#LyX 2.4 created this file. For more info see https://www.lyx.org/ \lyxformat 620 \begin_document \begin_header \save_transient_properties true \origin unavailable \textclass article \begin_preamble \usepackage{siunitx} \usepackage{pgfplots} \usepackage{listings} \usepackage{multicol} \sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}} \usepackage{amsmath} \usepackage{tikz} \newcommand{\udensdash}[1]{% \tikz[baseline=(todotted.base)]{ \node[inner sep=1pt,outer sep=0pt] (todotted) {#1}; \draw[densely dashed] (todotted.south west) -- (todotted.south east); }% }% \DeclareMathOperator{\Lin}{Lin} \DeclareMathOperator{\rang}{rang} \end_preamble \use_default_options true \begin_modules enumitem theorems-ams \end_modules \maintain_unincluded_children no \language slovene \language_package default \inputencoding auto-legacy \fontencoding auto \font_roman "default" "default" \font_sans "default" "default" \font_typewriter "default" "default" \font_math "auto" "auto" \font_default_family default \use_non_tex_fonts false \font_sc false \font_roman_osf false \font_sans_osf false \font_typewriter_osf false \font_sf_scale 100 100 \font_tt_scale 100 100 \use_microtype false \use_dash_ligatures true \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize default \spacing single \use_hyperref false \papersize default \use_geometry true \use_package amsmath 1 \use_package amssymb 1 \use_package cancel 1 \use_package esint 1 \use_package mathdots 1 \use_package mathtools 1 \use_package mhchem 1 \use_package stackrel 1 \use_package stmaryrd 1 \use_package undertilde 1 \cite_engine basic \cite_engine_type default \biblio_style plain \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \justification false \use_refstyle 1 \use_formatted_ref 0 \use_minted 0 \use_lineno 0 \index Index \shortcut idx \color #008000 \end_index \leftmargin 2cm \topmargin 2cm \rightmargin 2cm \bottommargin 2cm \headheight 2cm \headsep 2cm \footskip 1cm \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \is_math_indent 0 \math_numbering_side default \quotes_style german \dynamic_quotes 0 \papercolumns 1 \papersides 1 \paperpagestyle default \tablestyle default \tracking_changes false \output_changes false \change_bars false \postpone_fragile_content false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \docbook_table_output 0 \docbook_mathml_prefix 1 \end_header \begin_body \begin_layout Title Rešitev osme domače naloge Linearne Algebre \end_layout \begin_layout Author \noun on Anton Luka Šijanec \end_layout \begin_layout Date \begin_inset ERT status open \begin_layout Plain Layout \backslash today \end_layout \end_inset \end_layout \begin_layout Abstract Za boljšo preglednost sem svoje rešitve domače naloge prepisal na računalnik. Dokumentu sledi še rokopis. Naloge je izdelala asistentka Ajda Lemut. \end_layout \begin_layout Standard \begin_inset ERT status open \begin_layout Plain Layout \backslash newcommand \backslash euler{e} \end_layout \end_inset \end_layout \begin_layout Enumerate Dokaži, da je \begin_inset Formula $\left[\left(x,y,z\right),\left(u,v,w\right)\right]=2xu-yu-xv+2yv-zv-yw+zw$ \end_inset skalarni produkt in ugotovi, ali je \begin_inset Formula \[ A=\left[\begin{array}{ccc} 0 & 2 & -2\\ 0 & 1 & 0\\ -1 & 2 & -1 \end{array}\right] \] \end_inset normalna preslikava glede na \begin_inset Formula $\left[\cdot,\cdot\right]$ \end_inset . \end_layout \begin_deeper \begin_layout Paragraph Rešitev \end_layout \begin_layout Standard Predpostavljam polje \begin_inset Formula $\mathbb{R}$ \end_inset in vektorski prostor \begin_inset Formula $V=\mathbb{R}^{3}$ \end_inset , saj v kompleksnem to ni skalarni produkt (protiprimer pozitivne definitnosti je \begin_inset Formula $\left[\left(1,1,1+i\right),\left(1,1,1+i\right)\right]=2$ \end_inset ). \begin_inset Formula $\langle\cdot,\cdot\rangle:V\times V\to\mathbb{R}$ \end_inset je skalarni produkt, če zadošča naslednjim lastnostim. Dokažimo jih za \begin_inset Formula $\left[\cdot,\cdot\right]$ \end_inset . \end_layout \begin_layout Enumerate \begin_inset Formula $\forall v\in V:v\not=0\Rightarrow\langle v,v\rangle>0$ \end_inset \begin_inset Formula \[ \left[\left(x,y,z\right),\left(x,y,z\right)\right]=2x^{2}-2xy+2y^{2}-2yz+z^{2}=2\left(x^{2}-xy+y^{2}\right)-2yz+z^{2}= \] \end_inset \begin_inset Formula \[ =2\left(\left(x-\frac{y}{2}\right)^{2}+\frac{3y^{2}}{4}\right)-2yz+z^{2}=2\left(x-\frac{y}{2}\right)^{2}-\frac{3y^{2}}{4}-2yz+z^{2}= \] \end_inset \begin_inset Formula \[ =2\left(x-\frac{y}{2}\right)^{2}+\left(\frac{\sqrt{3}y}{\sqrt{2}}-\frac{z\sqrt{2}}{\sqrt{3}}\right)^{2}+\frac{z^{2}}{3}\geq0 \] \end_inset Sedaj poiščimo ničle. Fiksirajmo poljubna \begin_inset Formula $y$ \end_inset , \begin_inset Formula $z$ \end_inset in uporabimo obrazec za ničle kvadratne enačbe: \begin_inset Formula \[ x_{1,2}=\frac{2y\pm\sqrt{4y^{2}-8\left(2y^{2}-2yz+z^{2}\right)}}{4} \] \end_inset Iščemo pozitivne diskriminante. \begin_inset Formula \[ 4y^{2}-8\left(2y^{2}-2yz+z^{2}\right)=-12y^{2}+16yz-8z^{2}=4 \] \end_inset Fiksirajmo poljuben \begin_inset Formula $z$ \end_inset . Vodilni koeficient kvadratne enačbe je negativen. Uporabimo obrazec: \begin_inset Formula \[ y_{1,2}=\frac{-16z\pm\sqrt{256z^{2}-384z^{2}=-128z^{2}}}{-24} \] \end_inset Diskriminanta je nenegativna \begin_inset Formula $\Leftrightarrow z=0$ \end_inset . Torej \begin_inset Formula $z=0$ \end_inset , zato \begin_inset Formula $y=0$ \end_inset in tudi \begin_inset Formula $x=0$ \end_inset glede na obrazce. Skalarni produkt je res pozitivno definiten. \end_layout \begin_layout Enumerate \begin_inset Formula $\forall v,u\in V:\langle v,u\rangle=\langle u,v\rangle$ \end_inset \begin_inset Formula \[ \left[\left(u,v,w\right),\left(x,y,z\right)\right]=\left[\left(x,y,z\right),\left(u,v,w\right)\right] \] \end_inset \begin_inset Formula \[ 2ux-vx-uy-2vy-wy-vz+wz=2xu-yu-xv+2yv-zv-vz+wz \] \end_inset \begin_inset Formula \[ 0=0 \] \end_inset Skalarni produkt je res simetričen. \end_layout \begin_layout Enumerate \begin_inset Formula $\forall\alpha_{1},\alpha_{2}\in\mathbb{C}\forall u_{1},u_{2},v\in V:\langle\alpha_{1}v_{1}+\alpha_{2}v_{2},v\rangle=\alpha_{1}\langle