// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include "common/assert.h" #include "common/common_types.h" #include "video_core/engines/shader_bytecode.h" #include "video_core/shader/shader_ir.h" namespace VideoCommon::Shader { using Tegra::Shader::Attribute; using Tegra::Shader::Instruction; using Tegra::Shader::OpCode; using Tegra::Shader::Register; using Tegra::Shader::TextureMiscMode; using Tegra::Shader::TextureProcessMode; using Tegra::Shader::TextureType; static std::size_t GetCoordCount(TextureType texture_type) { switch (texture_type) { case TextureType::Texture1D: return 1; case TextureType::Texture2D: return 2; case TextureType::Texture3D: case TextureType::TextureCube: return 3; default: UNIMPLEMENTED_MSG("Unhandled texture type: {}", static_cast(texture_type)); return 0; } } u32 ShaderIR::DecodeMemory(BasicBlock& bb, const BasicBlock& code, u32 pc) { const Instruction instr = {program_code[pc]}; const auto opcode = OpCode::Decode(instr); switch (opcode->get().GetId()) { case OpCode::Id::LD_A: { // Note: Shouldn't this be interp mode flat? As in no interpolation made. UNIMPLEMENTED_IF_MSG(instr.gpr8.Value() != Register::ZeroIndex, "Indirect attribute loads are not supported"); UNIMPLEMENTED_IF_MSG((instr.attribute.fmt20.immediate.Value() % sizeof(u32)) != 0, "Unaligned attribute loads are not supported"); Tegra::Shader::IpaMode input_mode{Tegra::Shader::IpaInterpMode::Perspective, Tegra::Shader::IpaSampleMode::Default}; u64 next_element = instr.attribute.fmt20.element; auto next_index = static_cast(instr.attribute.fmt20.index.Value()); const auto LoadNextElement = [&](u32 reg_offset) { const Node buffer = GetRegister(instr.gpr39); const Node attribute = GetInputAttribute(static_cast(next_index), next_element, input_mode, buffer); SetRegister(bb, instr.gpr0.Value() + reg_offset, attribute); // Load the next attribute element into the following register. If the element // to load goes beyond the vec4 size, load the first element of the next // attribute. next_element = (next_element + 1) % 4; next_index = next_index + (next_element == 0 ? 1 : 0); }; const u32 num_words = static_cast(instr.attribute.fmt20.size.Value()) + 1; for (u32 reg_offset = 0; reg_offset < num_words; ++reg_offset) { LoadNextElement(reg_offset); } break; } case OpCode::Id::LD_C: { UNIMPLEMENTED_IF(instr.ld_c.unknown != 0); Node index = GetRegister(instr.gpr8); const Node op_a = GetConstBufferIndirect(instr.cbuf36.index, instr.cbuf36.GetOffset() + 0, index); switch (instr.ld_c.type.Value()) { case Tegra::Shader::UniformType::Single: SetRegister(bb, instr.gpr0, op_a); break; case Tegra::Shader::UniformType::Double: { const Node op_b = GetConstBufferIndirect(instr.cbuf36.index, instr.cbuf36.GetOffset() + 4, index); SetTemporal(bb, 0, op_a); SetTemporal(bb, 1, op_b); SetRegister(bb, instr.gpr0, GetTemporal(0)); SetRegister(bb, instr.gpr0.Value() + 1, GetTemporal(1)); break; } default: UNIMPLEMENTED_MSG("Unhandled type: {}", static_cast(instr.ld_c.type.Value())); } break; } case OpCode::Id::LD_L: { UNIMPLEMENTED_IF_MSG(instr.ld_l.unknown == 1, "LD_L Unhandled mode: {}", static_cast(instr.ld_l.unknown.Value())); const Node index = Operation(OperationCode::IAdd, GetRegister(instr.gpr8), Immediate(static_cast(instr.smem_imm))); const Node lmem = GetLocalMemory(index); switch (instr.ldst_sl.type.Value()) { case Tegra::Shader::StoreType::Bytes32: SetRegister(bb, instr.gpr0, lmem); break; default: UNIMPLEMENTED_MSG("LD_L Unhandled type: {}", static_cast(instr.ldst_sl.type.Value())); } break; } case