// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include "common/assert.h" #include "common/common_types.h" #include "video_core/engines/shader_bytecode.h" #include "video_core/shader/shader_ir.h" namespace VideoCommon::Shader { using Tegra::Shader::Attribute; using Tegra::Shader::Instruction; using Tegra::Shader::OpCode; using Tegra::Shader::Register; using Tegra::Shader::TextureMiscMode; using Tegra::Shader::TextureProcessMode; using Tegra::Shader::TextureType; static std::size_t GetCoordCount(TextureType texture_type) { switch (texture_type) { case TextureType::Texture1D: return 1; case TextureType::Texture2D: return 2; case TextureType::Texture3D: case TextureType::TextureCube: return 3; default: UNIMPLEMENTED_MSG("Unhandled texture type: {}", static_cast(texture_type)); return 0; } } u32 ShaderIR::DecodeMemory(BasicBlock& bb, u32 pc) { const Instruction instr = {program_code[pc]}; const auto opcode = OpCode::Decode(instr); switch (opcode->get().GetId()) { case OpCode::Id::LD_A: { // Note: Shouldn't this be interp mode flat? As in no interpolation made. UNIMPLEMENTED_IF_MSG(instr.gpr8.Value() != Register::ZeroIndex, "Indirect attribute loads are not supported"); UNIMPLEMENTED_IF_MSG((instr.attribute.fmt20.immediate.Value() % sizeof(u32)) != 0, "Unaligned attribute loads are not supported"); Tegra::Shader::IpaMode input_mode{Tegra::Shader::IpaInterpMode::Perspective, Tegra::Shader::IpaSampleMode::Default}; u64 next_element = instr.attribute.fmt20.element; auto next_index = static_cast(instr.attribute.fmt20.index.Value()); const auto LoadNextElement = [&](u32 reg_offset) { const Node buffer = GetRegister(instr.gpr39); const Node attribute = GetInputAttribute(static_cast(next_index), next_element, input_mode, buffer); SetRegister(bb, instr.gpr0.Value() + reg_offset, attribute); // Load the next attribute element into the following register. If the element // to load goes beyond the vec4 size, load the first element of the next // attribute. next_element = (next_element + 1) % 4; next_index = next_index + (next_element == 0 ? 1 : 0); }; const u32 num_words = static_cast(instr.attribute.fmt20.size.Value()) + 1; for (u32 reg_offset = 0; reg_offset < num_words; ++reg_offset) { LoadNextElement(reg_offset); } break; } case OpCode::Id::ST_A: { UNIMPLEMENTED_IF_MSG(instr.gpr8.Value() != Register::ZeroIndex, "Indirect attribute loads are not supported"); UNIMPLEMENTED_IF_MSG((instr.attribute.fmt20.immediate.Value() % sizeof(u32)) != 0, "Unaligned attribute loads are not supported"); u64 next_element = instr.attribute.fmt20.element; auto next_index = static_cast(instr.attribute.fmt20.index.Value()); const auto StoreNextElement = [&](u32 reg_offset) { const auto dest = GetOutputAttribute(static_cast(next_index), next_element, GetRegister(instr.gpr39)); const auto src = GetRegister(instr.gpr0.Value() + reg_offset); bb.push_back(Operation(OperationCode::Assign, dest, src)); // Load the next attribute element into the following register. If the element // to load goes beyond the vec4 size, load the first element of the next // attribute. next_element = (next_element + 1) % 4; next_index = next_index + (next_element == 0 ? 1 : 0); }; const u32 num_words = static_cast(instr.attribute.fmt20.size.Value()) + 1; for (u32 reg_offset = 0; reg_offset < num_words; ++reg_offset) { StoreNextElement(reg_offset); } break; } case OpCode::Id::TEXS: { Tegra::Shader::TextureType texture_type{instr.texs.GetTextureType()}; const bool is_array{instr.texs.IsArrayTexture()}; const bool depth_compare = instr.texs.UsesMiscMode(TextureMiscMode::DC); const auto process_mode = instr.texs.GetTextureProcessMode(); if (instr.texs.UsesMiscMode(TextureMiscMode::NODEP)) { LOG_WARNING(HW_GPU, "TEXS.NODEP implementation is incomplete"); } const Node texture = GetTexsCode(instr, texture_type, process_mode, depth_compare, is_array); if (instr.texs.fp32_flag) { WriteTexsInstructionFloat(bb, instr, texture); } else { UNIMPLEMENTED(); // WriteTexsInstructionHalfFloat(bb, instr, texture); } break; } default: UNIMPLEMENTED_MSG("Unhandled memory instruction: {}", opcode->get().GetName()); } return pc; } const Sampler& ShaderIR::GetSampler(const Tegra::Shader::Sampler& sampler, TextureType type, bool is_array, bool is_shadow) { const auto offset = static_cast(sampler.index.Value()); // If this sampler has already been used, return the existing mapping. const auto itr = std::find_if(used_samplers.begin(), used_samplers.end(), [&](const Sampler& entry) { return entry.GetOffset() == offset; }); if (itr != used_samplers.end()) { ASSERT(itr->GetType() == type && itr->IsArray() == is_array && itr->IsShadow() == is_shadow); return *itr; } // Otherwise create a new mapping for this sampler const std::size_t next_index = used_samplers.size(); const Sampler entry{offset, next_index, type, is_array, is_shadow}; return *used_samplers.emplace(entry).first; } void ShaderIR::WriteTexsInstructionFloat(BasicBlock& bb, Tegra::Shader::Instruction instr, Node texture) { // TEXS has two destination registers and a swizzle. The first two elements in the