u_{1},v\rangle+\alpha_{2}\langle u_{2},v\rangle$ \end_inset \begin_inset Formula \[ \left[\alpha\left(\left(x_{1},y_{1},z_{1}\right)+\left(x_{2},y_{2},z_{2}\right)\right),\left(u,v,w\right)\right]= \] \end_inset \begin_inset Formula \[ =2\alpha\left(x_{1}+x_{2}\right)u-\alpha\left(y_{1}+y_{2}\right)u-\alpha\left(x_{1}+x_{2}\right)v+2\alpha\left(y_{1}+y_{2}\right)v-\alpha\left(z_{1}+z_{2}\right)v-\alpha\left(y_{1}+y_{2}\right)w+\alpha\left(z_{1}+z_{2}\right)w= \] \end_inset \begin_inset Formula \[ =\alpha\left(2\left(x_{1}+x_{2}\right)u-\left(y_{1}+y_{2}\right)u-\left(x_{1}+x_{2}\right)v+2\left(y_{1}+y_{2}\right)v-\left(z_{1}+z_{2}\right)v-\left(y_{1}+y_{2}\right)w+\left(z_{1}+z_{2}\right)w\right)= \] \end_inset \begin_inset Formula \[ =\alpha\left(2x_{1}u+2x_{2}u-y_{1}u-y_{2}u-x_{1}v-x_{2}v+2y_{1}v+2y_{2}v-z_{1}v-z_{2}v-y_{1}w-y_{2}w+z_{1}w+z_{2}w\right)= \] \end_inset \begin_inset Formula \[ =\alpha\left(2x_{1}u-y_{1}u-x_{1}v+2y_{1}v-z_{1}v-y_{1}w+z_{1}w\right)+\alpha\left(2x_{2}u-y_{2}u-x_{2}v+2y_{2}v-z_{2}v-y_{2}w+z_{2}w\right)= \] \end_inset \begin_inset Formula \[ =\alpha\left[\left(x_{1},y_{1},z_{1}\right),\left(u,v,w\right)\right]+\alpha\left[\left(x_{2},y_{2},z_{2}\right),\left(u,v,w\right)\right] \] \end_inset Skalarni produkt je res homogen in linearen v prvem faktorju. \end_layout \begin_layout Standard Po definiciji \begin_inset Formula $A$ \end_inset normalna \begin_inset Formula $\Leftrightarrow A^{*}A=AA^{*}$ \end_inset . Izračunajmo torej matriko \begin_inset Formula $A^{*}$ \end_inset . \end_layout \begin_layout Itemize Na predavanjih 2024-05-08 smo dokazali, da za vsak skalarni produkt \begin_inset Formula $\left[u,v\right]$ \end_inset obstaja taka pozitivno definitna matrika \begin_inset Formula $M$ \end_inset , da velja \begin_inset Formula $\left[u,v\right]=\langle u,Mv\rangle=u^{*}v$ \end_inset , kjer je \begin_inset Formula $\langle\cdot,\cdot\rangle$ \end_inset standardni skalarni produkt. \end_layout \begin_layout Itemize Na predavanjih 2024-04-17 smo dokazali, da \begin_inset Formula $\left[L^{*}\right]_{C\leftarrow B}=\left(\left[L\right]_{B\leftarrow C}\right)^{*}$ \end_inset , torej \begin_inset Formula $PLP^{-1}=\left(P^{-1}L^{*}P\right)^{*}$ \end_inset . \end_layout \begin_layout Itemize Izpeljimo predpis za \begin_inset Formula $A^{*}$ \end_inset pri podani matriki \begin_inset Formula $A$ \end_inset in skalarnem produktu \begin_inset Formula $\left[\cdot,\cdot\right]$ \end_inset s pripadajočo matriko \begin_inset Formula $M$ \end_inset : \begin_inset Formula \[ \left[A^{*}x,y\right]=\left[x,Ay\right]\text{, uporabimo prvo točko:} \] \end_inset \begin_inset Formula \[ \left\langle A^{*}x,My\right\rangle =\left\langle x,MAy\right\rangle \text{, pišimo \ensuremath{z=My}:} \] \end_inset \begin_inset Formula \[ \left\langle A^{*}x,z\right\rangle =\left\langle x,MAM^{-1}z\right\rangle \text{, upoštevajmo drugo točko:} \] \end_inset \begin_inset Formula \[ \left\langle A^{*}x,z\right\rangle =\left\langle M^{-1}A^{\square}Mx,z\right\rangle \text{, kjer je \ensuremath{A^{\square}} adjungacija \ensuremath{A} pri standardnem skalarnem produktu} \] \end_inset \begin_inset Formula \[ \Rightarrow A^{*}=M^{-1}A^{\square}M=M^{-1}\overline{A}^{T}M\overset{A\in M\left(\mathbb{R}\right)}{=}M^{-1}A^{T}M \] \end_inset \end_layout \begin_layout Itemize Potrebujemo še matriko skalarnega produkta. \begin_inset Formula \[ \left\langle \left(x,y,z\right),M\left(u,v,w\right)\right\rangle =\left[\begin{array}{ccc} x & y & z\end{array}\right]\left[\begin{array}{ccc} m_{11} & m_{12} & m_{13}\\ m_{21} & m_{22} & m_{23}\\ m_{31} & m_{32} & m_{33} \end{array}\right]\left[\begin{array}{c} u\\ v\\ w \end{array}\right]=\left[\begin{array}{ccc} x & y & z\end{array}\right]\left[\begin{array}{c} um_{11}+vm_{12}+wm_{13}\\ um_{21}+vm_{22}+wm_{23}\\ um_{31}+vm_{32}+wm_{33} \end{array}\right]= \] \end_inset \begin_inset Formula \[ =\begin{array}{ccccc} & xum_{11} & xvm_{12} & xwm_{13} & +\\ + & yum_{21} & yvm_{22} & ywm_{23} & +\\ + & zum_{31} & zvm_{32} & zwm_{33} \end{array}=\left[\left(x,y,z\right),\left(u,v,w\right)\right]=2xu-yu-xv+2yv-zv-yw+zw\text{, torej} \] \end_inset \begin_inset Formula \[ M=\left[\begin{array}{ccc} 2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 1 \end{array}\right]\text{, njen inverz pa je }M^{-1}=\left[\begin{array}{ccc} 1 & 1 & 1\\ 1 & 2 & 2\\ 1 & 2 & 3 \end{array}\right] \] \end_inset \end_layout \begin_layout Itemize Izračunamo \begin_inset Formula $A^{*}$ \end_inset po formuli \begin_inset Formula $A^{*}=M^{-1}A^{T}M$ \end_inset in preverimo \begin_inset Formula $A^{*}A=AA^{*}$ \end_inset : \begin_inset Formula \[ A^{*}=\left[\begin{array}{ccc} 1 & 1 & 1\\ 1 & 2 & 2\\ 1 & 2 & 3 \end{array}\right]\left[\begin{array}{ccc} 0 & 0 & -1\\ 2 & 1 & 2\\ -2 & 0 & -1 \end{array}\right]\left[\begin{array}{ccc} 2 & -1 & 0\\ -1 & 2 & -1\\ 0 & -1 & 1 \end{array}\right]=\left[\begin{array}{ccc} -1 & 2 & -1\\ -2 & 3 & -1\\ -6 & 6 & -2 \end{array}\right] \] \end_inset \begin_inset Formula \[ A^{*}A=\left[\begin{array}{ccc} 1 & -2 & 3\\ 1 & -3 & 5\\ 2 & -10 & 14 \end{array}\right]\not=\left[\begin{array}{ccc} 8 & -6 & 2\\ -2 & 3 & -1\\ 3 & -2 & 1 \end{array}\right]=AA^{*} \] \end_inset \begin_inset Formula $A$ \end_inset ni normala matrika. \end_layout \begin_layout Itemize Da preverimo pravilnost matrike \begin_inset Formula $A^{*}$ \end_inset , lahko napravimo preizkus: \begin_inset Float figure placement H alignment document wide false sideways false status open \begin_layout Plain Layout \begin_inset Graphics filename sage.png width 100col% \end_inset \begin_inset Caption Standard \begin_layout Plain Layout Preizkus s programom SageMath. \end_layout \end_inset \end_layout \end_inset \end_layout \end_deeper \begin_layout Enumerate Pokaži \begin_inset Formula $A:V\to V$ \end_inset je normalna \begin_inset Formula $\Leftrightarrow AA^{*}-A^{*}A$ \end_inset je pozitivno semidefinitna. \end_layout \begin_deeper \begin_layout Paragraph Rešitev \end_layout \begin_layout Itemize Definiciji: \end_layout \begin_deeper \begin_layout Itemize \begin_inset Formula $A:V\to V$ \end_inset je normalna \begin_inset