OpCode::Id::LDG: { const u32 count = [&]() { switch (instr.ldg.type) { case Tegra::Shader::UniformType::Single: return 1; case Tegra::Shader::UniformType::Double: return 2; case Tegra::Shader::UniformType::Quad: case Tegra::Shader::UniformType::UnsignedQuad: return 4; default: UNIMPLEMENTED_MSG("Unimplemented LDG size!"); return 1; } }(); const Node addr_register = GetRegister(instr.gpr8); const Node base_address = TrackCbuf(addr_register, code, static_cast(code.size())); const auto cbuf = std::get_if(base_address); ASSERT(cbuf != nullptr); const auto cbuf_offset_imm = std::get_if(cbuf->GetOffset()); ASSERT(cbuf_offset_imm != nullptr); const auto cbuf_offset = cbuf_offset_imm->GetValue(); bb.push_back(Comment( fmt::format("Base address is c[0x{:x}][0x{:x}]", cbuf->GetIndex(), cbuf_offset))); const GlobalMemoryBase descriptor{cbuf->GetIndex(), cbuf_offset}; used_global_memory_bases.insert(descriptor); const Node immediate_offset = Immediate(static_cast(instr.ldg.immediate_offset.Value())); const Node base_real_address = Operation(OperationCode::UAdd, NO_PRECISE, immediate_offset, addr_register); for (u32 i = 0; i < count; ++i) { const Node it_offset = Immediate(i * 4); const Node real_address = Operation(OperationCode::UAdd, NO_PRECISE, base_real_address, it_offset); const Node gmem = StoreNode(GmemNode(real_address, base_address, descriptor)); SetTemporal(bb, i, gmem); } for (u32 i = 0; i < count; ++i) { SetRegister(bb, instr.gpr0.Value() + i, GetTemporal(i)); } break; } case OpCode::Id::ST_A: { UNIMPLEMENTED_IF_MSG(instr.gpr8.Value() != Register::ZeroIndex, "Indirect attribute loads are not supported"); UNIMPLEMENTED_IF_MSG((instr.attribute.fmt20.immediate.Value() % sizeof(u32)) != 0, "Unaligned attribute loads are not supported"); u64 next_element = instr.attribute.fmt20.element; auto next_index = static_cast(instr.attribute.fmt20.index.Value()); const auto StoreNextElement = [&](u32 reg_offset) { const auto dest = GetOutputAttribute(static_cast(next_index), next_element, GetRegister(instr.gpr39)); const auto src = GetRegister(instr.gpr0.Value() + reg_offset); bb.push_back(Operation(OperationCode::Assign, dest, src)); // Load the next attribute element into the following register. If the element // to load goes beyond the vec4 size, load the first element of the next // attribute. next_element = (next_element + 1) % 4; next_index = next_index + (next_element == 0 ? 1 : 0); }; const u32 num_words = static_cast(instr.attribute.fmt20.size.Value()) + 1; for (u32 reg_offset = 0; reg_offset < num_words; ++reg_offset) { StoreNextElement(reg_offset); } break; } case OpCode::Id::ST_L: { UNIMPLEMENTED_IF_MSG(instr.st_l.unknown == 0, "ST_L Unhandled mode: {}", static_cast(instr.st_l.unknown.Value())); const Node index = Operation(OperationCode::IAdd, NO_PRECISE, GetRegister(instr.gpr8), Immediate(static_cast(instr.smem_imm))); switch (instr.ldst_sl.type.Value()) { case Tegra::Shader::StoreType::Bytes32: SetLocalMemory(bb, index, GetRegister(instr.gpr0)); break; default: UNIMPLEMENTED_MSG("ST_L Unhandled type: {}", static_cast(instr.ldst_sl.type.Value())); } break; } case OpCode::Id::TEX: { UNIMPLEMENTED_IF_MSG(instr.tex.UsesMiscMode(TextureMiscMode::AOFFI), "AOFFI is not implemented"); if (instr.tex.UsesMiscMode(TextureMiscMode::NODEP)) { LOG_WARNING(HW_GPU, "TEX.NODEP implementation is incomplete"); } const TextureType texture_type{instr.tex.texture_type}; const bool is_array = instr.tex.array != 0; const bool depth_compare = instr.tex.UsesMiscMode(TextureMiscMode::DC); const auto