// Copyright 2014 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include #include "common/assert.h" #include "common/bit_field.h" #include "common/color.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/math_util.h" #include "common/microprofile.h" #include "common/quaternion.h" #include "common/vector_math.h" #include "core/hw/gpu.h" #include "core/memory.h" #include "video_core/debug_utils/debug_utils.h" #include "video_core/pica_state.h" #include "video_core/pica_types.h" #include "video_core/regs_framebuffer.h" #include "video_core/regs_rasterizer.h" #include "video_core/regs_texturing.h" #include "video_core/shader/shader.h" #include "video_core/swrasterizer/framebuffer.h" #include "video_core/swrasterizer/proctex.h" #include "video_core/swrasterizer/rasterizer.h" #include "video_core/swrasterizer/texturing.h" #include "video_core/texture/texture_decode.h" #include "video_core/utils.h" namespace Pica { namespace Rasterizer { // NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values struct Fix12P4 { Fix12P4() {} Fix12P4(u16 val) : val(val) {} static u16 FracMask() { return 0xF; } static u16 IntMask() { return (u16)~0xF; } operator u16() const { return val; } bool operator<(const Fix12P4& oth) const { return (u16) * this < (u16)oth; } private: u16 val; }; /** * Calculate signed area of the triangle spanned by the three argument vertices. * The sign denotes an orientation. * * @todo define orientation concretely. */ static int SignedArea(const Math::Vec2& vtx1, const Math::Vec2& vtx2, const Math::Vec2& vtx3) { const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0); const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0); // TODO: There is a very small chance this will overflow for sizeof(int) == 4 return Math::Cross(vec1, vec2).z; }; /// Convert a 3D vector for cube map coordinates to 2D texture coordinates along with the face name static std::tuple ConvertCubeCoord(float24 u, float24 v, float24 w, const TexturingRegs& regs) { const float abs_u = std::abs(u.ToFloat32()); const float abs_v = std::abs(v.ToFloat32()); const float abs_w = std::abs(w.ToFloat32()); float24 x, y, z; PAddr addr; if (abs_u > abs_v && abs_u > abs_w) { if (u > float24::FromFloat32(0)) { addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveX); y = -v; } else { addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeX); y = v; } x = -w; z = u; } else if (abs_v > abs_w) { if (v > float24::FromFloat32(0)) { addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveY); x = u; } else { addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeY); x = -u; } y = w; z = v; } else { if (w > float24::FromFloat32(0)) { addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveZ); y = -v; } else { addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeZ); y = v; } x = u; z = w; } const float24 half = float24::FromFloat32(0.5f); return std::make_tuple(x / z * half + half, y / z * half + half, addr); } float LookupLightingLut(size_t lut_index, u8 index, float delta) { ASSERT_MSG(lut_index < g_state.lighting.luts.size(), "Out of range lut"); ASSERT_MSG(index < g_state.lighting.luts[0].size(), "Out of range index"); float lut_value = g_state.lighting.luts[lut_index][index].ToFloat(); float lut_diff = g_state.lighting.luts[lut_index][index].DiffToFloat(); return lut_value + lut_diff * delta; } std::tuple, Math::Vec4> ComputeFragmentsColors( const Math::Quaternion& normquat, const Math::Vec3& view) { const auto& lighting = g_state.regs.lighting; if (lighting.disable) return {Math::MakeVec(0, 0, 0, 0), Math::MakeVec(0, 0, 0, 0)}; // TODO(Subv): Bump mapping Math::Vec3 surface_normal = {0.0f, 0.0f, 1.0f}; if (lighting.config0.bump_mode != LightingRegs::LightingBumpMode::None) { LOG_CRITICAL(HW_GPU, "unimplemented bump mapping"); UNIMPLEMENTED(); } // Use the normalized the quaternion when performing the rotation auto normal = Math::QuaternionRotate(normquat.Normalized(), surface_normal); Math::Vec4 diffuse_sum = {0.f, 0.f, 0.f, 1.f}; Math::Vec4 specular_sum = {0.f, 0.f, 0.f, 1.f}; for (unsigned light_index = 0; light_index <= lighting.max_light_index; ++light_index) { unsigned num = lighting.light_enable.GetNum(light_index); const auto& light_config = g_state.regs.lighting.light[num]; Math::Vec3 refl_value = {}; Math::Vec3 position = {float16::FromRaw(light_config.x).ToFloat32(), float16::FromRaw(light_config.y).ToFloat32(), float16::FromRaw(light_config.z).ToFloat32()}; Math::Vec3 light_vector; if (light_config.config.directional) light_vector = position; else light_vector = position + view; light_vector.Normalize(); auto LV_N = Math::Dot(light_vector, normal); auto dot_product = LV_N; if (light_config.config.two_sided_diffuse) dot_product = std::abs(dot_product); else dot_product = std::max(dot_product, 0.0f); float dist_atten = 1.0f; if (!lighting.IsDistAttenDisabled(num)) { auto distance = (-view - position).Length(); float scale = Pica::float20::FromRaw(light_config.dist_atten_scale).ToFloat32(); float dist_aten_bias = Pica::float20::FromRaw(light_config.dist_atten_scale).ToFloat32(); size_t lut = static_cast(LightingRegs::LightingSampler::DistanceAttenuation) + num; float sample_loc = scale * distance + dist_aten_bias; u8 lutindex = static_cast(MathUtil::Clamp(std::floor(sample_loc * 256.f), 0.0f, 255.0f)); float delta = sample_loc * 256 - lutindex; dist_atten = LookupLightingLut(lut, lutindex, delta); } float clamp_highlights = 1.0f; if (lighting.config0.clamp_highlights) { if (LV_N <= 0.f) clamp_highlights = 0.f; else clamp_highlights = 1.f; } auto GetLutIndex = [&](unsigned num, LightingRegs::LightingLutInput input, bool abs) -> std::tuple { Math::Vec3 norm_view = view.Normalized(); Math::Vec3 half_angle = (norm_view + light_vector).Normalized(); float result = 0.0f; switch (input) { case LightingRegs::LightingLutInput::NH: result = Math::Dot(normal, half_angle); break; case LightingRegs::LightingLutInput::VH: result = Math::Dot(norm_view, half_angle); break; case LightingRegs::LightingLutInput::NV: result = Math::Dot(normal, norm_view); break; case LightingRegs::LightingLutInput::LN: result = Math::Dot(light_vector, normal); break; default: LOG_CRITICAL(HW_GPU, "Unknown lighting LUT input %u\n", static_cast(input)); UNIMPLEMENTED(); result = 0.f; } if (abs) { if (light_config.config.two_sided_diffuse) result = std::abs(result); else result = std::max(result, 0.0f); float flr = std::floor(result * 256.f); u8 lutindex = static_cast(MathUtil::Clamp(flr, 0.0f, 255.0f)); float delta = result * 256 - lutindex; return {lutindex, delta}; } else { float flr = std::floor(result * 128.f); s8 lutindex = static_cast(MathUtil::Clamp(flr, -128.0f, 127.0f)); float delta = result * 128.f - lutindex; return {static_cast(lutindex), delta}; } }; // Specular 0 component float d0_lut_value = 1.0f; if (lighting.config1.disable_lut_d0 == 0 && LightingRegs::IsLightingSamplerSupported( lighting.config0.config, LightingRegs::LightingSampler::Distribution0)) { // Lookup specular "distribution 0" LUT value u8 index; float delta; std::tie(index, delta) = GetLutIndex(num, lighting.lut_input.d0.Value(), lighting.abs_lut_input.disable_d0 == 0); float scale = lighting.lut_scale.GetScale(lighting.lut_scale.d0); d0_lut_value = scale * LookupLightingLut(static_cast(LightingRegs::LightingSampler::Distribution0), index, delta); } Math::Vec3 specular_0 = d0_lut_value * light_config.specular_0.ToVec3f(); // If enabled, lookup ReflectRed value, otherwise, 1.0 is used if (lighting.config1.disable_lut_rr == 0 && LightingRegs::IsLightingSamplerSupported(lighting.config0.config, LightingRegs::LightingSampler::ReflectRed)) { u8 index; float delta; std::tie(index, delta) = GetLutIndex(num, lighting.lut_input.rr, lighting.abs_lut_input.disable_rr == 0); float scale = lighting.lut_scale.GetScale(lighting.lut_scale.rr); refl_value.x = scale * LookupLightingLut(static_cast(LightingRegs::LightingSampler::ReflectRed), index, delta); } else { refl_value.x = 1.0f; } // If enabled, lookup ReflectGreen value, otherwise, ReflectRed value is used if (lighting.config1.disable_lut_rg == 0 && LightingRegs::IsLightingSamplerSupported(lighting.config0.config, LightingRegs::LightingSampler::ReflectGreen)) { u8 index; float delta; std::tie(index, delta) = GetLutIndex(num, lighting.lut_input.rg, lighting.abs_lut_input.disable_rg == 0); float scale = lighting.lut_scale.GetScale(lighting.lut_scale.rg); refl_value.y = scale * LookupLightingLut(static_cast(LightingRegs::LightingSampler::ReflectGreen), index, delta); } else { refl_value.y = refl_value.x; } // If enabled, lookup ReflectBlue value, otherwise, ReflectRed value is used if (lighting.config1.disable_lut_rb == 0 && LightingRegs::IsLightingSamplerSupported(lighting.config0.config, LightingRegs::LightingSampler::ReflectBlue)) { u8 index; float delta; std::tie(index, delta) = GetLutIndex(num, lighting.lut_input.rb, lighting.abs_lut_input.disable_rb == 0); float scale = lighting.lut_scale.GetScale(lighting.lut_scale.rb); refl_value.z = scale * LookupLightingLut(static_cast(LightingRegs::LightingSampler::ReflectBlue), index, delta); } else { refl_value.z = refl_value.x; } float d1_lut_value = 1.0f; if (lighting.config1.disable_lut_d1 == 0 && LightingRegs::IsLightingSamplerSupported( lighting.config0.config, LightingRegs::LightingSampler::Distribution1)) { // Lookup specular "distribution 1" LUT value u8 index; float delta; std::tie(index, delta) = GetLutIndex(num, lighting.lut_input.d1.Value(), lighting.abs_lut_input.disable_d1 == 0); float scale = lighting.lut_scale.GetScale(lighting.lut_scale.d1); d1_lut_value = scale * LookupLightingLut(static_cast(LightingRegs::LightingSampler::Distribution1), index, delta); } Math::Vec3 specular_1 = d1_lut_value * refl_value * light_config.specular_1.ToVec3f(); if (lighting.config1.disable_lut_fr == 0 && LightingRegs::IsLightingSamplerSupported(lighting.config0.config, LightingRegs::LightingSampler::Fresnel)) { // Lookup fresnel LUT value u8 index; float delta; std::tie(index, delta) = GetLutIndex(num, lighting.lut_input.fr.Value(), lighting.abs_lut_input.disable_fr == 0); float scale = lighting.lut_scale.GetScale(lighting.lut_scale.fr); float lut_value = scale * LookupLightingLut(static_cast(LightingRegs::LightingSampler::Fresnel), index, delta); // Enabled for diffuse lighting alpha component if (lighting.config0.fresnel_selector == LightingRegs::LightingFresnelSelector::PrimaryAlpha || lighting.config0.fresnel_selector == LightingRegs::LightingFresnelSelector::Both) { diffuse_sum.a() *= lut_value; } // Enabled for the specular lighting alpha component if (lighting.config0.fresnel_selector == LightingRegs::LightingFresnelSelector::SecondaryAlpha || lighting.config0.fresnel_selector == LightingRegs::LightingFresnelSelector::Both) { specular_sum.a() *= lut_value; } } auto diffuse = light_config.diffuse.ToVec3f() * dot_product + light_config.ambient.ToVec3f(); diffuse_sum += Math::MakeVec(diffuse * dist_atten, 0.0f); specular_sum += Math::MakeVec((specular_0 + specular_1) * clamp_highlights * dist_atten, 0.f); } diffuse_sum += Math::MakeVec(lighting.global_ambient.ToVec3f(), 0.0f); return {Math::MakeVec(MathUtil::Clamp(diffuse_sum.x, 0.0f, 1.0f) * 255, MathUtil::Clamp(diffuse_sum.y, 0.0f, 1.0f) * 255, MathUtil::Clamp(diffuse_sum.z, 0.0f, 1.0f) * 255, MathUtil::Clamp(diffuse_sum.w, 0.0f, 1.0f) * 255) .Cast(), Math::MakeVec(MathUtil::Clamp(specular_sum.x, 0.0f, 1.0f) * 255, MathUtil::Clamp(specular_sum.y, 0.0f, 1.0f) * 255, MathUtil::Clamp(specular_sum.z, 0.0f, 1.0f) * 255, MathUtil::Clamp(specular_sum.w, 0.0f, 1.0f) * 255) .Cast()}; } MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 240)); /** * Helper function for ProcessTriangle with the "reversed" flag to allow for implementing * culling via recursion. */ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Vertex& v2, bool reversed = false) { const auto& regs = g_state.regs; MICROPROFILE_SCOPE(GPU_Rasterization); // vertex positions in rasterizer coordinates static auto FloatToFix = [](float24 flt) { // TODO: Rounding here is necessary to prevent garbage pixels at // triangle borders. Is it that the correct solution, though? return Fix12P4(static_cast(round(flt.ToFloat32() * 16.0f))); }; static auto ScreenToRasterizerCoordinates = [](const Math::Vec3& vec) { return Math::Vec3{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)}; }; Math::Vec3 vtxpos[3]{ScreenToRasterizerCoordinates(v0.screenpos), ScreenToRasterizerCoordinates(v1.screenpos), ScreenToRasterizerCoordinates(v2.screenpos)}; if (regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepAll) { // Make sure we always end up with a triangle wound counter-clockwise if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) { ProcessTriangleInternal(v0, v2, v1, true); return; } } else { if (!reversed && regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepClockWise) { // Reverse vertex order and use the CCW code path. ProcessTriangleInternal(v0, v2, v1, true); return; } // Cull