// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include "common/assert.h" #include "common/logging/log.h" #include "common/microprofile.h" #include "common/telemetry.h" #include "core/core.h" #include "core/core_timing.h" #include "core/frontend/emu_window.h" #include "core/memory.h" #include "core/perf_stats.h" #include "core/settings.h" #include "core/telemetry_session.h" #include "video_core/morton.h" #include "video_core/renderer_opengl/gl_rasterizer.h" #include "video_core/renderer_opengl/gl_shader_manager.h" #include "video_core/renderer_opengl/renderer_opengl.h" namespace OpenGL { // If the size of this is too small, it ends up creating a soft cap on FPS as the renderer will have // to wait on available presentation frames. constexpr std::size_t SWAP_CHAIN_SIZE = 3; struct Frame { u32 width{}; /// Width of the frame (to detect resize) u32 height{}; /// Height of the frame bool color_reloaded{}; /// Texture attachment was recreated (ie: resized) OpenGL::OGLRenderbuffer color{}; /// Buffer shared between the render/present FBO OpenGL::OGLFramebuffer render{}; /// FBO created on the render thread OpenGL::OGLFramebuffer present{}; /// FBO created on the present thread GLsync render_fence{}; /// Fence created on the render thread GLsync present_fence{}; /// Fence created on the presentation thread bool is_srgb{}; /// Framebuffer is sRGB or RGB }; /** * For smooth Vsync rendering, we want to always present the latest frame that the core generates, * but also make sure that rendering happens at the pace that the frontend dictates. This is a * helper class that the renderer uses to sync frames between the render thread and the presentation * thread */ class FrameMailbox { public: std::mutex swap_chain_lock; std::condition_variable present_cv; std::array swap_chain{}; std::queue free_queue; std::deque present_queue; Frame* previous_frame{}; FrameMailbox() { for (auto& frame : swap_chain) { free_queue.push(&frame); } } ~FrameMailbox() { // lock the mutex and clear out the present and free_queues and notify any people who are // blocked to prevent deadlock on shutdown std::scoped_lock lock{swap_chain_lock}; std::queue().swap(free_queue); present_queue.clear(); present_cv.notify_all(); } void ReloadPresentFrame(Frame* frame, u32 height, u32 width) { frame->present.Release(); frame->present.Create(); GLint previous_draw_fbo{}; glGetIntegerv(GL_DRAW_FRAMEBUFFER_BINDING, &previous_draw_fbo); glBindFramebuffer(GL_FRAMEBUFFER, frame->present.handle); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, frame->color.handle); if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) { LOG_CRITICAL(Render_OpenGL, "Failed to recreate present FBO!"); } glBindFramebuffer(GL_DRAW_FRAMEBUFFER, previous_draw_fbo); frame->color_reloaded = false; } void ReloadRenderFrame(Frame* frame, u32 width, u32 height) { // Recreate the color texture attachment frame->color.Release(); frame->color.Create(); const GLenum internal_format = frame->is_srgb ? GL_SRGB8 : GL_RGB8; glNamedRenderbufferStorage(frame->color.handle, internal_format, width, height); // Recreate the FBO for the render target frame->render.Release(); frame->render.Create(); glBindFramebuffer(GL_FRAMEBUFFER, frame->render.handle); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, frame->color.handle); if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE) { LOG_CRITICAL(Render_OpenGL, "Failed to recreate render FBO!"); } frame->width = width; frame->height = height; frame->color_reloaded = true; } Frame* GetRenderFrame() { std::unique_lock lock{swap_chain_lock}; // If theres no free frames, we will reuse the oldest render frame if (free_queue.empty()) { auto frame = present_queue.back(); present_queue.pop_back(); return frame; } Frame* frame = free_queue.front(); free_queue.pop(); return frame; } void ReleaseRenderFrame(Frame* frame) { std::unique_lock lock{swap_chain_lock}; present_queue.push_front(frame); present_cv.notify_one(); } Frame* TryGetPresentFrame(int