process_mode = instr.tex.GetTextureProcessMode(); WriteTexInstructionFloat( bb, instr, GetTexCode(instr, texture_type, process_mode, depth_compare, is_array)); break; } case OpCode::Id::TEXS: { const TextureType texture_type{instr.texs.GetTextureType()}; const bool is_array{instr.texs.IsArrayTexture()}; const bool depth_compare = instr.texs.UsesMiscMode(TextureMiscMode::DC); const auto process_mode = instr.texs.GetTextureProcessMode(); if (instr.texs.UsesMiscMode(TextureMiscMode::NODEP)) { LOG_WARNING(HW_GPU, "TEXS.NODEP implementation is incomplete"); } const Node4 components = GetTexsCode(instr, texture_type, process_mode, depth_compare, is_array); if (instr.texs.fp32_flag) { WriteTexsInstructionFloat(bb, instr, components); } else { WriteTexsInstructionHalfFloat(bb, instr, components); } break; } case OpCode::Id::TLD4: { ASSERT(instr.tld4.array == 0); UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::AOFFI), "AOFFI is not implemented"); UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::NDV), "NDV is not implemented"); UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::PTP), "PTP is not implemented"); if (instr.tld4.UsesMiscMode(TextureMiscMode::NODEP)) { LOG_WARNING(HW_GPU, "TLD4.NODEP implementation is incomplete"); } const auto texture_type = instr.tld4.texture_type.Value(); const bool depth_compare = instr.tld4.UsesMiscMode(TextureMiscMode::DC); const bool is_array = instr.tld4.array != 0; WriteTexInstructionFloat(bb, instr, GetTld4Code(instr, texture_type, depth_compare, is_array)); break; } case OpCode::Id::TLD4S: { UNIMPLEMENTED_IF_MSG(instr.tld4s.UsesMiscMode(TextureMiscMode::AOFFI), "AOFFI is not implemented"); if (instr.tld4s.UsesMiscMode(TextureMiscMode::NODEP)) { LOG_WARNING(HW_GPU, "TLD4S.NODEP implementation is incomplete"); } const bool depth_compare = instr.tld4s.UsesMiscMode(TextureMiscMode::DC); const Node op_a = GetRegister(instr.gpr8); const Node op_b = GetRegister(instr.gpr20); std::vector coords; // TODO(Subv): Figure out how the sampler type is encoded in the TLD4S instruction. if (depth_compare) { // Note: TLD4S coordinate encoding works just like TEXS's const Node op_y = GetRegister(instr.gpr8.Value() + 1); coords.push_back(op_a); coords.push_back(op_y); coords.push_back(op_b); } else { coords.push_back(op_a); coords.push_back(op_b); } const auto num_coords = static_cast(coords.size()); coords.push_back(Immediate(static_cast(instr.tld4s.component))); const auto& sampler = GetSampler(instr.sampler, TextureType::Texture2D, false, depth_compare); Node4 values; for (u32 element = 0; element < values.size(); ++element) { auto params = coords; MetaTexture meta{sampler, element, num_coords}; values[element] = Operation(OperationCode::F4TextureGather, std::move(meta), std::move(params)); } WriteTexsInstructionFloat(bb, instr, values); break; } case OpCode::Id::TXQ: { if (instr.txq.UsesMiscMode(TextureMiscMode::NODEP)) { LOG_WARNING(HW_GPU, "TXQ.NODEP implementation is incomplete"); } // TODO: The new commits on the texture refactor, change the way samplers work. // Sadly, not all texture instructions specify the type of texture their sampler // uses. This must be fixed at a later instance. const auto& sampler = GetSampler(instr.sampler, Tegra::Shader::TextureType::Texture2D, false, false); switch (instr.txq.query_type) { case Tegra::Shader::TextureQueryType::Dimension: { for (u32 element = 0; element < 4; ++element) { MetaTexture meta{sampler, element}; const Node value = Operation(OperationCode::F4TextureQueryDimensions, std::move(meta), GetRegister(instr.gpr8)); SetTemporal(bb, element, value); } for (u32 i = 0; i < 4; ++i) { SetRegister(bb, instr.gpr0.Value() + i, GetTemporal(i)); } break; } default: UNIMPLEMENTED_MSG("Unhandled texture query type: {}", static_cast(instr.txq.query_type.Value())); } break; } case OpCode::Id::TMML: { UNIMPLEMENTED_IF_MSG(instr.tmml.UsesMiscMode(Tegra::Shader::TextureMiscMode::NDV), "NDV is not implemented"); if (instr.tmml.UsesMiscMode(TextureMiscMode::NODEP)) { LOG_WARNING(HW_GPU, "TMML.NODEP implementation is incomplete"); } auto texture_type = instr.tmml.texture_type.Value(); const bool is_array = instr.tmml.array != 0; const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, false); std::vector coords; // TODO: Add coordinates for different samplers once other texture types are implemented. switch (texture_type) { case TextureType::Texture1D: coords.push_back(GetRegister(instr.gpr8)); break; case TextureType::Texture2D: coords.push_back(GetRegister(instr.gpr8.Value() + 0)); coords.push_back(GetRegister(instr.gpr8.Value() + 1)); break; default: UNIMPLEMENTED_MSG("Unhandled texture type {}", static_cast(texture_type)); // Fallback to interpreting as a 2D texture for now coords.push_back(GetRegister(instr.gpr8.Value() + 0)); coords.push_back(GetRegister(instr.gpr8.Value() + 1)); texture_type = TextureType::Texture2D; } for (u32 element = 0; element < 2; ++element) { auto params = coords; MetaTexture meta_texture{sampler, element, static_cast(coords.size())}; const Node value = Operation(OperationCode::F4TextureQueryLod, meta_texture, std::move(params)); SetTemporal(bb, element, value); } for (u32 element = 0; element < 2; ++element) { SetRegister(bb, instr.gpr0.Value() + element, GetTemporal(element)); } break; } case OpCode::Id::TLDS: { const Tegra::Shader::TextureType texture_type{instr.tlds.GetTextureType()}; const bool is_array{instr.tlds.IsArrayTexture()}; UNIMPLEMENTED_IF_MSG(instr.tlds.UsesMiscMode(TextureMiscMode::AOFFI), "AOFFI is not implemented"); UNIMPLEMENTED_IF_MSG(instr.tlds.UsesMiscMode(TextureMiscMode::MZ), "MZ is not implemented"); if (instr.tlds.UsesMiscMode(TextureMiscMode::NODEP)) { LOG_WARNING(HW_GPU, "TMML.NODEP implementation is incomplete"); } WriteTexsInstructionFloat(bb, instr, GetTldsCode(instr, texture_type, is_array)); break; } default: UNIMPLEMENTED_MSG("Unhandled memory instruction: {}", opcode->get().GetName()); } return pc; } const Sampler& ShaderIR::GetSampler(const Tegra::Shader::Sampler& sampler, TextureType type, bool is_array, bool is_shadow) { const auto offset = static_cast(sampler.index.Value()); // If this sampler has already been used, return the existing mapping. const auto itr = std::find_if(used_samplers.begin(), used_samplers.end(), [&](const Sampler& entry) { return entry.GetOffset() == offset; }); if (itr != used_samplers.end()) { ASSERT(itr->GetType() == type && itr->IsArray() == is_array && itr->IsShadow() == is_shadow); return *itr; } // Otherwise create a new mapping for this sampler const std::size_t next_index = used_samplers.size(); const Sampler entry{offset, next_index, type, is_array, is_shadow}; return *used_samplers.emplace(entry).first; } void ShaderIR::WriteTexInstructionFloat(BasicBlock& bb, Instruction instr, const Node4& components) { u32 dest_elem = 0; for (u32 elem = 0; elem < 4; ++elem) { if (!instr.tex.IsComponentEnabled(elem)) { // Skip disabled components continue; } SetTemporal(bb, dest_elem++, components[elem]); } // After writing values in temporals, move them to the real registers for (u32 i = 0; i < dest_elem; ++i) { SetRegister(bb, instr.gpr0.Value() + i, GetTemporal(i)); } } void ShaderIR::WriteTexsInstructionFloat(BasicBlock& bb, Instruction instr, const Node4& components) { // TEXS has two destination registers and a swizzle. The first two elements in the swizzle // go into gpr0+0 and gpr0+1, and the rest goes into gpr28+0 and gpr28+1 u32 dest_elem = 0; for (u32 component = 0; component < 4; ++component) { if (!instr.texs.IsComponentEnabled(component)) continue; SetTemporal(bb, dest_elem++, components[component]); } for (u32 i = 0; i < dest_elem; ++i) { if (i < 2) { // Write the first two swizzle components to gpr0 and gpr0+1 SetRegister(bb, instr.gpr0.Value() + i % 2, GetTemporal(i)); } else { ASSERT(instr.texs.HasTwoDestinations()); // Write the rest of the swizzle components to gpr28 and gpr28+1 SetRegister(bb, instr.gpr28.Value() + i % 2, GetTemporal(i)); } } } void ShaderIR::WriteTexsInstructionHalfFloat(BasicBlock& bb, Instruction instr, const Node4& components) { // TEXS.F16 destionation registers are packed in two registers in pairs (just like any half // float instruction). Node4 values; u32 dest_elem = 0; for (u32 component = 0; component < 4; ++component) { if (!instr.texs.IsComponentEnabled(component)) continue; values[dest_elem++] = components[component]; } if (dest_elem == 0) return; std::generate(values.begin() + dest_elem, values.end(), [&]() { return Immediate(0); }); const Node first_value = Operation(OperationCode::HPack2, values[0], values[1]); if (dest_elem <= 2) { SetRegister(bb, instr.gpr0, first_value); return; } SetTemporal(bb, 0, first_value); SetTemporal(bb, 1, Operation(OperationCode::HPack2, values[2], values[3])); SetRegister(bb, instr.gpr0, GetTemporal(0)); SetRegister(bb, instr.gpr28, GetTemporal(1)); } Node4 ShaderIR::GetTextureCode(Instruction instr, TextureType texture_type, TextureProcessMode process_mode, bool depth_compare, bool is_array, std::size_t array_offset, std::size_t bias_offset, std::vector&& coords) { UNIMPLEMENTED_IF_MSG( (texture_type == TextureType::Texture3D && (is_array || depth_compare)) || (texture_type == TextureType::TextureCube && is_array && depth_compare), "This method is not supported."); const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, depth_compare); const bool lod_needed = process_mode == TextureProcessMode::LZ || process_mode == TextureProcessMode::LL || process_mode == TextureProcessMode::LLA; // LOD selection (either via bias or explicit textureLod) not supported in GL for // sampler2DArrayShadow and samplerCubeArrayShadow. const bool gl_lod_supported = !((texture_type == Tegra::Shader::TextureType::Texture2D && is_array && depth_compare) || (texture_type == Tegra::Shader::TextureType::TextureCube && is_array && depth_compare)); const OperationCode read_method = lod_needed && gl_lod_supported ? OperationCode::F4TextureLod : OperationCode::F4Texture; UNIMPLEMENTED_IF(process_mode != TextureProcessMode::None && !gl_lod_supported); std::optional array_offset_value; if (is_array) array_offset_value = static_cast(array_offset); const auto coords_count = static_cast(coords.size()); if (process_mode != TextureProcessMode::None && gl_lod_supported) { if (process_mode == TextureProcessMode::LZ) { coords.push_back(Immediate(0.0f)); } else { // If present, lod or bias are always stored in the register indexed by the gpr20 // field with an offset depending on the usage of the other registers coords.push_back(GetRegister(instr.gpr20.Value() + bias_offset)); } } Node4 values; for (u32 element = 0; element < values.size(); ++element) { auto params = coords; MetaTexture meta{sampler, element, coords_count, array_offset_value}; values[element] = Operation(read_method, std::move(meta), std::move(params)); } return values; } Node4 ShaderIR::GetTexCode(Instruction instr, TextureType texture_type, TextureProcessMode process_mode, bool depth_compare, bool is_array) { const bool lod_bias_enabled = (process_mode != TextureProcessMode::None && process_mode != TextureProcessMode::LZ); const auto [coord_count, total_coord_count] = ValidateAndGetCoordinateElement( texture_type, depth_compare, is_array, lod_bias_enabled, 4, 5); // If enabled arrays index is always stored in the gpr8 field const u64 array_register = instr.gpr8.Value(); // First coordinate index is the gpr8 or gpr8 + 1 when arrays are used const u64 coord_register = array_register + (is_array ? 1 : 0); std::vector coords; for (std::size_t i = 0; i < coord_count; ++i) { coords.push_back(GetRegister(coord_register + i)); } // 1D.DC in opengl the 2nd component is ignored. if (depth_compare && !is_array && texture_type == TextureType::Texture1D) { coords.push_back(Immediate(0.0f)); } std::size_t array_offset{}; if (is_array) { array_offset = coords.size(); coords.push_back(GetRegister(array_register)); } if (depth_compare) { // Depth is always stored in the register signaled by gpr20 // or in the next register if lod or bias are used const u64 depth_register = instr.gpr20.Value() + (lod_bias_enabled ? 1 : 0); coords.push_back(GetRegister(depth_register)); } // Fill ignored coordinates while (coords.size() < total_coord_count) { coords.push_back(Immediate(0)); } return GetTextureCode(instr, texture_type, process_mode, depth_compare, is_array, array_offset, 0, std::move(coords)); } Node4 ShaderIR::GetTexsCode(Instruction instr, TextureType texture_type, TextureProcessMode process_mode, bool depth_compare, bool is_array) { const bool lod_bias_enabled = (process_mode != TextureProcessMode::None && process_mode != TextureProcessMode::LZ); const auto [coord_count, total_coord_count] = ValidateAndGetCoordinateElement( texture_type, depth_compare, is_array, lod_bias_enabled, 4, 4); // If enabled arrays index is always stored in the gpr8 field const u64 array_register = instr.gpr8.Value(); // First coordinate index is stored in gpr8 field or (gpr8 + 1) when arrays are used const u64 coord_register = array_register + (is_array ? 1 : 0); const u64 last_coord_register = (is_array || !(lod_bias_enabled || depth_compare) || (coord_count > 2)) ? static_cast(instr.gpr20.Value()) : coord_register + 1; std::vector coords; for (std::size_t i = 0; i < coord_count; ++i) { const bool last = (i == (coord_count - 1)) && (coord_count > 1); coords.push_back(GetRegister(last ? last_coord_register : coord_register + i)); } std::size_t array_offset{}; if (is_array) { array_offset = coords.size(); coords.push_back(GetRegister(array_register)); } if (depth_compare) { // Depth is always stored in the register signaled by gpr20 // or in the next register if lod or bias are used const u64 depth_register = instr.gpr20.Value() + (lod_bias_enabled ? 1 : 0); coords.push_back(GetRegister(depth_register)); } // Fill ignored coordinates while (coords.size() < total_coord_count) { coords.push_back(Immediate(0)); } return GetTextureCode(instr, texture_type, process_mode, depth_compare, is_array, array_offset, (coord_count > 2 ? 1 : 0), std::move(coords)); } Node4 ShaderIR::GetTld4Code(Instruction instr, TextureType texture_type, bool depth_compare, bool is_array) { const std::size_t coord_count = GetCoordCount(texture_type); const std::size_t total_coord_count = coord_count + (is_array ? 