away triangles which are wound clockwise. if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) return; } u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); // Convert the scissor box coordinates to 12.4 fixed point u16 scissor_x1 = (u16)(regs.rasterizer.scissor_test.x1 << 4); u16 scissor_y1 = (u16)(regs.rasterizer.scissor_test.y1 << 4); // x2,y2 have +1 added to cover the entire sub-pixel area u16 scissor_x2 = (u16)((regs.rasterizer.scissor_test.x2 + 1) << 4); u16 scissor_y2 = (u16)((regs.rasterizer.scissor_test.y2 + 1) << 4); if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Include) { // Calculate the new bounds min_x = std::max(min_x, scissor_x1); min_y = std::max(min_y, scissor_y1); max_x = std::min(max_x, scissor_x2); max_y = std::min(max_y, scissor_y2); } min_x &= Fix12P4::IntMask(); min_y &= Fix12P4::IntMask(); max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask()); max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask()); // Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not // drawn. Pixels on any other triangle border are drawn. This is implemented with three bias // values which are added to the barycentric coordinates w0, w1 and w2, respectively. // NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones... auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2& vtx, const Math::Vec2& line1, const Math::Vec2& line2) { if (line1.y == line2.y) { // just check if vertex is above us => bottom line parallel to x-axis return vtx.y < line1.y; } else { // check if vertex is on our left => right side // TODO: Not sure how likely this is to overflow return (int)vtx.x < (int)line1.x + ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / ((int)line2.y - (int)line1.y); } }; int bias0 = IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0; int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0; int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0; auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w); auto textures = regs.texturing.GetTextures(); auto tev_stages = regs.texturing.GetTevStages(); bool stencil_action_enable = g_state.regs.framebuffer.output_merger.stencil_test.enable && g_state.regs.framebuffer.framebuffer.depth_format == FramebufferRegs::DepthFormat::D24S8; const auto stencil_test = g_state.regs.framebuffer.output_merger.stencil_test; // Enter rasterization loop, starting at the center of the topleft bounding box corner. // TODO: Not sure if looping through x first might be faster for (u16 y = min_y + 8; y < max_y; y += 0x10) { for (u16 x = min_x + 8; x < max_x; x += 0x10) { // Do not process the pixel if it's inside the scissor box and the scissor mode is set // to Exclude if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Exclude) { if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2) continue; } // Calculate the barycentric coordinates w0, w1 and w2 int w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); int w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y}); int w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y}); int wsum = w0 + w1 + w2; // If current pixel is not covered by the current primitive if (w0 < 0 || w1 < 0 || w2 < 0) continue; auto baricentric_coordinates = Math::MakeVec(float24::FromFloat32(static_cast(w0)), float24::FromFloat32(static_cast(w1)), float24::FromFloat32(static_cast(w2))); float24 interpolated_w_inverse = float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates); // interpolated_z = z / w float interpolated_z_over_w = (v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 + v2.screenpos[2].ToFloat32() * w2) / wsum; // Not fully accurate. About 3 bits in precision are missing. // Z-Buffer (z / w * scale + offset) float depth_scale = float24::FromRaw(regs.rasterizer.viewport_depth_range).ToFloat32(); float depth_offset = float24::FromRaw(regs.rasterizer.viewport_depth_near_plane).ToFloat32(); float depth = interpolated_z_over_w * depth_scale + depth_offset; // Potentially switch to W-Buffer if (regs.rasterizer.depthmap_enable == Pica::RasterizerRegs::DepthBuffering::WBuffering) { // W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w) depth *= interpolated_w_inverse.ToFloat32() * wsum; } // Clamp the result depth = MathUtil::Clamp(depth, 0.0f, 1.0f); // Perspective correct attribute interpolation: // Attribute values cannot be calculated by simple linear interpolation since // they are not linear in screen space. For example, when interpolating a // texture coordinate across two vertices, something simple like // u = (u0*w0 + u1*w1)/(w0+w1) // will not work. However, the attribute value divided by the // clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear // in screenspace. Hence, we can linearly interpolate these two independently and // calculate the interpolated attribute by dividing the results. // I.e. // u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1) // one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1) // u = u_over_w / one_over_w // // The generalization to three vertices is straightforward in baricentric coordinates. auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) { auto attr_over_w = Math::MakeVec(attr0, attr1, attr2); float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates); return interpolated_attr_over_w * interpolated_w_inverse; }; Math::Vec4 primary_color{ (u8)( GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * 255), (u8)( GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * 255), (u8)( GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * 255), (u8)( GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255), }; Math::Quaternion normquat{ {GetInterpolatedAttribute(v0.quat.x, v1.quat.x, v2.quat.x).ToFloat32(), GetInterpolatedAttribute(v0.quat.y, v1.quat.y, v2.quat.y).ToFloat32(), GetInterpolatedAttribute(v0.quat.z, v1.quat.z, v2.quat.z).ToFloat32()}, GetInterpolatedAttribute(v0.quat.w, v1.quat.w, v2.quat.w).ToFloat32(), }; Math::Vec3 fragment_position{ GetInterpolatedAttribute(v0.view.x, v1.view.x, v2.view.x).ToFloat32(), GetInterpolatedAttribute(v0.view.y, v1.view.y, v2.view.y).ToFloat32(), GetInterpolatedAttribute(v0.view.z, v1.view.z, v2.view.z).ToFloat32()}; Math::Vec2 uv[3]; uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u()); uv[0].v() = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v()); uv[1].u() = GetInterpolatedAttribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u()); uv[1].v() = GetInterpolatedAttribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v()); uv[2].u() = GetInterpolatedAttribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u()); uv[2].v() = GetInterpolatedAttribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v()); Math::Vec4 texture_color[4]{}; for (int i = 0; i < 3; ++i) { const auto& texture = textures[i]; if (!texture.enabled) continue; DEBUG_ASSERT(0 != texture.config.address); int coordinate_i = (i == 2 && regs.texturing.main_config.texture2_use_coord1) ? 1 : i; float24 u = uv[coordinate_i].u(); float24 v = uv[coordinate_i].v(); // Only unit 0 respects the texturing type (according to 3DBrew) // TODO: Refactor so cubemaps and shadowmaps can be handled PAddr texture_address = texture.config.GetPhysicalAddress(); if (i == 0) { switch (texture.config.type) { case TexturingRegs::TextureConfig::Texture2D: break; case TexturingRegs::TextureConfig::TextureCube: { auto w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w); std::tie(u, v, texture_address) = ConvertCubeCoord(u, v, w, regs.texturing); break; } case TexturingRegs::TextureConfig::Projection2D: { auto tc0_w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w); u /= tc0_w; v /= tc0_w; break; } default: // TODO: Change to LOG_ERROR when more types are handled. LOG_DEBUG(HW_GPU, "Unhandled texture type %x", (int)texture.config.type); UNIMPLEMENTED(); break; } } int s = (int)(u * float24::FromFloat32(static_cast(texture.config.width))) .ToFloat32(); int t = (int)(v * float24::FromFloat32(static_cast(texture.config.height))) .ToFloat32(); bool use_border_s = false; bool use_border_t = false; if (texture.config.wrap_s == TexturingRegs::TextureConfig::ClampToBorder) { use_border_s = s < 0 || s >= static_cast(texture.config.width); } else if (texture.config.wrap_s == TexturingRegs::TextureConfig::ClampToBorder2) { use_border_s = s >= static_cast(texture.config.width); } if (texture.config.wrap_t == TexturingRegs::TextureConfig::ClampToBorder) { use_border_t = t < 0 || t >= static_cast(texture.config.height); } else if (texture.config.wrap_t == TexturingRegs::TextureConfig::ClampToBorder2) { use_border_t = t >= static_cast(texture.config.height); } if (use_border_s || use_border_t) { auto border_color = texture.config.border_color; texture_color[i] = {border_color.r, border_color.g, border_color.b, border_color.a}; } else { // Textures are laid out from bottom to top, hence we invert the t coordinate. // NOTE: This may not be the right place for the inversion. // TODO: Check if this applies to ETC textures, too. s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width); t = texture.config.height - 1 - GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height); const u8* texture_data = Memory::GetPhysicalPointer(texture_address); auto info = Texture::TextureInfo::FromPicaRegister(texture.config, texture.format); // TODO: Apply the min and mag filters to the texture texture_color[i] = Texture::LookupTexture(texture_data, s, t, info); #if PICA_DUMP_TEXTURES DebugUtils::DumpTexture(texture.config, texture_data); #endif } } // sample procedural texture if (regs.texturing.main_config.texture3_enable) { const auto& proctex_uv = uv[regs.texturing.main_config.texture3_coordinates]; texture_color[3] = ProcTex(proctex_uv.u().ToFloat32(), proctex_uv.v().ToFloat32(), g_state.regs.texturing, g_state.proctex); } // Texture environment - consists of 6 stages of color and alpha combining. // // Color combiners take three input color values from some source (e.g. interpolated // vertex color, texture color, previous stage, etc), perform some very simple // operations on each of them (e.g. inversion) and then calculate the output color // with some basic arithmetic. Alpha combiners can be configured separately but work // analogously. Math::Vec4 combiner_output; Math::Vec4 combiner_buffer = {0, 0, 0, 0}; Math::Vec4 next_combiner_buffer = { regs.texturing.tev_combiner_buffer_color.r, regs.texturing.tev_combiner_buffer_color.g, regs.texturing.tev_combiner_buffer_color.b, regs.texturing.tev_combiner_buffer_color.a, }; Math::Vec4 primary_fragment_color; Math::Vec4 secondary_fragment_color; std::tie(primary_fragment_color, secondary_fragment_color) = ComputeFragmentsColors(normquat, fragment_position); for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); ++tev_stage_index) { const auto& tev_stage = tev_stages[tev_stage_index]; using Source = TexturingRegs::TevStageConfig::Source; auto GetSource = [&](Source source) -> Math::Vec4 { switch (source) { case Source::PrimaryColor: return primary_color; case Source::PrimaryFragmentColor: return primary_fragment_color; case Source::SecondaryFragmentColor: return secondary_fragment_color; case Source::Texture0: return texture_color[0]; case Source::Texture1: return texture_color[1]; case Source::Texture2: return texture_color[2]; case Source::Texture3: return texture_color[3]; case Source::PreviousBuffer: return combiner_buffer; case Source::Constant: return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b, tev_stage.const_a}; case Source::Previous: return combiner_output; default: LOG_ERROR(HW_GPU, "Unknown color combiner source %d", (int)source); UNIMPLEMENTED(); return {0, 0, 0, 0}; } }; // color combiner // NOTE: Not sure if the alpha combiner might use the color output of the previous // stage as input. Hence, we currently don't directly write the result to // combiner_output.rgb(), but instead store it in a temporary variable until // alpha combining has been done. Math::Vec3 color_result[3] = { GetColorModifier(tev_stage.color_modifier1, GetSource(tev_stage.color_source1)), GetColorModifier(tev_stage.color_modifier2, GetSource(tev_stage.color_source2)), GetColorModifier(tev_stage.color_modifier3, GetSource(tev_stage.color_source3)), }; auto color_output = ColorCombine(tev_stage.color_op, color_result); u8 alpha_output; if (tev_stage.color_op == TexturingRegs::TevStageConfig::Operation::Dot3_RGBA) { // result of Dot3_RGBA operation is also placed to the alpha component alpha_output = color_output.x; } else { // alpha combiner std::array alpha_result = {{ GetAlphaModifier(tev_stage.alpha_modifier1, GetSource(tev_stage.alpha_source1)), GetAlphaModifier(tev_stage.alpha_modifier2, GetSource(tev_stage.alpha_source2)), GetAlphaModifier(tev_stage.alpha_modifier3, GetSource(tev_stage.alpha_source3)), }}; alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result); } combiner_output[0] = std::min((unsigned)255, color_output.r() * tev_stage.GetColorMultiplier()); combiner_output[1] = std::min((unsigned)255, color_output.g() * tev_stage.GetColorMultiplier()); combiner_output[2] = std::min((unsigned)255, color_output.b() * tev_stage.GetColorMultiplier()); combiner_output[3] = std::min((unsigned)255, alpha_output * tev_stage.GetAlphaMultiplier()); combiner_buffer = next_combiner_buffer; if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor( tev_stage_index)) { next_combiner_buffer.r() = combiner_output.r(); next_combiner_buffer.g() = combiner_output.g(); next_combiner_buffer.b() = combiner_output.b(); } if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha( tev_stage_index)) { next_combiner_buffer.a() = combiner_output.a(); } } const auto& output_merger = regs.framebuffer.output_merger; // TODO: Does alpha testing happen before or after stencil? if (output_merger.alpha_test.enable) { bool pass = false; switch (output_merger.alpha_test.func) { case FramebufferRegs::CompareFunc::Never: pass = false; break; case FramebufferRegs::CompareFunc::Always: pass = true; break; case FramebufferRegs::CompareFunc::Equal: pass = combiner_output.a() == output_merger.alpha_test.ref; break; case FramebufferRegs::CompareFunc::NotEqual: pass = combiner_output.a() != output_merger.alpha_test.ref; break; case FramebufferRegs::CompareFunc::LessThan: pass = combiner_output.a() < output_merger.alpha_test.ref; break; case FramebufferRegs::CompareFunc::LessThanOrEqual: pass = combiner_output.a() <= output_merger.alpha_test.ref; break; case FramebufferRegs::CompareFunc::GreaterThan: pass = combiner_output.a() > output_merger.alpha_test.ref; break; case FramebufferRegs::CompareFunc::GreaterThanOrEqual: pass = combiner_output.a() >= output_merger.alpha_test.ref; break; } if (!pass) continue; } // Apply fog combiner // Not fully accurate. We'd have to know what data type is used to // store the depth etc. Using float for now until we know more // about Pica datatypes if (regs.texturing.fog_mode == TexturingRegs::FogMode::Fog) { const Math::Vec3 fog_color = { static_cast(regs.texturing.fog_color.r.Value()), static_cast(regs.texturing.fog_color.g.Value()), static_cast(regs.texturing.fog_color.b.Value()), }; // Get index into fog LUT float fog_index; if (g_state.regs.texturing.fog_flip) { fog_index = (1.0f - depth) * 128.0f; } else { fog_index = depth * 128.0f; } // Generate clamped fog factor from LUT for given fog index float fog_i = MathUtil::Clamp(floorf(fog_index), 0.0f, 127.0f); float fog_f = fog_index - fog_i; const auto& fog_lut_entry = g_state.fog.lut[static_cast(fog_i)]; float fog_factor = fog_lut_entry.ToFloat() + fog_lut_entry.DiffToFloat() * fog_f; fog_factor = MathUtil::Clamp(fog_factor, 0.0f, 1.0f); // Blend the fog for (unsigned i = 0; i < 3; i++) { combiner_output[i] = static_cast(fog_factor * combiner_output[i] + (1.0f - fog_factor) * fog_color[i]); } } u8 old_stencil = 0; auto UpdateStencil = [stencil_test, x, y, &old_stencil](Pica::FramebufferRegs::StencilAction action) { u8 new_stencil = PerformStencilAction(action, old_stencil, stencil_test.reference_value); if (g_state.regs.framebuffer.framebuffer.allow_depth_stencil_write != 0) SetStencil(x >> 4, y >> 4, (new_stencil & stencil_test.write_mask) | (old_stencil & ~stencil_test.write_mask)); }; if (stencil_action_enable) { old_stencil = GetStencil(x >> 4, y >> 4); u8 dest = old_stencil & stencil_test.input_mask; u8 ref = stencil_test.reference_value & stencil_test.input_mask; bool pass = false; switch (stencil_test.func) { case FramebufferRegs::CompareFunc::Never: pass = false; break; case FramebufferRegs::CompareFunc::Always: pass = true; break; case FramebufferRegs::CompareFunc::Equal: pass = (ref == dest); break; case FramebufferRegs::CompareFunc::NotEqual: pass = (ref != dest); break; case FramebufferRegs::CompareFunc::LessThan: pass = (ref < dest); break; case FramebufferRegs::CompareFunc::LessThanOrEqual: pass = (ref <= dest); break; case FramebufferRegs::CompareFunc::GreaterThan: pass = (ref > dest); break; case FramebufferRegs::CompareFunc::GreaterThanOrEqual: pass = (ref >= dest); break; } if (!pass) { UpdateStencil(stencil_test.action_stencil_fail); continue; } } // Convert float to integer unsigned num_bits = FramebufferRegs::DepthBitsPerPixel(regs.framebuffer.framebuffer.depth_format); u32 z = (u32)(depth * ((1 << num_bits) - 1)); if (output_merger.depth_test_enable) { u32 ref_z = GetDepth(x >> 4, y >> 4); bool pass = false; switch (output_merger.depth_test_func) { case FramebufferRegs::CompareFunc::Never: pass = false; break; case FramebufferRegs::CompareFunc::Always: pass = true; break; case FramebufferRegs::CompareFunc::Equal: pass = z == ref_z; break; case FramebufferRegs::CompareFunc::NotEqual: pass = z != ref_z; break; case FramebufferRegs::CompareFunc::LessThan: pass = z < ref_z; break; case FramebufferRegs::CompareFunc::LessThanOrEqual: pass = z <= ref_z; break; case FramebufferRegs::CompareFunc::GreaterThan: pass = z > ref_z; break; case FramebufferRegs::CompareFunc::GreaterThanOrEqual: pass = z >= ref_z; break; } if (!pass) { if (stencil_action_enable) UpdateStencil(stencil_test.action_depth_fail); continue; } } if (regs.framebuffer.framebuffer.allow_depth_stencil_write != 0 && output_merger.depth_write_enable) { SetDepth(x >> 4, y >> 4, z); } // The stencil depth_pass action is executed even if depth testing is disabled if (stencil_action_enable) UpdateStencil(stencil_test.action_depth_pass); auto dest = GetPixel(x >> 4, y >> 4); Math::Vec4 blend_output = combiner_output; if (output_merger.alphablend_enable) { auto params = output_merger.alpha_blending; auto LookupFactor = [&](unsigned channel, FramebufferRegs::BlendFactor factor) -> u8 { DEBUG_ASSERT(channel < 4); const Math::Vec4 blend_const = { static_cast(output_merger.blend_const.r), static_cast(output_merger.blend_const.g), static_cast(output_merger.blend_const.b), static_cast(output_merger.blend_const.a), }; switch (factor) { case FramebufferRegs::BlendFactor::Zero: return 0; case FramebufferRegs::BlendFactor::One: return 255; case FramebufferRegs::BlendFactor::SourceColor: return combiner_output[channel]; case FramebufferRegs::BlendFactor::OneMinusSourceColor: return 255 - combiner_output[channel]; case FramebufferRegs::BlendFactor::DestColor: return dest[channel]; case FramebufferRegs::BlendFactor::OneMinusDestColor: return 255 - dest[channel]; case FramebufferRegs::BlendFactor::SourceAlpha: return combiner_output.a(); case FramebufferRegs::BlendFactor::OneMinusSourceAlpha: return 255 - combiner_output.a(); case FramebufferRegs::BlendFactor::DestAlpha: return dest.a(); case FramebufferRegs::BlendFactor::OneMinusDestAlpha: return 255 - dest.a(); case FramebufferRegs::BlendFactor::ConstantColor: return blend_const[channel]; case FramebufferRegs::BlendFactor::OneMinusConstantColor: return 255 - blend_const[channel]; case FramebufferRegs::BlendFactor::ConstantAlpha: return blend_const.a(); case FramebufferRegs::BlendFactor::OneMinusConstantAlpha: return 255 - blend_const.a(); case FramebufferRegs::BlendFactor::SourceAlphaSaturate: // Returns 1.0 for the alpha channel if (channel == 3) return 255; return std::min(combiner_output.a(), static_cast(255 - dest.a())); default: LOG_CRITICAL(HW_GPU, "Unknown blend factor %x", factor); UNIMPLEMENTED(); break; } return combiner_output[channel]; }; auto srcfactor = Math::MakeVec(LookupFactor(0, params.factor_source_rgb), LookupFactor(1, params.factor_source_rgb), LookupFactor(2, params.factor_source_rgb), LookupFactor(3, params.factor_source_a)); auto dstfactor = Math::MakeVec(LookupFactor(0, params.factor_dest_rgb), LookupFactor(1, params.factor_dest_rgb), LookupFactor(2, params.factor_dest_rgb), LookupFactor(3, params.factor_dest_a)); blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_rgb); blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_a) .a(); } else { blend_output = Math::MakeVec(LogicOp(combiner_output.r(), dest.r(), output_merger.logic_op), LogicOp(combiner_output.g(), dest.g(), output_merger.logic_op), LogicOp(combiner_output.b(), dest.b(), output_merger.logic_op), LogicOp(combiner_output.a(), dest.a(), output_merger.logic_op)); } const Math::Vec4 result = { output_merger.red_enable ? blend_output.r() : dest.r(), output_merger.green_enable ? blend_output.g() : dest.g(), output_merger.blue_enable ? blend_output.b() : dest.b(), output_merger.alpha_enable ? blend_output.a() : dest.a(), }; if (regs.framebuffer.framebuffer.allow_color_write != 0) DrawPixel(x >> 4, y >> 4, result); } } } void ProcessTriangle(const Vertex& v0, const Vertex& v1, const Vertex& v2) { ProcessTriangleInternal(v0, v1, v2); } } // namespace Rasterizer } // namespace Pica