timeout_ms) { std::unique_lock lock{swap_chain_lock}; // wait for new entries in the present_queue present_cv.wait_for(lock, std::chrono::milliseconds(timeout_ms), [&] { return !present_queue.empty(); }); if (present_queue.empty()) { // timed out waiting for a frame to draw so return the previous frame return previous_frame; } // free the previous frame and add it back to the free queue if (previous_frame) { free_queue.push(previous_frame); } // the newest entries are pushed to the front of the queue Frame* frame = present_queue.front(); present_queue.pop_front(); // remove all old entries from the present queue and move them back to the free_queue for (auto f : present_queue) { free_queue.push(f); } present_queue.clear(); previous_frame = frame; return frame; } }; namespace { constexpr char VERTEX_SHADER[] = R"( #version 430 core out gl_PerVertex { vec4 gl_Position; }; layout (location = 0) in vec2 vert_position; layout (location = 1) in vec2 vert_tex_coord; layout (location = 0) out vec2 frag_tex_coord; // This is a truncated 3x3 matrix for 2D transformations: // The upper-left 2x2 submatrix performs scaling/rotation/mirroring. // The third column performs translation. // The third row could be used for projection, which we don't need in 2D. It hence is assumed to // implicitly be [0, 0, 1] layout (location = 0) uniform mat3x2 modelview_matrix; void main() { // Multiply input position by the rotscale part of the matrix and then manually translate by // the last column. This is equivalent to using a full 3x3 matrix and expanding the vector // to `vec3(vert_position.xy, 1.0)` gl_Position = vec4(mat2(modelview_matrix) * vert_position + modelview_matrix[2], 0.0, 1.0); frag_tex_coord = vert_tex_coord; } )"; constexpr char FRAGMENT_SHADER[] = R"( #version 430 core layout (location = 0) in vec2 frag_tex_coord; layout (location = 0) out vec4 color; layout (binding = 0) uniform sampler2D color_texture; void main() { color = texture(color_texture, frag_tex_coord); } )"; constexpr GLint PositionLocation = 0; constexpr GLint TexCoordLocation = 1; constexpr GLint ModelViewMatrixLocation = 0; struct ScreenRectVertex { constexpr ScreenRectVertex(u32 x, u32 y, GLfloat u, GLfloat v) : position{{static_cast(x), static_cast(y)}}, tex_coord{{u, v}} {} std::array position; std::array tex_coord; }; /** * Defines a 1:1 pixel ortographic projection matrix with (0,0) on the top-left * corner and (width, height) on the lower-bottom. * * The projection part of the matrix is trivial, hence these operations are represented * by a 3x2 matrix. */ std::array MakeOrthographicMatrix(float width, float height) { std::array matrix; // Laid out in column-major order // clang-format off matrix[0] = 2.f / width; matrix[2] = 0.f; matrix[4] = -1.f; matrix[1] = 0.f; matrix[3] = -2.f / height; matrix[5] = 1.f; // Last matrix row is implicitly assumed to be [0, 0, 1]. // clang-format on return matrix; } const char* GetSource(GLenum source) { switch (source) { case GL_DEBUG_SOURCE_API: return "API"; case GL_DEBUG_SOURCE_WINDOW_SYSTEM: return "WINDOW_SYSTEM"; case GL_DEBUG_SOURCE_SHADER_COMPILER: return "SHADER_COMPILER"; case GL_DEBUG_SOURCE_THIRD_PARTY: return "THIRD_PARTY"; case GL_DEBUG_SOURCE_APPLICATION: return "APPLICATION"; case GL_DEBUG_SOURCE_OTHER: return "OTHER"; default: UNREACHABLE(); return "Unknown source"; } } const char* GetType(GLenum type) { switch (type) { case GL_DEBUG_TYPE_ERROR: return "ERROR"; case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR: return "DEPRECATED_BEHAVIOR"; case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR: return "UNDEFINED_BEHAVIOR"; case GL_DEBUG_TYPE_PORTABILITY: return "PORTABILITY"; case GL_DEBUG_TYPE_PERFORMANCE: return "PERFORMANCE"; case GL_DEBUG_TYPE_OTHER: return "OTHER"; case GL_DEBUG_TYPE_MARKER: return "MARKER"; default: UNREACHABLE(); return "Unknown type"; } } void APIENTRY DebugHandler(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar* message, const