[3]; out float texcoord0_w; out vec4 normquat; out vec3 view; void main() { primary_color = vert_color; texcoord[0] = vert_texcoord0; texcoord[1] = vert_texcoord1; texcoord[2] = vert_texcoord2; texcoord0_w = vert_texcoord0_w; normquat = vert_normquat; view = vert_view; gl_Position = vec4(vert_position.x, vert_position.y, -vert_position.z, vert_position.w); } )"; return out; } } // namespace GLShader