summaryrefslogtreecommitdiffstats
path: root/crypto/lollipop/cryptfs.c
diff options
context:
space:
mode:
Diffstat (limited to 'crypto/lollipop/cryptfs.c')
-rw-r--r--crypto/lollipop/cryptfs.c3620
1 files changed, 3620 insertions, 0 deletions
diff --git a/crypto/lollipop/cryptfs.c b/crypto/lollipop/cryptfs.c
new file mode 100644
index 000000000..630fb0ee3
--- /dev/null
+++ b/crypto/lollipop/cryptfs.c
@@ -0,0 +1,3620 @@
+/*
+ * Copyright (C) 2010 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* TO DO:
+ * 1. Perhaps keep several copies of the encrypted key, in case something
+ * goes horribly wrong?
+ *
+ */
+
+#include <sys/types.h>
+#include <sys/wait.h>
+#include <sys/stat.h>
+#include <ctype.h>
+#include <fcntl.h>
+#include <inttypes.h>
+#include <unistd.h>
+#include <stdio.h>
+#include <sys/ioctl.h>
+#include <linux/dm-ioctl.h>
+#include <libgen.h>
+#include <stdlib.h>
+#include <sys/param.h>
+#include <string.h>
+#include <sys/mount.h>
+#include <openssl/evp.h>
+#include <errno.h>
+#include <ext4.h>
+#include <linux/kdev_t.h>
+#include <fs_mgr.h>
+#include <time.h>
+#include "cryptfs.h"
+#define LOG_TAG "Cryptfs"
+#include "cutils/log.h"
+#include "cutils/properties.h"
+#include "cutils/android_reboot.h"
+#include "hardware_legacy/power.h"
+#include <logwrap/logwrap.h>
+//#include "VolumeManager.h"
+//#include "VoldUtil.h"
+#include "crypto_scrypt.h"
+#include "ext4_utils.h"
+#include "f2fs_sparseblock.h"
+//#include "CheckBattery.h"
+//#include "Process.h"
+
+#include <hardware/keymaster.h>
+
+#define UNUSED __attribute__((unused))
+
+#define UNUSED __attribute__((unused))
+
+#define DM_CRYPT_BUF_SIZE 4096
+
+#define HASH_COUNT 2000
+#define KEY_LEN_BYTES 16
+#define IV_LEN_BYTES 16
+
+#define KEY_IN_FOOTER "footer"
+
+// "default_password" encoded into hex (d=0x64 etc)
+#define DEFAULT_PASSWORD "64656661756c745f70617373776f7264"
+
+#define EXT4_FS 1
+#define F2FS_FS 2
+
+#define TABLE_LOAD_RETRIES 10
+
+#define RSA_KEY_SIZE 2048
+#define RSA_KEY_SIZE_BYTES (RSA_KEY_SIZE / 8)
+#define RSA_EXPONENT 0x10001
+
+#define RETRY_MOUNT_ATTEMPTS 10
+#define RETRY_MOUNT_DELAY_SECONDS 1
+
+char *me = "cryptfs";
+
+static unsigned char saved_master_key[KEY_LEN_BYTES];
+static char *saved_mount_point;
+static int master_key_saved = 0;
+static struct crypt_persist_data *persist_data = NULL;
+
+static int keymaster_init(keymaster_device_t **keymaster_dev)
+{
+ int rc;
+
+ const hw_module_t* mod;
+ rc = hw_get_module_by_class(KEYSTORE_HARDWARE_MODULE_ID, NULL, &mod);
+ if (rc) {
+ printf("could not find any keystore module\n");
+ goto out;
+ }
+
+ rc = keymaster_open(mod, keymaster_dev);
+ if (rc) {
+ printf("could not open keymaster device in %s (%s)\n",
+ KEYSTORE_HARDWARE_MODULE_ID, strerror(-rc));
+ goto out;
+ }
+
+ return 0;
+
+out:
+ *keymaster_dev = NULL;
+ return rc;
+}
+
+/* Should we use keymaster? */
+static int keymaster_check_compatibility()
+{
+ keymaster_device_t *keymaster_dev = 0;
+ int rc = 0;
+
+ if (keymaster_init(&keymaster_dev)) {
+ printf("Failed to init keymaster\n");
+ rc = -1;
+ goto out;
+ }
+
+ printf("keymaster version is %d\n", keymaster_dev->common.module->module_api_version);
+
+ if (keymaster_dev->common.module->module_api_version
+ < KEYMASTER_MODULE_API_VERSION_0_3) {
+ rc = 0;
+ goto out;
+ }
+
+ if (keymaster_dev->flags & KEYMASTER_BLOBS_ARE_STANDALONE) {
+ rc = 1;
+ }
+
+out:
+ keymaster_close(keymaster_dev);
+ return rc;
+}
+
+/* Create a new keymaster key and store it in this footer */
+static int keymaster_create_key(struct crypt_mnt_ftr *ftr)
+{
+ uint8_t* key = 0;
+ keymaster_device_t *keymaster_dev = 0;
+
+ if (keymaster_init(&keymaster_dev)) {
+ printf("Failed to init keymaster\n");
+ return -1;
+ }
+
+ int rc = 0;
+
+ keymaster_rsa_keygen_params_t params;
+ memset(&params, '\0', sizeof(params));
+ params.public_exponent = RSA_EXPONENT;
+ params.modulus_size = RSA_KEY_SIZE;
+
+ size_t key_size;
+ if (keymaster_dev->generate_keypair(keymaster_dev, TYPE_RSA, &params,