void* user_param) { const char format[] = "{} {} {}: {}"; const char* const str_source = GetSource(source); const char* const str_type = GetType(type); switch (severity) { case GL_DEBUG_SEVERITY_HIGH: LOG_CRITICAL(Render_OpenGL, format, str_source, str_type, id, message); break; case GL_DEBUG_SEVERITY_MEDIUM: LOG_WARNING(Render_OpenGL, format, str_source, str_type, id, message); break; case GL_DEBUG_SEVERITY_NOTIFICATION: case GL_DEBUG_SEVERITY_LOW: LOG_DEBUG(Render_OpenGL, format, str_source, str_type, id, message); break; } } } // Anonymous namespace RendererOpenGL::RendererOpenGL(Core::Frontend::EmuWindow& emu_window, Core::System& system) : VideoCore::RendererBase{emu_window}, emu_window{emu_window}, system{system}, frame_mailbox{std::make_unique()} {} RendererOpenGL::~RendererOpenGL() = default; MICROPROFILE_DEFINE(OpenGL_RenderFrame, "OpenGL", "Render Frame", MP_RGB(128, 128, 64)); MICROPROFILE_DEFINE(OpenGL_WaitPresent, "OpenGL", "Wait For Present", MP_RGB(128, 128, 128)); void RendererOpenGL::SwapBuffers(const Tegra::FramebufferConfig* framebuffer) { render_window.PollEvents(); if (!framebuffer) { return; } PrepareRendertarget(framebuffer); RenderScreenshot(); Frame* frame; { MICROPROFILE_SCOPE(OpenGL_WaitPresent); frame = frame_mailbox->GetRenderFrame(); // Clean up sync objects before drawing // INTEL driver workaround. We can't delete the previous render sync object until we are // sure that the presentation is done if (frame->present_fence) { glClientWaitSync(frame->present_fence, 0, GL_TIMEOUT_IGNORED); } // delete the draw fence if the frame wasn't presented if (frame->render_fence) { glDeleteSync(frame->render_fence); frame->render_fence = 0; } // wait for the presentation to be done if (frame->present_fence) { glWaitSync(frame->present_fence, 0, GL_TIMEOUT_IGNORED); glDeleteSync(frame->present_fence); frame->present_fence = 0; } } { MICROPROFILE_SCOPE(OpenGL_RenderFrame); const auto& layout = render_window.GetFramebufferLayout(); // Recreate the frame if the size of the window has changed if (layout.width != frame->width || layout.height != frame->height || screen_info.display_srgb != frame->is_srgb) { LOG_DEBUG(Render_OpenGL, "Reloading render frame"); frame->is_srgb = screen_info.display_srgb; frame_mailbox->ReloadRenderFrame(frame, layout.width, layout.height); } glBindFramebuffer(GL_DRAW_FRAMEBUFFER, frame->render.handle); DrawScreen(layout); // Create a fence for the frontend to wait on and swap this frame to OffTex frame->render_fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); glFlush(); frame_mailbox->ReleaseRenderFrame(frame); m_current_frame++; rasterizer->TickFrame(); } } void RendererOpenGL::PrepareRendertarget(const Tegra::FramebufferConfig* framebuffer) { if (framebuffer) { // If framebuffer is provided, reload it from memory to a texture if (screen_info.texture.width != static_cast(framebuffer->width) || screen_info.texture.height != static_cast(framebuffer->height) || screen_info.texture.pixel_format != framebuffer->pixel_format || gl_framebuffer_data.empty()) { // Reallocate texture if the framebuffer size has changed. // This is expected to not happen very often and hence should not be a // performance problem. ConfigureFramebufferTexture(screen_info.texture, *framebuffer); } // Load the framebuffer from memory, draw it to the screen, and swap buffers LoadFBToScreenInfo(*framebuffer); } } void RendererOpenGL::LoadFBToScreenInfo(const Tegra::FramebufferConfig& framebuffer) { // Framebuffer orientation handling framebuffer_transform_flags = framebuffer.transform_flags; framebuffer_crop_rect = framebuffer.crop_rect; const VAddr framebuffer_addr{framebuffer.address + framebuffer.offset}; if (rasterizer->AccelerateDisplay(framebuffer, framebuffer_addr, framebuffer.stride)) { return; } // Reset the screen info's display texture to its own permanent texture screen_info.display_texture = screen_info.texture.resource.handle; const