Formula $\Leftrightarrow A^{*}A=A^{*}$ \end_inset \end_layout \begin_layout Itemize \begin_inset Formula $A:V\to V$ \end_inset je pozitivno semidefinitna \begin_inset Formula $\Leftrightarrow A=A^{*}\wedge\forall v\in V:\left\langle Av,v\right\rangle \geq0$ \end_inset \end_layout \end_deeper \begin_layout Itemize \begin_inset Formula $\left(\Rightarrow\right)$ \end_inset Po predpostavki velja \begin_inset Formula $AA^{*}=A^{*}A\Rightarrow AA^{*}-A^{*}A=0$ \end_inset . \begin_inset Formula \[ AA^{*}-A^{*}A\overset{?}{=}\left(AA^{*}-A^{*}A\right)^{*}\Leftrightarrow0=0^{*} \] \end_inset \begin_inset Formula \[ \left\langle \left(AA^{*}-A^{*}A\right)v,v\right\rangle =\left\langle 0v,v\right\rangle \overset{\text{homogenost}}{=}0\left\langle v,v\right\rangle =0\geq0 \] \end_inset \end_layout \begin_layout Itemize \begin_inset Formula $\left(\Leftarrow\right)$ \end_inset Po predpostavki velja \begin_inset Formula $\left(AA^{*}-A^{*}A\right)^{*}=AA^{*}-A^{*}A$ \end_inset \series bold TODO TODO TODO XXX XXX XXX XXX XXX XXX TODO TODO TODO \end_layout \end_deeper \begin_layout Enumerate Naj bo \begin_inset Formula $w_{1}=\left(1,1,1,1\right)$ \end_inset , \begin_inset Formula $w_{2}=\left(3,3,-1,-1\right)$ \end_inset in \begin_inset Formula $y=\left(6,0,2,0\right)$ \end_inset . \end_layout \begin_deeper \begin_layout Enumerate Poišči ortonormirano bazo za \begin_inset Formula $W=\Lin\left\{ w_{1},w_{2}\right\} $ \end_inset glede na standardni skalarni produkt. \end_layout \begin_layout Enumerate Izrazi \begin_inset Formula $y$ \end_inset kot vsoto vektorja iz \begin_inset Formula $W$ \end_inset in vektorja iz \begin_inset Formula $W^{\perp}$ \end_inset . \end_layout \begin_layout Paragraph Rešitev \end_layout \begin_layout Enumerate Uporabimo Gram-Schmidtov postopek in sproti normiramo bazne vektorje: \begin_inset Formula \[ v_{1}=\left(1,1,1,1\right)/2=\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right) \] \end_inset \begin_inset Formula \[ \tilde{v_{2}}=\left(3,3,-1,-1\right)-\left\langle \left(3,3,-1,-1\right),v_{1}\right\rangle v_{1}=\left(3,3,-1,-1\right)-\left\langle \left(3,3,-1,-1\right),\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)\right\rangle \left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)= \] \end_inset \begin_inset Formula \[ =\left(3,3,-1,-1\right)-2\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)=\left(2,2,-2,-2\right),\quad\quad\quad v_{2}=\tilde{v_{2}}/\left|\left|\tilde{v_{2}}\right|\right|=\text{\ensuremath{\tilde{v_{2}}/4}}=\left(\frac{1}{2},\frac{1}{2},\frac{-1}{2},\frac{-1}{2}\right) \] \end_inset Baza za \begin_inset Formula $W$ \end_inset je \begin_inset Formula $B=\left\{ v_{1},v_{2}\right\} =\left\{ \left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right),\left(\frac{1}{2},\frac{1}{2},\frac{-1}{2},\frac{-1}{2}\right)\right\} $ \end_inset . \end_layout \begin_layout Enumerate Dopolnimo \begin_inset Formula $B$ \end_inset do baze \begin_inset Formula $\mathbb{R}^{4}$ \end_inset . Dopolnitev \begin_inset Formula $\left\{ u_{1},u_{2}\right\} $ \end_inset bo