swizzle // go into gpr0+0 and gpr0+1, and the rest goes into gpr28+0 and gpr28+1 MetaComponents meta; std::array dest; std::size_t written_components = 0; for (u32 component = 0; component < 4; ++component) { if (!instr.texs.IsComponentEnabled(component)) { continue; } meta.components_map[written_components] = static_cast(component); if (written_components < 2) { // Write the first two swizzle components to gpr0 and gpr0+1 dest[written_components] = GetRegister(instr.gpr0.Value() + written_components % 2); } else { ASSERT(instr.texs.HasTwoDestinations()); // Write the rest of the swizzle components to gpr28 and gpr28+1 dest[written_components] = GetRegister(instr.gpr28.Value() + written_components % 2); } ++written_components; } std::generate(dest.begin() + written_components, dest.end(), [&]() { return GetRegister(RZ); }); bb.push_back(Operation(OperationCode::AssignComposite, meta, texture, dest[0], dest[1], dest[2], dest[3])); } Node ShaderIR::GetTextureCode(Instruction instr, TextureType texture_type, TextureProcessMode process_mode, bool depth_compare, bool is_array, std::size_t bias_offset, std::vector&& coords) { UNIMPLEMENTED_IF_MSG( (texture_type == TextureType::Texture3D && (is_array || depth_compare)) || (texture_type == TextureType::TextureCube && is_array && depth_compare), "This method is not supported."); const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, depth_compare); const bool lod_needed = process_mode == TextureProcessMode::LZ || process_mode == TextureProcessMode::LL || process_mode == TextureProcessMode::LLA; const bool gl_lod_supported = !((texture_type == TextureType::Texture2D && is_array && depth_compare) || (texture_type == TextureType::TextureCube && !is_array && depth_compare)); const OperationCode read_method = lod_needed && gl_lod_supported ? OperationCode::F4TextureLod : OperationCode::F4Texture; const MetaTexture meta{sampler, static_cast(coords.size())}; std::vector params = std::move(coords); if (process_mode != TextureProcessMode::None) { if (process_mode == TextureProcessMode::LZ) { if (gl_lod_supported) { params.push_back(Immediate(0)); } else { // Lod 0 is emulated by a big negative bias in scenarios that are not supported by // GLSL params.push_back(Immediate(-1000)); } } else { // If present, lod or bias are always stored in the register indexed by the gpr20 field // with an offset depending on the usage of the other registers params.push_back(GetRegister(instr.gpr20.Value() + bias_offset)); } } return Operation(read_method, meta, std::move(params)); } Node ShaderIR::GetTexsCode(Instruction instr, TextureType texture_type, TextureProcessMode process_mode, bool depth_compare, bool is_array) { const bool lod_bias_enabled = (process_mode != Tegra::Shader::TextureProcessMode::None && process_mode != Tegra::Shader::TextureProcessMode::LZ); const auto [coord_count, total_coord_count] = ValidateAndGetCoordinateElement( texture_type, depth_compare, is_array, lod_bias_enabled, 4, 4); // If enabled arrays index is always stored in the gpr8 field const u64 array_register = instr.gpr8.Value(); // First coordinate index is stored in gpr8 field or (gpr8 + 1) when arrays are used const u64 coord_register = array_register + (is_array ? 1 : 0); const u64 last_coord_register = (is_array || !(lod_bias_enabled || depth_compare) || (coord_count > 2)) ? static_cast(instr.gpr20.Value()) : coord_register + 1; std::vector coords; for (std::size_t i = 0; i < coord_count; ++i) { const bool last = (i == (coord_count - 1)) && (coord_count > 1); coords.push_back(GetRegister(last ? last_coord_register : coord_register + i)); } if (depth_compare) { // Depth is always stored in the register signaled by gpr20 // or in the next register if lod or bias are used const u64 depth_register = instr.gpr20.Value() + (lod_bias_enabled ? 1 : 0); coords.push_back(GetRegister(depth_register)); } if (is_array) { coords.push_back( Operation(OperationCode::ICastFloat, NO_PRECISE, GetRegister(array_register))); } // Fill ignored coordinates while (coords.size() < total_coord_count) { coords.push_back(Immediate(0)); } return GetTextureCode(instr, texture_type, process_mode, depth_compare, is_array, (coord_count > 2 ? 1 : 0), std::move(coords)); } std::tuple ShaderIR::ValidateAndGetCoordinateElement( TextureType texture_type, bool depth_compare, bool is_array, bool lod_bias_enabled, std::size_t max_coords, std::size_t max_inputs) { const std::size_t coord_count = GetCoordCount(texture_type); std::size_t total_coord_count = coord_count + (is_array ? 1 : 0) + (depth_compare ? 1 : 0); const std::size_t total_reg_count = total_coord_count + (lod_bias_enabled ? 1 : 0); if (total_coord_count > max_coords || total_reg_count > max_inputs) { UNIMPLEMENTED_MSG("Unsupported Texture operation"); total_coord_count = std::min(total_coord_count, max_coords); } // 1D.DC OpenGL is using a vec3 but 2nd component is ignored later. total_coord_count += (depth_compare && !is_array && texture_type == TextureType::Texture1D) ? 1 : 0; return {coord_count, total_coord_count}; } } // namespace VideoCommon::Shader