auto pixel_format{ VideoCore::Surface::PixelFormatFromGPUPixelFormat(framebuffer.pixel_format)}; const u32 bytes_per_pixel{VideoCore::Surface::GetBytesPerPixel(pixel_format)}; const u64 size_in_bytes{framebuffer.stride * framebuffer.height * bytes_per_pixel}; u8* const host_ptr{system.Memory().GetPointer(framebuffer_addr)}; rasterizer->FlushRegion(ToCacheAddr(host_ptr), size_in_bytes); // TODO(Rodrigo): Read this from HLE constexpr u32 block_height_log2 = 4; VideoCore::MortonSwizzle(VideoCore::MortonSwizzleMode::MortonToLinear, pixel_format, framebuffer.stride, block_height_log2, framebuffer.height, 0, 1, 1, gl_framebuffer_data.data(), host_ptr); glPixelStorei(GL_UNPACK_ROW_LENGTH, static_cast(framebuffer.stride)); // Update existing texture // TODO: Test what happens on hardware when you change the framebuffer dimensions so that // they differ from the LCD resolution. // TODO: Applications could theoretically crash yuzu here by specifying too large // framebuffer sizes. We should make sure that this cannot happen. glTextureSubImage2D(screen_info.texture.resource.handle, 0, 0, 0, framebuffer.width, framebuffer.height, screen_info.texture.gl_format, screen_info.texture.gl_type, gl_framebuffer_data.data()); glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); } void RendererOpenGL::LoadColorToActiveGLTexture(u8 color_r, u8 color_g, u8 color_b, u8 color_a, const TextureInfo& texture) { const u8 framebuffer_data[4] = {color_a, color_b, color_g, color_r}; glClearTexImage(texture.resource.handle, 0, GL_RGBA, GL_UNSIGNED_BYTE, framebuffer_data); } void RendererOpenGL::InitOpenGLObjects() { glClearColor(Settings::values.bg_red, Settings::values.bg_green, Settings::values.bg_blue, 0.0f); // Create shader programs OGLShader vertex_shader; vertex_shader.Create(VERTEX_SHADER, GL_VERTEX_SHADER); OGLShader fragment_shader; fragment_shader.Create(FRAGMENT_SHADER, GL_FRAGMENT_SHADER); vertex_program.Create(true, false, vertex_shader.handle); fragment_program.Create(true, false, fragment_shader.handle); // Create program pipeline program_manager.Create(); glBindProgramPipeline(program_manager.GetHandle()); // Generate VBO handle for drawing vertex_buffer.Create(); // Attach vertex data to VAO glNamedBufferData(vertex_buffer.handle, sizeof(ScreenRectVertex) * 4, nullptr, GL_STREAM_DRAW); // Allocate textures for the screen screen_info.texture.resource.Create(GL_TEXTURE_2D); const GLuint texture = screen_info.texture.resource.handle; glTextureStorage2D(texture, 1, GL_RGBA8, 1, 1); screen_info.display_texture = screen_info.texture.resource.handle; // Clear screen to black LoadColorToActiveGLTexture(0, 0, 0, 0, screen_info.texture); } void RendererOpenGL::AddTelemetryFields() { const char* const gl_version{reinterpret_cast(glGetString(GL_VERSION))}; const char* const gpu_vendor{reinterpret_cast(glGetString(GL_VENDOR))}; const char* const gpu_model{reinterpret_cast(glGetString(GL_RENDERER))}; LOG_INFO(Render_OpenGL, "GL_VERSION: {}", gl_version); LOG_INFO(Render_OpenGL, "GL_VENDOR: {}", gpu_vendor); LOG_INFO(Render_OpenGL, "GL_RENDERER: {}", gpu_model); auto& telemetry_session = system.TelemetrySession(); telemetry_session.AddField(Telemetry::FieldType::UserSystem, "GPU_Vendor", gpu_vendor); telemetry_session.AddField(Telemetry::FieldType::UserSystem, "GPU_Model", gpu_model); telemetry_session.AddField(Telemetry::FieldType::UserSystem, "GPU_OpenGL_Version", gl_version); } void RendererOpenGL::CreateRasterizer() { if (rasterizer) { return; } rasterizer = std::make_unique(system, emu_window, screen_info, program_manager, state_tracker); } void RendererOpenGL::ConfigureFramebufferTexture(TextureInfo& texture, const Tegra::FramebufferConfig& framebuffer) { texture.width = framebuffer.width; texture.height = framebuffer.height; texture.pixel_format = framebuffer.pixel_format; const auto pixel_format{ VideoCore::Surface::PixelFormatFromGPUPixelFormat(framebuffer.pixel_format)}; const u32 