// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include #include #include "common/assert.h" #include "common/bit_field.h" #include "common/logging/log.h" #include "core/core.h" #include "core/core_timing.h" #include "core/frontend/emu_window.h" #include "core/hw/hw.h" #include "core/hw/lcd.h" #include "core/memory.h" #include "core/settings.h" #include "core/tracer/recorder.h" #include "video_core/renderer_opengl/renderer_opengl.h" #include "video_core/utils.h" #include "video_core/video_core.h" static const char vertex_shader[] = R"( #version 150 core in vec2 vert_position; in vec2 vert_tex_coord; out vec2 frag_tex_coord; // This is a truncated 3x3 matrix for 2D transformations: // The upper-left 2x2 submatrix performs scaling/rotation/mirroring. // The third column performs translation. // The third row could be used for projection, which we don't need in 2D. It hence is assumed to // implicitly be [0, 0, 1] uniform mat3x2 modelview_matrix; void main() { // Multiply input position by the rotscale part of the matrix and then manually translate by // the last column. This is equivalent to using a full 3x3 matrix and expanding the vector // to `vec3(vert_position.xy, 1.0)` gl_Position = vec4(mat2(modelview_matrix) * vert_position + modelview_matrix[2], 0.0, 1.0); frag_tex_coord = vert_tex_coord; } )"; static const char fragment_shader[] = R"( #version 150 core in vec2 frag_tex_coord; out vec4 color; uniform sampler2D color_texture; void main() { // Swap RGBA -> ABGR so we don't have to do this on the CPU. This needs to change if we have to // support more framebuffer pixel formats. color = texture(color_texture, frag_tex_coord).abgr; } )"; /** * Vertex structure that the drawn screen rectangles are composed of. */ struct ScreenRectVertex { ScreenRectVertex(GLfloat x, GLfloat y, GLfloat u, GLfloat v) { position[0] = x; position[1] = y; tex_coord[0] = u; tex_coord[1] = v; } GLfloat position[2]; GLfloat tex_coord[2]; }; /** * Defines a 1:1 pixel ortographic projection matrix with (0,0) on the top-left * corner and (width, height) on the lower-bottom. * * The projection part of the matrix is trivial, hence these operations are represented * by a 3x2 matrix. */ static std::array MakeOrthographicMatrix(const float width, const float height) { std::array matrix; // Laid out in column-major order // clang-format off matrix[0] = 2.f / width; matrix[2] = 0.f; matrix[4] = -1.f; matrix[1] = 0.f; matrix[3] = -2.f / height; matrix[5] = 1.f; // Last matrix row is implicitly assumed to be [0, 0, 1]. // clang-format on return matrix; } RendererOpenGL::RendererOpenGL() = default; RendererOpenGL::~RendererOpenGL() = default; /// Swap buffers (render frame) void RendererOpenGL::SwapBuffers(boost::optional framebuffer) { Core::System::GetInstance().perf_stats.EndSystemFrame(); // Maintain the rasterizer's state as a priority OpenGLState prev_state = OpenGLState::GetCurState(); state.Apply(); if (framebuffer != boost::none) { // If framebuffer is provided, reload it from memory to a texture if (screen_info.texture.width != (GLsizei)framebuffer->width || screen_info.texture.height != (GLsizei)framebuffer->height || screen_info.texture.pixel_format != framebuffer->pixel_format) { // Reallocate texture if the framebuffer size has changed. // This is expected to not happen very often and hence should not be a // performance problem. ConfigureFramebufferTexture(screen_info.texture, *framebuffer); } // Load the framebuffer from memory, draw it to the screen, and swap buffers LoadFBToScreenInfo(*framebuffer, screen_info); DrawScreen(); render_window->SwapBuffers(); } render_window->PollEvents(); Core::System::GetInstance().frame_limiter.DoFrameLimiting(CoreTiming::GetGlobalTimeUs()); Core::System::GetInstance().perf_stats.BeginSystemFrame(); // Restore the rasterizer state prev_state.Apply(); RefreshRasterizerSetting(); } /** * Loads framebuffer from emulated memory into the active OpenGL texture. */ void RendererOpenGL::LoadFBToScreenInfo(const Tegra::FramebufferConfig& framebuffer, ScreenInfo& screen_info) { const u32 bytes_per_pixel{Tegra::FramebufferConfig::BytesPerPixel(framebuffer.pixel_format)}; const u64 size_in_bytes{framebuffer.stride * framebuffer.height * bytes_per_pixel}; const VAddr framebuffer_addr{framebuffer.address + framebuffer.offset}; // Framebuffer orientation handling framebuffer_transform_flags = framebuffer.transform_flags; // Ensure no bad interactions with GL_UNPACK_ALIGNMENT, which by default // only allows