ortonormirana baza za \begin_inset Formula $W^{\perp}$ \end_inset , nato uporabimo Fourierov razvoj po dopolnjeni bazi. Bazo podprostora dopolnimo tako, da rešimo sistem enačb. \begin_inset Formula \[ \left\langle \left(x_{1},y_{1},z_{1},w_{1}\right),\left(3,3,-1,-1\right)\right\rangle =0\quad\quad\quad\left\langle \left(x_{2},y_{2},z_{2},w_{2}\right),\left(1,1,1,1\right)\right\rangle =0 \] \end_inset \begin_inset Formula \[ \left[\begin{array}{cccc} 1 & 1 & 1 & 1\\ 3 & 3 & -1 & -1 \end{array}\right]\sim\left[\begin{array}{cccc} 1 & 1 & 0 & 0\\ 0 & 0 & 1 & 1 \end{array}\right]\Rightarrow x=-y,\quad z=-w\Rightarrow\tilde{u_{1}}=\left(1,-1,0,0\right),\quad\tilde{u_{2}}=\left(0,0,1,-1\right) \] \end_inset \begin_inset Formula \[ u_{1}=\tilde{u_{1}}/\left|\left|\tilde{u_{1}}\right|\right|=\left(\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}},0,0\right)\quad\quad\quad u_{2}=\tilde{u_{2}}/\left|\left|\tilde{u}_{2}\right|\right|=\left(0,0,\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}}\right) \] \end_inset \end_layout \begin_layout Standard \begin_inset Formula \[ y=\sum_{i=1}^{n}\frac{\left\langle y,v_{i}\right\rangle }{\left\langle v_{i},v_{i}\right\rangle }v_{i}=\left\langle \left(6,0,2,0\right),\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)\right\rangle v_{1}+\left\langle \left(6,0,2,0\right),\left(\frac{1}{2},\frac{1}{2},\frac{-1}{2},\frac{-1}{2}\right)\right\rangle v_{2}+ \] \end_inset \begin_inset Formula \[ +\left\langle \left(6,0,2,0\right),\left(\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}},0,0\right)\right\rangle u_{1}+\left\langle \left(6,0,2,0\right),\left(0,0,\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}},\right)\right\rangle u_{2}=4v_{1}+2v_{2}+\frac{6}{\sqrt{2}}u_{1}+\frac{2}{\sqrt{2}}u_{2}= \] \end_inset \begin_inset Formula \[ =\left(2,2,2,2\right)+\left(1,1,-1,-1\right)+\left(3,-3,0,0\right)+\left(0,0,1,-1\right)=\left(3,3,1,1\right)\in W+\left(3,-3,1,-1\right)\in W^{\perp} \] \end_inset \end_layout \end_deeper \begin_layout Enumerate Poišči singularni razcep matrike \begin_inset Formula \[ A=\left[\begin{array}{ccc} 1 & 0 & 0\\ 0 & -2 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right]\text{.} \] \end_inset \end_layout \begin_deeper \begin_layout Paragraph Rešitev \end_layout \begin_layout Itemize Iščemo \begin_inset Formula $U$ \end_inset , \begin_inset Formula $\Sigma$ \end_inset in \begin_inset Formula $V$ \end_inset , da velja \begin_inset Formula $A=U\Sigma V^{*}$ \end_inset . \end_layout \begin_layout Itemize Diagonalci \begin_inset Formula $\Sigma$ \end_inset so singularne vrednosti \begin_inset Formula $A$ \end_inset . Singularne vrednosti \begin_inset Formula $A$ \end_inset so koreni lastnih vrednosti \begin_inset Formula $A^{*}A$ \end_inset , torej \begin_inset Formula $\sigma_{1}=2$ \end_inset , \begin_inset Formula $\sigma_{2}=1$ \end_inset , \begin_inset Formula $\sigma_{3}=0$ \end_inset . \begin_inset Formula \[ A^{*}A=\left[\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & -2 & 0 & 0\\ 0 & 0 & 0 & 0 