+ &key, &key_size)) {
+ printf("Failed to generate keypair\n");
+ rc = -1;
+ goto out;
+ }
+
+ if (key_size > KEYMASTER_BLOB_SIZE) {
+ printf("Keymaster key too large for crypto footer\n");
+ rc = -1;
+ goto out;
+ }
+
+ memcpy(ftr->keymaster_blob, key, key_size);
+ ftr->keymaster_blob_size = key_size;
+
+out:
+ keymaster_close(keymaster_dev);
+ free(key);
+ return rc;
+}
+
+/* This signs the given object using the keymaster key. */
+static int keymaster_sign_object(struct crypt_mnt_ftr *ftr,
+ const unsigned char *object,
+ const size_t object_size,
+ unsigned char **signature,
+ size_t *signature_size)
+{
+ int rc = 0;
+ keymaster_device_t *keymaster_dev = 0;
+ if (keymaster_init(&keymaster_dev)) {
+ printf("Failed to init keymaster\n");
+ return -1;
+ }
+
+ /* We currently set the digest type to DIGEST_NONE because it's the
+ * only supported value for keymaster. A similar issue exists with
+ * PADDING_NONE. Long term both of these should likely change.
+ */
+ keymaster_rsa_sign_params_t params;
+ params.digest_type = DIGEST_NONE;
+ params.padding_type = PADDING_NONE;
+
+ unsigned char to_sign[RSA_KEY_SIZE_BYTES];
+ size_t to_sign_size = sizeof(to_sign);
+ memset(to_sign, 0, RSA_KEY_SIZE_BYTES);
+
+ // To sign a message with RSA, the message must satisfy two
+ // constraints:
+ //
+ // 1. The message, when interpreted as a big-endian numeric value, must
+ // be strictly less than the public modulus of the RSA key. Note
+ // that because the most significant bit of the public modulus is
+ // guaranteed to be 1 (else it's an (n-1)-bit key, not an n-bit
+ // key), an n-bit message with most significant bit 0 always
+ // satisfies this requirement.
+ //
+ // 2. The message must have the same length in bits as the public
+ // modulus of the RSA key. This requirement isn't mathematically
+ // necessary, but is necessary to ensure consistency in
+ // implementations.
+ switch (ftr->kdf_type) {
+ case KDF_SCRYPT_KEYMASTER_UNPADDED:
+ // This is broken: It produces a message which is shorter than
+ // the public modulus, failing criterion 2.
+ memcpy(to_sign, object, object_size);
+ to_sign_size = object_size;
+ printf("Signing unpadded object\n");
+ break;
+ case KDF_SCRYPT_KEYMASTER_BADLY_PADDED:
+ // This is broken: Since the value of object is uniformly
+ // distributed, it produces a message that is larger than the
+ // public modulus with probability 0.25.
+ memcpy(to_sign, object, min(RSA_KEY_SIZE_BYTES, object_size));
+ printf("Signing end-padded object\n");
+ break;
+ case KDF_SCRYPT_KEYMASTER:
+ // This ensures the most significant byte of the signed message
+ // is zero. We could have zero-padded to the left instead, but
+ // this approach is slightly more robust against changes in
+ // object size. However, it's still broken (but not unusably
+ // so) because we really should be using a proper RSA padding
+ // function, such as OAEP.
+ //
+ // TODO(paullawrence): When keymaster 0.4 is available, change
+ // this to use the padding options it provides.
+ memcpy(to_sign + 1, object, min(RSA_KEY_SIZE_BYTES - 1, object_size));
+ printf("Signing safely-padded object\n");
+ break;
+ default:
+ printf("Unknown KDF type %d\n", ftr->kdf_type);
+ return -1;
+ }
+
+ rc = keymaster_dev->sign_data(keymaster_dev,
+ &params,
+ ftr->keymaster_blob,
+ ftr->keymaster_blob_size,
+ to_sign,
+ to_sign_size,
+ signature,
+ signature_size);
+
+ keymaster_close(keymaster_dev);
+ return rc;
+}
+
+/* Store password when userdata is successfully decrypted and mounted.
+ * Cleared by cryptfs_clear_password
+ *
+ * To avoid a double prompt at boot, we need to store the CryptKeeper
+ * password and pass it to KeyGuard, which uses it to unlock KeyStore.
+ * Since the entire framework is torn down and rebuilt after encryption,
+ * we have to use a daemon or similar to store the password. Since vold
+ * is secured against IPC except from system processes, it seems a reasonable
+ * place to store this.