rows to have a memory alignement of 4. ASSERT(framebuffer.stride % 4 == 0); if (!Rasterizer()->AccelerateDisplay(framebuffer, framebuffer_addr, framebuffer.stride, screen_info)) { // Reset the screen info's display texture to its own permanent texture screen_info.display_texture = screen_info.texture.resource.handle; screen_info.display_texcoords = MathUtil::Rectangle(0.f, 0.f, 1.f, 1.f); Rasterizer()->FlushRegion(framebuffer_addr, size_in_bytes); VideoCore::MortonCopyPixels128(framebuffer.width, framebuffer.height, bytes_per_pixel, 4, Memory::GetPointer(framebuffer_addr), gl_framebuffer_data.data(), true); state.texture_units[0].texture_2d = screen_info.texture.resource.handle; state.Apply(); glActiveTexture(GL_TEXTURE0); glPixelStorei(GL_UNPACK_ROW_LENGTH, static_cast(framebuffer.stride)); // Update existing texture // TODO: Test what happens on hardware when you change the framebuffer dimensions so that // they differ from the LCD resolution. // TODO: Applications could theoretically crash yuzu here by specifying too large // framebuffer sizes. We should make sure that this cannot happen. glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, framebuffer.width, framebuffer.height, screen_info.texture.gl_format, screen_info.texture.gl_type, gl_framebuffer_data.data()); glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); state.texture_units[0].texture_2d = 0; state.Apply(); } } /** * Fills active OpenGL texture with the given RGB color. Since the color is solid, the texture can * be 1x1 but will stretch across whatever it's rendered on. */ void RendererOpenGL::LoadColorToActiveGLTexture(u8 color_r, u8 color_g, u8 color_b, u8 color_a, const TextureInfo& texture) { state.texture_units[0].texture_2d = texture.resource.handle; state.Apply(); glActiveTexture(GL_TEXTURE0); u8 framebuffer_data[4] = {color_a, color_b, color_g, color_r}; // Update existing texture glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, framebuffer_data); state.texture_units[0].texture_2d = 0; state.Apply(); } /** * Initializes the OpenGL state and creates persistent objects. */ void RendererOpenGL::InitOpenGLObjects() { glClearColor(Settings::values.bg_red, Settings::values.bg_green, Settings::values.bg_blue, 0.0f); // Link shaders and get variable locations shader.CreateFromSource(vertex_shader, nullptr, fragment_shader); state.draw.shader_program = shader.handle; state.Apply(); uniform_modelview_matrix = glGetUniformLocation(shader.handle, "modelview_matrix"); uniform_color_texture = glGetUniformLocation(shader.handle, "color_texture"); attrib_position = glGetAttribLocation(shader.handle, "vert_position"); attrib_tex_coord = glGetAttribLocation(shader.handle, "vert_tex_coord"); // Generate VBO handle for drawing vertex_buffer.Create(); // Generate VAO vertex_array.Create(); state.draw.vertex_array = vertex_array.handle; state.draw.vertex_buffer = vertex_buffer.handle; state.draw.uniform_buffer = 0; state.Apply(); // Attach vertex data to VAO glBufferData(GL_ARRAY_BUFFER, sizeof(ScreenRectVertex) * 4, nullptr, GL_STREAM_DRAW); glVertexAttribPointer(attrib_position, 2, GL_FLOAT, GL_FALSE, sizeof(ScreenRectVertex), (GLvoid*)offsetof(ScreenRectVertex, position)); glVertexAttribPointer(attrib_tex_coord, 2, GL_FLOAT, GL_FALSE, sizeof(ScreenRectVertex), (GLvoid*)offsetof(ScreenRectVertex, tex_coord)); glEnableVertexAttribArray(attrib_position); glEnableVertexAttribArray(attrib_tex_coord); // Allocate textures for the screen screen_info.texture.resource.Create(); // Allocation of storage is deferred until the first frame, when we // know the framebuffer size. state.texture_units[0].texture_2d = screen_info.texture.resource.handle; state.Apply(); glActiveTexture(GL_TEXTURE0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); screen_info.display_texture = screen_info.texture.resource.handle; state.texture_units[0].texture_2d = 0; state.Apply(); // Clear screen to black LoadColorToActiveGLTexture(0, 0, 0, 0, screen_info.texture); } void RendererOpenGL::ConfigureFramebufferTexture(TextureInfo& texture, const Tegra::FramebufferConfig& framebuffer) { texture.width = framebuffer.width; texture.height = framebuffer.height; GLint internal_format; switch (framebuffer.pixel_format) { case Tegra::FramebufferConfig::PixelFormat::ABGR8: // Use RGBA8 and swap in the fragment shader internal_format = GL_RGBA; texture.gl_format = GL_RGBA; texture.gl_type = GL_UNSIGNED_INT_8_8_8_8; gl_framebuffer_data.resize(texture.width * texture.height * 