bytes_per_pixel{VideoCore::Surface::GetBytesPerPixel(pixel_format)}; gl_framebuffer_data.resize(texture.width * texture.height * bytes_per_pixel); GLint internal_format; switch (framebuffer.pixel_format) { case Tegra::FramebufferConfig::PixelFormat::ABGR8: internal_format = GL_RGBA8; texture.gl_format = GL_RGBA; texture.gl_type = GL_UNSIGNED_INT_8_8_8_8_REV; break; case Tegra::FramebufferConfig::PixelFormat::RGB565: internal_format = GL_RGB565; texture.gl_format = GL_RGB; texture.gl_type = GL_UNSIGNED_SHORT_5_6_5; break; default: internal_format = GL_RGBA8; texture.gl_format = GL_RGBA; texture.gl_type = GL_UNSIGNED_INT_8_8_8_8_REV; UNIMPLEMENTED_MSG("Unknown framebuffer pixel format: {}", static_cast(framebuffer.pixel_format)); } texture.resource.Release(); texture.resource.Create(GL_TEXTURE_2D); glTextureStorage2D(texture.resource.handle, 1, internal_format, texture.width, texture.height); } void RendererOpenGL::DrawScreen(const Layout::FramebufferLayout& layout) { if (renderer_settings.set_background_color) { // Update background color before drawing glClearColor(Settings::values.bg_red, Settings::values.bg_green, Settings::values.bg_blue, 0.0f); } // Set projection matrix const std::array ortho_matrix = MakeOrthographicMatrix(static_cast(layout.width), static_cast(layout.height)); glProgramUniformMatrix3x2fv(vertex_program.handle, ModelViewMatrixLocation, 1, GL_FALSE, std::data(ortho_matrix)); const auto& texcoords = screen_info.display_texcoords; auto left = texcoords.left; auto right = texcoords.right; if (framebuffer_transform_flags != Tegra::FramebufferConfig::TransformFlags::Unset) { if (framebuffer_transform_flags == Tegra::FramebufferConfig::TransformFlags::FlipV) { // Flip the framebuffer vertically left = texcoords.right; right = texcoords.left; } else { // Other transformations are unsupported LOG_CRITICAL(Render_OpenGL, "Unsupported framebuffer_transform_flags={}", static_cast(framebuffer_transform_flags)); UNIMPLEMENTED(); } } ASSERT_MSG(framebuffer_crop_rect.top == 0, "Unimplemented"); ASSERT_MSG(framebuffer_crop_rect.left == 0, "Unimplemented"); // Scale the output by the crop width/height. This is commonly used with 1280x720 rendering // (e.g. handheld mode) on a 1920x1080 framebuffer. f32 scale_u = 1.f, scale_v = 1.f; if (framebuffer_crop_rect.GetWidth() > 0) { scale_u = static_cast(framebuffer_crop_rect.GetWidth()) / static_cast(screen_info.texture.width); } if (framebuffer_crop_rect.GetHeight() > 0) { scale_v = static_cast(framebuffer_crop_rect.GetHeight()) / static_cast(screen_info.texture.height); } const auto& screen = layout.screen; const std::array vertices = { ScreenRectVertex(screen.left, screen.top, texcoords.top * scale_u, left * scale_v), ScreenRectVertex(screen.right, screen.top, texcoords.bottom * scale_u, left * scale_v), ScreenRectVertex(screen.left, screen.bottom, texcoords.top * scale_u, right * scale_v), ScreenRectVertex(screen.right, screen.bottom, texcoords.bottom * scale_u, right * scale_v), }; glNamedBufferSubData(vertex_buffer.handle, 0, sizeof(vertices), std::data(vertices)); // TODO: Signal state tracker about these changes state_tracker.NotifyScreenDrawVertexArray(); state_tracker.NotifyViewport0(); state_tracker.NotifyScissor0(); state_tracker.NotifyColorMask0(); state_tracker.NotifyBlend0(); state_tracker.NotifyFramebuffer(); state_tracker.NotifyFrontFace(); state_tracker.NotifyCullTest(); state_tracker.NotifyDepthTest(); state_tracker.NotifyStencilTest(); state_tracker.NotifyPolygonOffset(); program_manager.UseVertexShader(vertex_program.handle); program_manager.UseGeometryShader(0); program_manager.UseFragmentShader(fragment_program.handle); program_manager.Update(); glEnable(GL_CULL_FACE); if (screen_info.display_srgb) { glEnable(GL_FRAMEBUFFER_SRGB); } else { glDisable(GL_FRAMEBUFFER_SRGB); } glDisable(GL_COLOR_LOGIC_OP); glDisable(GL_ALPHA_TEST); glDisable(GL_DEPTH_TEST); glDisable(GL_STENCIL_TEST); glDisable(GL_POLYGON_OFFSET_FILL); glDisable(GL_RASTERIZER_DISCARD); glDisablei(GL_BLEND, 