+ *
+ * password should be cleared once it has been used.
+ *
+ * password is aged out after password_max_age_seconds seconds.
+ */
+static char* password = 0;
+static int password_expiry_time = 0;
+static const int password_max_age_seconds = 60;
+
+struct fstab *fstab;
+
+enum RebootType {reboot, recovery, shutdown};
+static void cryptfs_reboot(enum RebootType rt)
+{
+ switch(rt) {
+ case reboot:
+ property_set(ANDROID_RB_PROPERTY, "reboot");
+ break;
+
+ case recovery:
+ property_set(ANDROID_RB_PROPERTY, "reboot,recovery");
+ break;
+
+ case shutdown:
+ property_set(ANDROID_RB_PROPERTY, "shutdown");
+ break;
+ }
+
+ sleep(20);
+
+ /* Shouldn't get here, reboot should happen before sleep times out */
+ return;
+}
+
+static void ioctl_init(struct dm_ioctl *io, size_t dataSize, const char *name, unsigned flags)
+{
+ memset(io, 0, dataSize);
+ io->data_size = dataSize;
+ io->data_start = sizeof(struct dm_ioctl);
+ io->version[0] = 4;
+ io->version[1] = 0;
+ io->version[2] = 0;
+ io->flags = flags;
+ if (name) {
+ strncpy(io->name, name, sizeof(io->name));
+ }
+}
+
+/**
+ * Gets the default device scrypt parameters for key derivation time tuning.
+ * The parameters should lead to about one second derivation time for the
+ * given device.
+ */
+static void get_device_scrypt_params(struct crypt_mnt_ftr *ftr) {
+ const int default_params[] = SCRYPT_DEFAULTS;
+ int params[] = SCRYPT_DEFAULTS;
+ char paramstr[PROPERTY_VALUE_MAX];
+ char *token;
+ char *saveptr;
+ int i;
+
+ property_get(SCRYPT_PROP, paramstr, "");
+ if (paramstr[0] != '\0') {
+ /*
+ * The token we're looking for should be three integers separated by
+ * colons (e.g., "12:8:1"). Scan the property to make sure it matches.
+ */
+ for (i = 0, token = strtok_r(paramstr, ":", &saveptr);
+ token != NULL && i < 3;
+ i++, token = strtok_r(NULL, ":", &saveptr)) {
+ char *endptr;
+ params[i] = strtol(token, &endptr, 10);
+
+ /*
+ * Check that there was a valid number and it's 8-bit. If not,
+ * break out and the end check will take the default values.
+ */
+ if ((*token == '\0') || (*endptr != '\0') || params[i] < 0 || params[i] > 255) {
+ break;
+ }
+ }
+
+ /*
+ * If there were not enough tokens or a token was malformed (not an
+ * integer), it will end up here and the default parameters can be
+ * taken.
+ */
+ if ((i != 3) || (token != NULL)) {
+ printf("bad scrypt parameters '%s' should be like '12:8:1'; using defaults", paramstr);
+ memcpy(params, default_params, sizeof(params));
+ }
+ }
+
+ ftr->N_factor = params[0];
+ ftr->r_factor = params[1];
+ ftr->p_factor = params[2];
+}
+
+static unsigned int get_fs_size(char *dev)
+{
+ int fd, block_size;
+ struct ext4_super_block sb;
+ off64_t len;
+
+ if ((fd = open(dev, O_RDONLY)) < 0) {
+ printf("Cannot open device to get filesystem size ");
+ return 0;
+ }
+
+ if (lseek64(fd, 1024, SEEK_SET) < 0) {
+ printf("Cannot seek to superblock");
+ return 0;
+ }
+
+ if (read(fd, &sb, sizeof(sb)) != sizeof(sb)) {
+ printf("Cannot read superblock");
+ return 0;
+ }
+
+ close(fd);
+
+ if (le32_to_cpu(sb.s_magic) != EXT4_SUPER_MAGIC) {
+ printf("Not a valid ext4 superblock");
+ return 0;
+ }
+ block_size = 1024 << sb.s_log_block_size;
+ /* compute length in bytes */
+ len = ( ((off64_t)sb.s_blocks_count_hi << 32) + sb.s_blocks_count_lo) * block_size;
+
+ /* return length in sectors */
+ return (unsigned int) (len / 512);
+}
+
+static unsigned int get_blkdev_size(int fd)
+{
+ unsigned int nr_sec;
+
+ if ( (ioctl(fd, BLKGETSIZE, &nr_sec)) == -1) {
+ nr_sec = 0;
+ }
+
+ return nr_sec;
+}
+
+static int get_crypt_ftr_info(char **metadata_fname, off64_t *off)
+{
+ static int cached_data = 0;
+ static off64_t cached_off = 0;
+ static char cached_metadata_fname[PROPERTY_VALUE_MAX] = "";
+ int fd;
+ char key_loc[PROPERTY_VALUE_MAX];
+ char real_blkdev[PROPERTY_VALUE_MAX];
+ unsigned int nr_sec;
+ int rc = -1;
+
+ if (!cached_data) {
+ fs_mgr_get_crypt_info(fstab, key_loc, real_blkdev, sizeof(key_loc));
+ printf("get_crypt_ftr_info crypto key location: '%s'\n", key_loc);
+ if (!strcmp(key_loc, KEY_IN_FOOTER)) {
+ if ( (fd = open(real_blkdev, O_RDWR)) < 0) {
+ printf("Cannot open real block device %s\n", real_blkdev);
+ return -1;
+ }
+
+ if ((nr_sec = get_blkdev_size(fd))) {
+ /* If it's an encrypted Android partition, the last 16 Kbytes contain the
+ * encryption info footer and key, and plenty of bytes to spare for future
+ * growth.