4); break; default: UNREACHABLE(); } state.texture_units[0].texture_2d = texture.resource.handle; state.Apply(); glActiveTexture(GL_TEXTURE0); glTexImage2D(GL_TEXTURE_2D, 0, internal_format, texture.width, texture.height, 0, texture.gl_format, texture.gl_type, nullptr); state.texture_units[0].texture_2d = 0; state.Apply(); } void RendererOpenGL::DrawScreenTriangles(const ScreenInfo& screen_info, float x, float y, float w, float h) { const auto& texcoords = screen_info.display_texcoords; auto left = texcoords.left; auto right = texcoords.right; if (framebuffer_transform_flags != Tegra::FramebufferConfig::TransformFlags::Unset) if (framebuffer_transform_flags == Tegra::FramebufferConfig::TransformFlags::FlipV) { // Flip the framebuffer vertically left = texcoords.right; right = texcoords.left; } else { // Other transformations are unsupported LOG_CRITICAL(Render_OpenGL, "Unsupported framebuffer_transform_flags=%d", framebuffer_transform_flags); UNIMPLEMENTED(); } std::array vertices = {{ ScreenRectVertex(x, y, texcoords.top, right), ScreenRectVertex(x + w, y, texcoords.bottom, right), ScreenRectVertex(x, y + h, texcoords.top, left), ScreenRectVertex(x + w, y + h, texcoords.bottom, left), }}; state.texture_units[0].texture_2d = screen_info.display_texture; state.Apply(); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(vertices), vertices.data()); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); state.texture_units[0].texture_2d = 0; state.Apply(); } /** * Draws the emulated screens to the emulator window. */ void RendererOpenGL::DrawScreen() { const auto& layout = render_window->GetFramebufferLayout(); const auto& screen = layout.screen; glViewport(0, 0, layout.width, layout.height); glClear(GL_COLOR_BUFFER_BIT); // Set projection matrix std::array ortho_matrix = MakeOrthographicMatrix((float)layout.width, (float)layout.height); glUniformMatrix3x2fv(uniform_modelview_matrix, 1, GL_FALSE, ortho_matrix.data()); // Bind texture in Texture Unit 0 glActiveTexture(GL_TEXTURE0); glUniform1i(uniform_color_texture, 0); DrawScreenTriangles(screen_info, (float)screen.left, (float)screen.top, (float)screen.GetWidth(), (float)screen.GetHeight()); m_current_frame++; } /// Updates the framerate void RendererOpenGL::UpdateFramerate() {} /** * Set the emulator window to use for renderer * @param window EmuWindow handle to emulator window to use for rendering */ void RendererOpenGL::SetWindow(EmuWindow* window) { render_window = window; } static const char* GetSource(GLenum source) { #define RET(s) \ case GL_DEBUG_SOURCE_##s: \ return #s switch (source) { RET(API); RET(WINDOW_SYSTEM); RET(SHADER_COMPILER); RET(THIRD_PARTY); RET(APPLICATION); RET(OTHER); default: UNREACHABLE(); } #undef RET } static const char* GetType(GLenum type) { #define RET(t) \ case GL_DEBUG_TYPE_##t: \ return #t switch (type) { RET(ERROR); RET(DEPRECATED_BEHAVIOR); RET(UNDEFINED_BEHAVIOR); RET(PORTABILITY); RET(PERFORMANCE); RET(OTHER); RET(MARKER); default: UNREACHABLE(); } #undef RET } static void APIENTRY DebugHandler(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar* message, const void* user_param) { Log::Level level; switch (severity) { case GL_DEBUG_SEVERITY_HIGH: level = Log::Level::Error; break; case GL_DEBUG_SEVERITY_MEDIUM: level = Log::Level::Warning; break; case GL_DEBUG_SEVERITY_NOTIFICATION: case GL_DEBUG_SEVERITY_LOW: level = Log::Level::Debug; break; } LOG_GENERIC(Log::Class::Render_OpenGL, level, "%s %s %d: %s", GetSource(source), GetType(type), id, message); } /// Initialize the renderer bool RendererOpenGL::Init() { render_window->MakeCurrent(); if (GLAD_GL_KHR_debug) { glEnable(GL_DEBUG_OUTPUT); glDebugMessageCallback(DebugHandler, nullptr); } const char* gl_version{reinterpret_cast(glGetString(GL_VERSION))}; const char* gpu_vendor{reinterpret_cast(glGetString(GL_VENDOR))}; const char* gpu_model{reinterpret_cast(glGetString(GL_RENDERER))}; LOG_INFO(Render_OpenGL, "GL_VERSION: %s", gl_version); LOG_INFO(Render_OpenGL, "GL_VENDOR: %s", gpu_vendor); LOG_INFO(Render_OpenGL, "GL_RENDERER: %s", gpu_model); Core::Telemetry().AddField(Telemetry::FieldType::UserSystem, "GPU_Vendor", gpu_vendor); Core::Telemetry().AddField(Telemetry::FieldType::UserSystem, "GPU_Model", gpu_model); Core::Telemetry().AddField(Telemetry::FieldType::UserSystem, "GPU_OpenGL_Version", gl_version); if (!GLAD_GL_VERSION_3_3) { return false; } InitOpenGLObjects(); RefreshRasterizerSetting(); return true; } /// Shutdown the renderer void RendererOpenGL::ShutDown() {}