0); glDisablei(GL_SCISSOR_TEST, 0); glCullFace(GL_BACK); glFrontFace(GL_CW); glColorMaski(0, GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glClipControl(GL_LOWER_LEFT, GL_ZERO_TO_ONE); glViewportIndexedf(0, 0.0f, 0.0f, static_cast(layout.width), static_cast(layout.height)); glDepthRangeIndexed(0, 0.0, 0.0); glEnableVertexAttribArray(PositionLocation); glEnableVertexAttribArray(TexCoordLocation); glVertexAttribDivisor(PositionLocation, 0); glVertexAttribDivisor(TexCoordLocation, 0); glVertexAttribFormat(PositionLocation, 2, GL_FLOAT, GL_FALSE, offsetof(ScreenRectVertex, position)); glVertexAttribFormat(TexCoordLocation, 2, GL_FLOAT, GL_FALSE, offsetof(ScreenRectVertex, tex_coord)); glVertexAttribBinding(PositionLocation, 0); glVertexAttribBinding(TexCoordLocation, 0); glBindVertexBuffer(0, vertex_buffer.handle, 0, sizeof(ScreenRectVertex)); glBindTextureUnit(0, screen_info.display_texture); glBindSampler(0, 0); glClear(GL_COLOR_BUFFER_BIT); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); } void RendererOpenGL::TryPresent(int timeout_ms) { const auto& layout = render_window.GetFramebufferLayout(); auto frame = frame_mailbox->TryGetPresentFrame(timeout_ms); if (!frame) { LOG_DEBUG(Render_OpenGL, "TryGetPresentFrame returned no frame to present"); return; } // Clearing before a full overwrite of a fbo can signal to drivers that they can avoid a // readback since we won't be doing any blending glClear(GL_COLOR_BUFFER_BIT); // Recreate the presentation FBO if the color attachment was changed if (frame->color_reloaded) { LOG_DEBUG(Render_OpenGL, "Reloading present frame"); frame_mailbox->ReloadPresentFrame(frame, layout.width, layout.height); } glWaitSync(frame->render_fence, 0, GL_TIMEOUT_IGNORED); // INTEL workaround. // Normally we could just delete the draw fence here, but due to driver bugs, we can just delete // it on the emulation thread without too much penalty // glDeleteSync(frame.render_sync); // frame.render_sync = 0; glBindFramebuffer(GL_READ_FRAMEBUFFER, frame->present.handle); glBlitFramebuffer(0, 0, frame->width, frame->height, 0, 0, layout.width, layout.height, GL_COLOR_BUFFER_BIT, GL_LINEAR); // Insert fence for the main thread to block on frame->present_fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); glFlush(); glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); } void RendererOpenGL::RenderScreenshot() { if (!renderer_settings.screenshot_requested) { return; } GLint old_read_fb; GLint old_draw_fb; glGetIntegerv(GL_READ_FRAMEBUFFER_BINDING, &old_read_fb); glGetIntegerv(GL_DRAW_FRAMEBUFFER_BINDING, &old_draw_fb); // Draw the current frame to the screenshot framebuffer screenshot_framebuffer.Create(); glBindFramebuffer(GL_FRAMEBUFFER, screenshot_framebuffer.handle); Layout::FramebufferLayout layout{renderer_settings.screenshot_framebuffer_layout}; GLuint renderbuffer; glGenRenderbuffers(1, &renderbuffer); glBindRenderbuffer(GL_RENDERBUFFER, renderbuffer); glRenderbufferStorage(GL_RENDERBUFFER, screen_info.display_srgb ? GL_SRGB8 : GL_RGB8, layout.width, layout.height); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, renderbuffer); DrawScreen(layout); glReadPixels(0, 0, layout.width, layout.height, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, renderer_settings.screenshot_bits); screenshot_framebuffer.Release(); glDeleteRenderbuffers(1, &renderbuffer); glBindFramebuffer(GL_READ_FRAMEBUFFER, old_read_fb); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, old_draw_fb); renderer_settings.screenshot_complete_callback(); renderer_settings.screenshot_requested = false; } bool RendererOpenGL::Init() { if (GLAD_GL_KHR_debug) { glEnable(GL_DEBUG_OUTPUT); glDebugMessageCallback(DebugHandler, nullptr); } AddTelemetryFields(); if (!GLAD_GL_VERSION_4_3) { return false; } InitOpenGLObjects(); CreateRasterizer(); return true; } void RendererOpenGL::ShutDown() {} } // namespace OpenGL