+ */
+ strlcpy(cached_metadata_fname, real_blkdev, sizeof(cached_metadata_fname));
+ cached_off = ((off64_t)nr_sec * 512) - CRYPT_FOOTER_OFFSET;
+ cached_data = 1;
+ } else {
+ printf("Cannot get size of block device %s\n", real_blkdev);
+ }
+ close(fd);
+ } else {
+ strlcpy(cached_metadata_fname, key_loc, sizeof(cached_metadata_fname));
+ cached_off = 0;
+ cached_data = 1;
+ }
+ }
+
+ if (cached_data) {
+ if (metadata_fname) {
+ *metadata_fname = cached_metadata_fname;
+ }
+ if (off) {
+ *off = cached_off;
+ }
+ rc = 0;
+ }
+
+ return rc;
+}
+
+/* key or salt can be NULL, in which case just skip writing that value. Useful to
+ * update the failed mount count but not change the key.
+ */
+static int put_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr)
+{
+ printf("TWRP NOT putting crypt footer and key\n");
+ return 0;
+ int fd;
+ unsigned int nr_sec, cnt;
+ /* starting_off is set to the SEEK_SET offset
+ * where the crypto structure starts
+ */
+ off64_t starting_off;
+ int rc = -1;
+ char *fname = NULL;
+ struct stat statbuf;
+
+ if (get_crypt_ftr_info(&fname, &starting_off)) {
+ printf("Unable to get crypt_ftr_info\n");
+ return -1;
+ }
+ if (fname[0] != '/') {
+ printf("Unexpected value for crypto key location\n");
+ return -1;
+ }
+ if ( (fd = open(fname, O_RDWR | O_CREAT, 0600)) < 0) {
+ printf("Cannot open footer file %s for put\n", fname);
+ return -1;
+ }
+
+ /* Seek to the start of the crypt footer */
+ if (lseek64(fd, starting_off, SEEK_SET) == -1) {
+ printf("Cannot seek to real block device footer\n");
+ goto errout;
+ }
+
+ if ((cnt = write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
+ printf("Cannot write real block device footer\n");
+ goto errout;
+ }
+
+ fstat(fd, &statbuf);
+ /* If the keys are kept on a raw block device, do not try to truncate it. */
+ if (S_ISREG(statbuf.st_mode)) {
+ if (ftruncate(fd, 0x4000)) {
+ printf("Cannot set footer file size\n");
+ goto errout;
+ }
+ }
+
+ /* Success! */
+ rc = 0;
+
+errout:
+ close(fd);
+ return rc;
+
+}
+
+static inline int unix_read(int fd, void* buff, int len)
+{
+ return TEMP_FAILURE_RETRY(read(fd, buff, len));
+}
+
+static inline int unix_write(int fd, const void* buff, int len)
+{
+ return TEMP_FAILURE_RETRY(write(fd, buff, len));
+}
+
+static void init_empty_persist_data(struct crypt_persist_data *pdata, int len)
+{
+ memset(pdata, 0, len);
+ pdata->persist_magic = PERSIST_DATA_MAGIC;
+ pdata->persist_valid_entries = 0;
+}
+
+/* A routine to update the passed in crypt_ftr to the lastest version.
+ * fd is open read/write on the device that holds the crypto footer and persistent
+ * data, crypt_ftr is a pointer to the struct to be updated, and offset is the
+ * absolute offset to the start of the crypt_mnt_ftr on the passed in fd.
