// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/alignment.h" #include "common/assert.h" #include "core/memory.h" #include "video_core/gpu.h" #include "video_core/textures/decoders.h" #include "video_core/textures/texture.h" namespace Tegra::Texture { /** * This table represents the internal swizzle of a gob, * in format 16 bytes x 2 sector packing. * Calculates the offset of an (x, y) position within a swizzled texture. * Taken from the Tegra X1 Technical Reference Manual. pages 1187-1188 */ template struct alignas(64) SwizzleTable { static_assert(M * Align == 64, "Swizzle Table does not align to GOB"); constexpr SwizzleTable() { for (u32 y = 0; y < N; ++y) { for (u32 x = 0; x < M; ++x) { const u32 x2 = x * Align; values[y][x] = static_cast(((x2 % 64) / 32) * 256 + ((y % 8) / 2) * 64 + ((x2 % 32) / 16) * 32 + (y % 2) * 16 + (x2 % 16)); } } } const std::array& operator[](std::size_t index) const { return values[index]; } std::array, N> values{}; }; constexpr auto legacy_swizzle_table = SwizzleTable<8, 64, 1>(); constexpr auto fast_swizzle_table = SwizzleTable<8, 4, 16>(); static void LegacySwizzleData(u32 width, u32 height, u32 bytes_per_pixel, u32 out_bytes_per_pixel, u8* swizzled_data, u8* unswizzled_data, bool unswizzle, u32 block_height) { std::array data_ptrs; const std::size_t stride = width * bytes_per_pixel; const std::size_t gobs_in_x = 64; const std::size_t gobs_in_y = 8; const std::size_t gobs_size = gobs_in_x * gobs_in_y; const std::size_t image_width_in_gobs{(stride + gobs_in_x - 1) / gobs_in_x}; for (std::size_t y = 0; y < height; ++y) { const std::size_t gob_y_address = (y / (gobs_in_y * block_height)) * gobs_size * block_height * image_width_in_gobs + (y % (gobs_in_y * block_height) / gobs_in_y) * gobs_size; const auto& table = legacy_swizzle_table[y % gobs_in_y]; for (std::size_t x = 0; x < width; ++x) { const std::size_t gob_address = gob_y_address + (x * bytes_per_pixel / gobs_in_x) * gobs_size * block_height; const std::size_t x2 = x * bytes_per_pixel; const std::size_t swizzle_offset = gob_address + table[x2 % gobs_in_x]; const std::size_t pixel_index = (x + y * width) * out_bytes_per_pixel; data_ptrs[unswizzle] = swizzled_data + swizzle_offset; data_ptrs[!unswizzle] = unswizzled_data + pixel_index; std::memcpy(data_ptrs[0], data_ptrs[1], bytes_per_pixel); } } } static void FastSwizzleData(u32 width, u32 height, u32 bytes_per_pixel, u32 out_bytes_per_pixel, u8* swizzled_data, u8* unswizzled_data, bool unswizzle, u32 block_height) { std::array data_ptrs; const std::size_t stride{width * bytes_per_pixel}; const std::size_t gobs_in_x = 64; const std::size_t gobs_in_y = 8; const std::size_t gobs_size = gobs_in_x * gobs_in_y; const std::size_t image_width_in_gobs{(stride + gobs_in_x - 1) / gobs_in_x}; const std::size_t copy_size{16}; for (std::size_t y = 0; y < height; ++y) { const std::size_t initial_gob = (y / (gobs_in_y * block_height)) * gobs_size * block_height * image_width_in_gobs + (y % (gobs_in_y * block_height) / gobs_in_y) * gobs_size; const std::size_t pixel_base{y * width * out_bytes_per_pixel}; const auto& table = fast_swizzle_table[y % gobs_in_y]; for (std::size_t xb = 0; xb < stride; xb += copy_size) { const std::size_t gob_address{initial_gob + (xb / gobs_in_x) * gobs_size * block_height}; const std::size_t swizzle_offset{gob_address + table[(xb / 16) % 4]}; const std::size_t out_x = xb * out_bytes_per_pixel / bytes_per_pixel; const std::size_t pixel_index{out_x + pixel_base}; data_ptrs[unswizzle] = swizzled_data + swizzle_offset; data_ptrs[!unswizzle] = unswizzled_data + pixel_index; std::memcpy(data_ptrs[0], data_ptrs[1], copy_size); } } } void Fast3DProcessGobs(u8* swizzled_data, u8* unswizzled_data, bool unswizzle, const u32 x_start, const u32 y_start, const u32 z_start, const u32 x_end, const u32 y_end, const u32 z_end, const u32 tile_offset, const u32 xy_block_size, const u32 layer_z, const u32 stride_x, const u32 bytes_per_pixel, const u32 out_bytes_per_pixel) { std::array data_ptrs; u32 z_adress = tile_offset; const u32 x_startb = x_start * bytes_per_pixel; const u32 x_endb = x_end * bytes_per_pixel; const u32 copy_size = 16; const u32 gob_size = 64 * 8 * 1; for (u32 z = z_start; z < z_end; z++) { u32 y_adress = z_adress; u32 pixel_base = layer_z * z + y_start * stride_x; for (u32 y = y_start; y < y_end; y++) { const auto& table = fast_swizzle_table[y % 8]; for (u32 xb = x_startb; xb < x_endb; xb += copy_size) { const u32 swizzle_offset{y_adress + table[(xb / 16) % 4]}; const u32 out_x = xb * out_bytes_per_pixel / bytes_per_pixel; const u32 pixel_index{out_x + pixel_base}; data_ptrs[unswizzle] = swizzled_data + swizzle_offset; data_ptrs[!unswizzle] = unswizzled_data + pixel_index; std::memcpy(data_ptrs[0], data_ptrs[1], copy_size); } pixel_base += stride_x; if ((y + 1) % 8 == 0) y_adress += gob_size; } z_adress += xy_block_size; } } void Fast3DSwizzledData(u8* swizzled_data, u8* unswizzled_data, bool unswizzle, u32 width, u32 height, u32 depth, u32 bytes_per_pixel, u32 out_bytes_per_pixel, u32 block_height, u32 block_depth) { auto div_ceil = [](u32 x, u32 y) { return ((x + y - 1) / y); }; const u32 stride_x = width * out_bytes_per_pixel; const u32 layer_z = height * stride_x; const u32 gob_x_bytes = 64; const u32 gob_elements_x = gob_x_bytes / bytes_per_pixel; const u32 gob_elements_y = 8; const u32 gob_elements_z = 1; const u32 block_x_elements = gob_elements_x; const u32 block_y_elements = gob_elements_y * block_height; const u32 block_z_elements = gob_elements_z * block_depth; const u32 blocks_on_x = div_ceil(width, block_x_elements); const u32 blocks_on_y = div_ceil(height, block_y_elements); const u32 blocks_on_z = div_ceil(depth, block_z_elements); const u32 blocks = blocks_on_x * blocks_on_y * blocks_on_z; const u32 gob_size = 64 * 8 * 1; const u32 xy_block_size = gob_size * block_height; const u32 block_size = xy_block_size * block_depth; u32 tile_offset = 0; for (u32 zb = 0; zb < blocks_on_z; zb++) { const u32 z_start = zb * block_z_elements; const u32 z_end = std::min(depth, z_start + block_z_elements); for (u32 yb = 0; yb < blocks_on_y; yb++) { const u32 y_start = yb * block_y_elements; const u32 y_end = std::min(height, y_start + block_y_elements); for (u32 xb = 0; xb < blocks_on_x; xb++) { const u32 x_start = xb * block_x_elements; const u32 x_end = std::min(width, x_start + block_x_elements); Fast3DProcessGobs(swizzled_data, unswizzled_data, unswizzle, x_start, y_start, z_start, x_end, y_end, z_end, tile_offset, xy_block_size, layer_z, stride_x, bytes_per_pixel, out_bytes_per_pixel); tile_offset += block_size; } } } } void CopySwizzledData(u32 width, u32 height, u32 bytes_per_pixel, u32 out_bytes_per_pixel, u8* swizzled_data, u8* unswizzled_data, bool unswizzle, u32 block_height) { if (bytes_per_pixel % 3 != 0 && (width * bytes_per_pixel) % 16 == 0) { Fast3DSwizzledData(swizzled_data, unswizzled_data, unswizzle, width, height, 1U, bytes_per_pixel, out_bytes_per_pixel, block_height, 1U); } else { LegacySwizzleData(width, height, bytes_per_pixel, out_bytes_per_pixel, swizzled_data, unswizzled_data, unswizzle, block_height); } } u32 BytesPerPixel(TextureFormat format) { switch (format) { case TextureFormat::DXT1: case TextureFormat::DXN1: // In this case a 'pixel' actually refers to a 4x4 tile. return 8; case TextureFormat::DXT23: case TextureFormat::DXT45: case TextureFormat::DXN2: case TextureFormat::BC7U: case TextureFormat::BC6H_UF16: case TextureFormat::BC6H_SF16: // In this case a 'pixel' actually refers to a 4x4 tile. return 16; case TextureFormat::R32_G32_B32: return 12; case TextureFormat::ASTC_2D_4X4: case TextureFormat::ASTC_2D_8X8: case TextureFormat::A8R8G8B8: case TextureFormat::A2B10G10R10: case TextureFormat::BF10GF11RF11: case TextureFormat::R32: case TextureFormat::R16_G16: return 4; case TextureFormat::A1B5G5R5: case TextureFormat::B5G6R5: case TextureFormat::G8R8: case TextureFormat::R16: return 2; case TextureFormat::R8: return 1; case TextureFormat::R16_G16_B16_A16: return 8; case TextureFormat::R32_G32_B32_A32: return 16; case TextureFormat::R32_G32: return 8; default: UNIMPLEMENTED_MSG("Format not implemented"); break; } } std::vector UnswizzleTexture(VAddr address, u32 tile_size, u32 bytes_per_pixel, u32 width, u32 height, u32 block_height) { std::vector unswizzled_data(width * height * bytes_per_pixel); CopySwizzledData(width / tile_size, height / tile_size, bytes_per_pixel, bytes_per_pixel, Memory::GetPointer(address), unswizzled_data.data(), true, block_height); return unswizzled_data; } std::vector DecodeTexture(const std::vector& texture_data, TextureFormat format, u32 width, u32 height) { std::vector rgba_data; // TODO(Subv): Implement. switch (format) { case TextureFormat::DXT1: case TextureFormat::DXT23: case TextureFormat::DXT45: case TextureFormat::DXN1: case TextureFormat::DXN2: case TextureFormat::BC7U: case TextureFormat::BC6H_UF16: case TextureFormat::BC6H_SF16: case TextureFormat::ASTC_2D_4X4: case TextureFormat::ASTC_2D_8X8: case TextureFormat::A8R8G8B8: case TextureFormat::A2B10G10R10: case TextureFormat::A1B5G5R5: case TextureFormat::B5G6R5: case TextureFormat::R8: case TextureFormat::G8R8: case TextureFormat::BF10GF11RF11: case TextureFormat::R32_G32_B32_A32: case TextureFormat::R32_G32: case TextureFormat::R32: case TextureFormat::R16: case TextureFormat::R16_G16: case TextureFormat::R32_G32_B32: // TODO(Subv): For the time being just forward the same data without any decoding. rgba_data = texture_data; break; default: UNIMPLEMENTED_MSG("Format not implemented"); break; } return rgba_data; } std::size_t CalculateSize(bool tiled, u32 bytes_per_pixel, u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth) { if (tiled) { const u32 gobs_in_x = 64 / bytes_per_pixel; const u32 gobs_in_y = 8; const u32 gobs_in_z = 1; const u32 aligned_width = Common::AlignUp(width, gobs_in_x); const u32 aligned_height = Common::AlignUp(height, gobs_in_y * block_height); const u32 aligned_depth = Common::AlignUp(depth, gobs_in_z * block_depth); return aligned_width * aligned_height * aligned_depth * bytes_per_pixel; } else { return width * height * depth * bytes_per_pixel; } } } // namespace Tegra::Texture