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & 0\\ 0 & -2 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 0 \end{array}\right] \] \end_inset \begin_inset Formula \[ \Sigma=\left[\begin{array}{ccc} \sigma_{1} & 0 & 0\\ 0 & \sigma_{2} & 0\\ 0 & 0 & \sigma_{3}\\ 0 & 0 & 0 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right] \] \end_inset \end_layout \begin_layout Itemize Stolpci \begin_inset Formula $V$ \end_inset so ortonormirana baza jedra \begin_inset Formula $A^{*}A-\sigma^{2}I$ \end_inset za vse singularne vrednosti \begin_inset Formula $\sigma$ \end_inset . \begin_inset Formula \[ A^{*}A-4I=\left[\begin{array}{ccc} -3 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right]\Rightarrow x=0\Rightarrow v_{1}=\left(0,1,0\right) \] \end_inset \begin_inset Formula \[ A^{*}A-1I=\left[\begin{array}{ccc} 0 & 0 & 0\\ 0 & 3 & 0\\ 0 & 0 & 0 \end{array}\right]\Rightarrow y=0\Rightarrow v_{2}=\left(1,0,0\right) \] \end_inset \begin_inset Formula \[ A^{*}A-0I=\left[\begin{array}{ccc} 1 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 0 \end{array}\right]\Rightarrow x=y=0\Rightarrow v_{3}=\left(0,0,1\right) \] \end_inset \begin_inset Formula \[ V=\left[\begin{array}{ccc} v_{1} & v_{2} & v_{3}\end{array}\right]=\left[\begin{array}{ccc} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{array}\right] \] \end_inset \end_layout \begin_layout Itemize Stolpci \begin_inset Formula $U$ \end_inset so ortonormirana baza in velja \begin_inset Formula $\forall i\in\left\{ 1..\rang A\right\} :u_{i}=\sigma_{i}^{-1}Av_{i}$ \end_inset . Stolpične vektorje \begin_inset Formula $v_{\rang A+1},\dots,v_{m}$ \end_inset najdemo tako, da dopolnimo \begin_inset Formula $v_{1},\dots,v_{\rang A}$ \end_inset do ONB. \begin_inset Formula \[ U=\left[\begin{array}{cccc} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{array}\right] \] \end_inset \end_layout \begin_layout Itemize Dobljene matrike zmnožimo, s čimer potrdimo veljavnost singularnega razcepa: \begin_inset Formula \[ U\Sigma V^{*}=\left[\begin{array}{cccc} 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right]\left[\begin{array}{ccc} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{array}\right]=\left[\begin{array}{ccc} 1 & 0 & 0\\ 0 & -2 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right]=A \] \end_inset \end_layout \end_deeper \begin_layout Standard Rokopisi, ki sledijo, naj služijo le kot dokaz samostojnega reševanja. Zavedam se namreč njihovega neličnega izgleda. \end_layout \begin_layout Standard \begin_inset External template PDFPages filename /mnt/slu/shramba/upload/www/d/1ladn8a.jpg \end_inset \begin_inset External template PDFPages filename /mnt/slu/shramba/upload/www/d/1ladn8b.jpg \end_inset \begin_inset External template PDFPages filename /mnt/slu/shramba/upload/www/d/1ladn8c.jpg \end_inset \begin_inset External template PDFPages filename /mnt/slu/shramba/upload/www/d/3ladn8.jpg \end_inset \end_layout \begin_layout Standard \begin_inset External template PDFPages filename /mnt/slu/shramba/upload/www/d/4ladn8.jpg \end_inset \end_layout \end_body \end_document