+ */
+static void upgrade_crypt_ftr(int fd, struct crypt_mnt_ftr *crypt_ftr, off64_t offset)
+{
+ int orig_major = crypt_ftr->major_version;
+ int orig_minor = crypt_ftr->minor_version;
+printf("TWRP NOT upgrading crypto footer\n");
+return; // do not upgrade in recovery
+ if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 0)) {
+ struct crypt_persist_data *pdata;
+ off64_t pdata_offset = offset + CRYPT_FOOTER_TO_PERSIST_OFFSET;
+
+ printf("upgrading crypto footer to 1.1");
+
+ pdata = malloc(CRYPT_PERSIST_DATA_SIZE);
+ if (pdata == NULL) {
+ printf("Cannot allocate persisent data\n");
+ return;
+ }
+ memset(pdata, 0, CRYPT_PERSIST_DATA_SIZE);
+
+ /* Need to initialize the persistent data area */
+ if (lseek64(fd, pdata_offset, SEEK_SET) == -1) {
+ printf("Cannot seek to persisent data offset\n");
+ return;
+ }
+ /* Write all zeros to the first copy, making it invalid */
+ unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE);
+
+ /* Write a valid but empty structure to the second copy */
+ init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
+ unix_write(fd, pdata, CRYPT_PERSIST_DATA_SIZE);
+
+ /* Update the footer */
+ crypt_ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE;
+ crypt_ftr->persist_data_offset[0] = pdata_offset;
+ crypt_ftr->persist_data_offset[1] = pdata_offset + CRYPT_PERSIST_DATA_SIZE;
+ crypt_ftr->minor_version = 1;
+ }
+
+ if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 1)) {
+ printf("upgrading crypto footer to 1.2");
+ /* But keep the old kdf_type.
+ * It will get updated later to KDF_SCRYPT after the password has been verified.
+ */
+ crypt_ftr->kdf_type = KDF_PBKDF2;
+ get_device_scrypt_params(crypt_ftr);
+ crypt_ftr->minor_version = 2;
+ }
+
+ if ((crypt_ftr->major_version == 1) && (crypt_ftr->minor_version == 2)) {
+ printf("upgrading crypto footer to 1.3");
+ crypt_ftr->crypt_type = CRYPT_TYPE_PASSWORD;
+ crypt_ftr->minor_version = 3;
+ }
+
+ if ((orig_major != crypt_ftr->major_version) || (orig_minor != crypt_ftr->minor_version)) {
+ if (lseek64(fd, offset, SEEK_SET) == -1) {
+ printf("Cannot seek to crypt footer\n");
+ return;
+ }
+ unix_write(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr));
+ }
+}
+
+
+static int get_crypt_ftr_and_key(struct crypt_mnt_ftr *crypt_ftr)
+{
+ int fd;
+ unsigned int nr_sec, cnt;
+ off64_t starting_off;
+ int rc = -1;
+ char *fname = NULL;
+ struct stat statbuf;
+
+ if (get_crypt_ftr_info(&fname, &starting_off)) {
+ printf("Unable to get crypt_ftr_info\n");
+ return -1;
+ }
+ if (fname[0] != '/') {
+ printf("Unexpected value for crypto key location\n");
+ return -1;
+ }
+ if ( (fd = open(fname, O_RDWR)) < 0) {
+ printf("Cannot open footer file %s for get\n", fname);
+ return -1;
+ }
+
+ /* Make sure it's 16 Kbytes in length */
+ fstat(fd, &statbuf);
+ if (S_ISREG(statbuf.st_mode) && (statbuf.st_size != 0x4000)) {
+ printf("footer file %s is not the expected size!\n", fname);
+ goto errout;
+ }
+
+ /* Seek to the start of the crypt footer */
+ if (lseek64(fd, starting_off, SEEK_SET) == -1) {
+ printf("Cannot seek to real block device footer\n");
+ goto errout;
+ }
+
+ if ( (cnt = read(fd, crypt_ftr, sizeof(struct crypt_mnt_ftr))) != sizeof(struct crypt_mnt_ftr)) {
+ printf("Cannot read real block device footer\n");
+ goto errout;
+ }
+
+ if (crypt_ftr->magic != CRYPT_MNT_MAGIC) {
+ printf("Bad magic for real block device %s\n", fname);
+ goto errout;
+ }
+
+ if (crypt_ftr->major_version != CURRENT_MAJOR_VERSION) {
+ printf("Cannot understand major version %d real block device footer; expected %d\n",
+ crypt_ftr->major_version, CURRENT_MAJOR_VERSION);
+ goto errout;
+ }
+
+ if (crypt_ftr->minor_version > CURRENT_MINOR_VERSION) {
+ printf("Warning: crypto footer minor version %d, expected <= %d, continuing...\n",
+ crypt_ftr->minor_version, CURRENT_MINOR_VERSION);
+ }
+
+ /* If this is a verion 1.0 crypt_ftr, make it a 1.1 crypt footer, and update the
+ * copy on disk before returning.