1 : 0); const std::size_t total_reg_count = total_coord_count + (depth_compare ? 1 : 0); // If enabled arrays index is always stored in the gpr8 field const u64 array_register = instr.gpr8.Value(); // First coordinate index is the gpr8 or gpr8 + 1 when arrays are used const u64 coord_register = array_register + (is_array ? 1 : 0); std::vector coords; for (size_t i = 0; i < coord_count; ++i) { coords.push_back(GetRegister(coord_register + i)); } std::optional array_offset; if (is_array) { array_offset = static_cast(coords.size()); coords.push_back(GetRegister(array_register)); } const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, depth_compare); Node4 values; for (u32 element = 0; element < values.size(); ++element) { auto params = coords; MetaTexture meta{sampler, element, static_cast(coords.size()), array_offset}; values[element] = Operation(OperationCode::F4TextureGather, std::move(meta), std::move(params)); } return values; } Node4 ShaderIR::GetTldsCode(Instruction instr, TextureType texture_type, bool is_array) { const std::size_t type_coord_count = GetCoordCount(texture_type); const std::size_t total_coord_count = type_coord_count + (is_array ? 1 : 0); const bool lod_enabled = instr.tlds.GetTextureProcessMode() == TextureProcessMode::LL; // If enabled arrays index is always stored in the gpr8 field const u64 array_register = instr.gpr8.Value(); // if is array gpr20 is used const u64 coord_register = is_array ? instr.gpr20.Value() : instr.gpr8.Value(); const u64 last_coord_register = ((type_coord_count > 2) || (type_coord_count == 2 && !lod_enabled)) && !is_array ? static_cast(instr.gpr20.Value()) : coord_register + 1; std::vector coords; for (std::size_t i = 0; i < type_coord_count; ++i) { const bool last = (i == (type_coord_count - 1)) && (type_coord_count > 1); coords.push_back(GetRegister(last ? last_coord_register : coord_register + i)); } std::optional array_offset; if (is_array) { array_offset = static_cast(coords.size()); coords.push_back(GetRegister(array_register)); } const auto coords_count = static_cast(coords.size()); if (lod_enabled) { // When lod is used always is in grp20 coords.push_back(GetRegister(instr.gpr20)); } else { coords.push_back(Immediate(0)); } const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, false); Node4 values; for (u32 element = 0; element < values.size(); ++element) { auto params = coords; MetaTexture meta{sampler, element, coords_count, array_offset}; values[element] = Operation(OperationCode::F4TexelFetch, std::move(meta), std::move(params)); } return values; } std::tuple ShaderIR::ValidateAndGetCoordinateElement( TextureType texture_type, bool depth_compare, bool is_array, bool lod_bias_enabled, std::size_t max_coords, std::size_t max_inputs) { const std::size_t coord_count = GetCoordCount(texture_type); std::size_t total_coord_count = coord_count + (is_array ? 1 : 0) + (depth_compare ? 1 : 0); const std::size_t total_reg_count = total_coord_count + (lod_bias_enabled ? 1 : 0); if (total_coord_count > max_coords || total_reg_count > max_inputs) { UNIMPLEMENTED_MSG("Unsupported Texture operation"); total_coord_count = std::min(total_coord_count, max_coords); } // 1D.DC OpenGL is using a vec3 but 2nd component is ignored later. total_coord_count += (depth_compare && !is_array && texture_type == TextureType::Texture1D) ? 1 : 0; return {coord_count, total_coord_count}; } } // namespace VideoCommon::Shader