+ */
+ if (crypt_ftr->minor_version < CURRENT_MINOR_VERSION) {
+ upgrade_crypt_ftr(fd, crypt_ftr, starting_off);
+ }
+
+ /* Success! */
+ rc = 0;
+
+errout:
+ close(fd);
+ return rc;
+}
+
+static int validate_persistent_data_storage(struct crypt_mnt_ftr *crypt_ftr)
+{
+ if (crypt_ftr->persist_data_offset[0] + crypt_ftr->persist_data_size >
+ crypt_ftr->persist_data_offset[1]) {
+ printf("Crypt_ftr persist data regions overlap");
+ return -1;
+ }
+
+ if (crypt_ftr->persist_data_offset[0] >= crypt_ftr->persist_data_offset[1]) {
+ printf("Crypt_ftr persist data region 0 starts after region 1");
+ return -1;
+ }
+
+ if (((crypt_ftr->persist_data_offset[1] + crypt_ftr->persist_data_size) -
+ (crypt_ftr->persist_data_offset[0] - CRYPT_FOOTER_TO_PERSIST_OFFSET)) >
+ CRYPT_FOOTER_OFFSET) {
+ printf("Persistent data extends past crypto footer");
+ return -1;
+ }
+
+ return 0;
+}
+
+static int load_persistent_data(void)
+{
+ struct crypt_mnt_ftr crypt_ftr;
+ struct crypt_persist_data *pdata = NULL;
+ char encrypted_state[PROPERTY_VALUE_MAX];
+ char *fname;
+ int found = 0;
+ int fd;
+ int ret;
+ int i;
+
+ if (persist_data) {
+ /* Nothing to do, we've already loaded or initialized it */
+ return 0;
+ }
+
+
+ /* If not encrypted, just allocate an empty table and initialize it */
+ property_get("ro.crypto.state", encrypted_state, "");
+ if (strcmp(encrypted_state, "encrypted") ) {
+ pdata = malloc(CRYPT_PERSIST_DATA_SIZE);
+ if (pdata) {
+ init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
+ persist_data = pdata;
+ return 0;
+ }
+ return -1;
+ }
+
+ if(get_crypt_ftr_and_key(&crypt_ftr)) {
+ return -1;
+ }
+
+ if ((crypt_ftr.major_version < 1)
+ || (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) {
+ printf("Crypt_ftr version doesn't support persistent data");
+ return -1;
+ }
+
+ if (get_crypt_ftr_info(&fname, NULL)) {
+ return -1;
+ }
+
+ ret = validate_persistent_data_storage(&crypt_ftr);
+ if (ret) {
+ return -1;
+ }
+
+ fd = open(fname, O_RDONLY);
+ if (fd < 0) {
+ printf("Cannot open %s metadata file", fname);
+ return -1;
+ }
+
+ if (persist_data == NULL) {
+ pdata = malloc(crypt_ftr.persist_data_size);
+ if (pdata == NULL) {
+ printf("Cannot allocate memory for persistent data");
+ goto err;
+ }
+ }
+
+ for (i = 0; i < 2; i++) {
+ if (lseek64(fd, crypt_ftr.persist_data_offset[i], SEEK_SET) < 0) {
+ printf("Cannot seek to read persistent data on %s", fname);
+ goto err2;
+ }
+ if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0){
+ printf("Error reading persistent data on iteration %d", i);
+ goto err2;
+ }
+ if (pdata->persist_magic == PERSIST_DATA_MAGIC) {
+ found = 1;
+ break;
+ }
+ }
+
+ if (!found) {
+ printf("Could not find valid persistent data, creating");
+ init_empty_persist_data(pdata, crypt_ftr.persist_data_size);
+ }
+
+ /* Success */
+ persist_data = pdata;
+ close(fd);
+ return 0;
+
+err2:
+ free(pdata);
+
+err:
+ close(fd);
+ return -1;
+}
+
+static int save_persistent_data(void)
+{
+ struct crypt_mnt_ftr crypt_ftr;
+ struct crypt_persist_data *pdata;
+ char *fname;
+ off64_t write_offset;
+ off64_t erase_offset;
+ int found = 0;
+ int fd;
+ int ret;
+
+ if (persist_data == NULL) {
+ printf("No persistent data to save");
+ return -1;
+ }
+
+ if(get_crypt_ftr_and_key(&crypt_ftr)) {
+ return -1;
+ }
+
+ if ((crypt_ftr.major_version < 1)
+ || (crypt_ftr.major_version == 1 && crypt_ftr.minor_version < 1)) {
+ printf("Crypt_ftr version doesn't support persistent data");
+ return -1;
+ }
+
+ ret = validate_persistent_data_storage(&crypt_ftr);
+ if (ret) {
+ return -1;
+ }
+
+ if (get_crypt_ftr_info(&fname, NULL)) {
+ return -1;
+ }
+
+ fd = open(fname, O_RDWR);
+ if (fd < 0) {
+ printf("Cannot open %s metadata file", fname);
+ return -1;
+ }
+
+ pdata = malloc(crypt_ftr.persist_data_size);
+ if (pdata == NULL) {
+ printf("Cannot allocate persistant data");
+ goto err;
+ }
+
+ if (lseek64(fd, crypt_ftr.persist_data_offset[0], SEEK_SET) < 0) {
+ printf("Cannot seek to read persistent data on %s", fname);
+ goto err2;
+ }
+
+ if (unix_read(fd, pdata, crypt_ftr.persist_data_size) < 0) {
+ printf("Error reading persistent data before save");
+ goto err2;
+ }
+
+ if (pdata->persist_magic == PERSIST_DATA_MAGIC) {
+ /* The first copy is the curent valid copy, so write to
+ * the second copy and erase this one */
+ write_offset = crypt_ftr.persist_data_offset[1];
+ erase_offset = crypt_ftr.persist_data_offset[0];
+ } else {
+ /* The second copy must be the valid copy, so write to
+ * the first copy, and erase the second */
+ write_offset = crypt_ftr.persist_data_offset[0];
+ erase_offset = crypt_ftr.persist_data_offset[1];
+ }
+
+ /* Write the new copy first, if successful, then erase the old copy */
+ if (lseek(fd, write_offset, SEEK_SET) < 0) {
+ printf("Cannot seek to write persistent data");
+ goto err2;
+ }
+ if (unix_write(fd, persist_data, crypt_ftr.persist_data_size) ==
+ (int) crypt_ftr.persist_data_size) {
+ if (lseek(fd, erase_offset, SEEK_SET) < 0) {
+ printf("Cannot seek to erase previous persistent data");
+ goto err2;
+ }
+ fsync(fd);
+ memset(pdata, 0, crypt_ftr.persist_data_size);
+ if (unix_write(fd, pdata, crypt_ftr.persist_data_size) !=
+ (int) crypt_ftr.persist_data_size) {
+ printf("Cannot write to erase previous persistent data");
+ goto err2;
+ }
+ fsync(fd);
+ } else {
+ printf("Cannot write to save persistent data");
+ goto err2;
+ }
+
+ /* Success */
+ free(pdata);
+ close(fd);
+ return 0;
+
+err2:
+ free(pdata);
+err:
+ close(fd);
+ return -1;
+}
+
+static int hexdigit (char c)
+{
+ if (c >= '0' && c <= '9') return c - '0';
+ c = tolower(c);
+ if (c >= 'a' && c <= 'f') return c - 'a' + 10;
+ return -1;
+}
+
+static unsigned char* convert_hex_ascii_to_key(const char* master_key_ascii,
+ unsigned int* out_keysize)
+{
+ unsigned int i;
+ *out_keysize = 0;
+
+ size_t size = strlen (master_key_ascii);
+ if (size % 2) {
+ printf("Trying to convert ascii string of odd length");
+ return NULL;
+ }
+
+ unsigned char* master_key = (unsigned char*) malloc(size / 2);
+ if (master_key == 0) {
+ printf("Cannot allocate");
+ return NULL;
+ }
+
+ for (i = 0; i < size; i += 2) {
+ int high_nibble = hexdigit (master_key_ascii[i]);
+ int low_nibble = hexdigit (master_key_ascii[i + 1]);
+
+ if(high_nibble < 0 || low_nibble < 0) {
+ printf("Invalid hex string");
+ free (master_key);
+ return NULL;
+ }
+
+ master_key[*out_keysize] = high_nibble * 16 + low_nibble;
+ (*out_keysize)++;
+ }
+
+ return master_key;
+}
+
+/* Convert a binary key of specified length into an ascii hex string equivalent,
+ * without the leading 0x and with null termination
+ */
+static void convert_key_to_hex_ascii(unsigned char *master_key, unsigned int keysize,
+ char *master_key_ascii)
+{
+ unsigned int i, a;
+ unsigned char nibble;
+
+ for (i=0, a=0; i<keysize; i++, a+=2) {
+ /* For each byte, write out two ascii hex digits */
+ nibble = (master_key[i] >> 4) & 0xf;
+ master_key_ascii[a] = nibble + (nibble > 9 ? 0x37 : 0x30);
+
+ nibble = master_key[i] & 0xf;
+ master_key_ascii[a+1] = nibble + (nibble > 9 ? 0x37 : 0x30);
+ }
+
+ /* Add the null termination */
+ master_key_ascii[a] = '\0';
+
+}
+
+static int load_crypto_mapping_table(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key,
+ char *real_blk_name, const char *name, int fd,
+ char *extra_params)
+{
+ char buffer[DM_CRYPT_BUF_SIZE];
+ struct dm_ioctl *io;
+ struct dm_target_spec *tgt;
+ char *crypt_params;
+ char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
+ int i;
+
+ io = (struct dm_ioctl *) buffer;
+
+ /* Load the mapping table for this device */
+ tgt = (struct dm_target_spec *) &buffer[sizeof(struct dm_ioctl)];
+
+ ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
+ io->target_count = 1;
+ tgt->status = 0;
+ tgt->sector_start = 0;
+ tgt->length = crypt_ftr->fs_size;
+ strcpy(tgt->target_type, "crypt");
+
+ crypt_params = buffer + sizeof(struct dm_ioctl) + sizeof(struct dm_target_spec);
+ convert_key_to_hex_ascii(master_key, crypt_ftr->keysize, master_key_ascii);
+ sprintf(crypt_params, "%s %s 0 %s 0 %s", crypt_ftr->crypto_type_name,
+ master_key_ascii, real_blk_name, extra_params);
+ crypt_params += strlen(crypt_params) + 1;
+ crypt_params = (char *) (((unsigned long)crypt_params + 7) & ~8); /* Align to an 8 byte boundary */
+ tgt->next = crypt_params - buffer;
+
+ for (i = 0; i < TABLE_LOAD_RETRIES; i++) {
+ if (! ioctl(fd, DM_TABLE_LOAD, io)) {
+ break;
+ }
+ usleep(500000);
+ }
+
+ if (i == TABLE_LOAD_RETRIES) {
+ /* We failed to load the table, return an error */
+ return -1;
+ } else {
+ return i + 1;
+ }
+}
+
+
+static int get_dm_crypt_version(int fd, const char *name, int *version)
+{
+ char buffer[DM_CRYPT_BUF_SIZE];
+ struct dm_ioctl *io;
+ struct dm_target_versions *v;
+ int i;
+
+ io = (struct dm_ioctl *) buffer;
+
+ ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
+
+ if (ioctl(fd, DM_LIST_VERSIONS, io)) {
+ return -1;
+ }
+
+ /* Iterate over the returned versions, looking for name of "crypt".
+ * When found, get and return the version.
+ */
+ v = (struct dm_target_versions *) &buffer[sizeof(struct dm_ioctl)];
+ while (v->next) {
+ if (! strcmp(v->name, "crypt")) {
+ /* We found the crypt driver, return the version, and get out */
+ version[0] = v->version[0];
+ version[1] = v->version[1];
+ version[2] = v->version[2];
+ return 0;
+ }
+ v = (struct dm_target_versions *)(((char *)v) + v->next);
+ }
+
+ return -1;
+}
+
+static int create_crypto_blk_dev(struct crypt_mnt_ftr *crypt_ftr, unsigned char *master_key,
+ char *real_blk_name, char *crypto_blk_name, const char *name)
+{
+ char buffer[DM_CRYPT_BUF_SIZE];
+ char master_key_ascii[129]; /* Large enough to hold 512 bit key and null */
+ char *crypt_params;
+ struct dm_ioctl *io;
+ struct dm_target_spec *tgt;
+ unsigned int minor;
+ int fd;
+ int i;
+ int retval = -1;
+ int version[3];
+ char *extra_params;
+ int load_count;
+
+ if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
+ printf("Cannot open device-mapper\n");
+ goto errout;
+ }
+
+ io = (struct dm_ioctl *) buffer;
+
+ ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
+ if (ioctl(fd, DM_DEV_CREATE, io)) {
+ printf("Cannot create dm-crypt device\n");
+ goto errout;
+ }
+
+ /* Get the device status, in particular, the name of it's device file */
+ ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
+ if (ioctl(fd, DM_DEV_STATUS, io)) {
+ printf("Cannot retrieve dm-crypt device status\n");
+ goto errout;
+ }
+ minor = (io->dev & 0xff) | ((io->dev >> 12) & 0xfff00);
+ snprintf(crypto_blk_name, MAXPATHLEN, "/dev/block/dm-%u", minor);
+
+ extra_params = "";
+ if (! get_dm_crypt_version(fd, name, version)) {
+ /* Support for allow_discards was added in version 1.11.0 */
+ if ((version[0] >= 2) ||
+ ((version[0] == 1) && (version[1] >= 11))) {
+ extra_params = "1 allow_discards";
+ printf("Enabling support for allow_discards in dmcrypt.\n");
+ }
+ }
+
+ load_count = load_crypto_mapping_table(crypt_ftr, master_key, real_blk_name, name,
+ fd, extra_params);
+ if (load_count < 0) {
+ printf("Cannot load dm-crypt mapping table.\n");
+ goto errout;
+ } else if (load_count > 1) {
+ printf("Took %d tries to load dmcrypt table.\n", load_count);
+ }
+
+ /* Resume this device to activate it */
+ ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
+
+ if (ioctl(fd, DM_DEV_SUSPEND, io)) {
+ printf("Cannot resume the dm-crypt device\n");
+ goto errout;
+ }
+
+ /* We made it here with no errors. Woot! */
+ retval = 0;
+
+errout:
+ close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
+
+ return retval;
+}
+
+static int delete_crypto_blk_dev(char *name)
+{
+ int fd;
+ char buffer[DM_CRYPT_BUF_SIZE];
+ struct dm_ioctl *io;
+ int retval = -1;
+
+ if ((fd = open("/dev/device-mapper", O_RDWR)) < 0 ) {
+ printf("Cannot open device-mapper\n");
+ goto errout;
+ }
+
+ io = (struct dm_ioctl *) buffer;
+
+ ioctl_init(io, DM_CRYPT_BUF_SIZE, name, 0);
+ if (ioctl(fd, DM_DEV_REMOVE, io)) {
+ printf("Cannot remove dm-crypt device\n");
+ goto errout;
+ }
+
+ /* We made it here with no errors. Woot! */
+ retval = 0;
+
+errout:
+ close(fd); /* If fd is <0 from a failed open call, it's safe to just ignore the close error */
+
+ return retval;
+
+}
+
+static int pbkdf2(const char *passwd, const unsigned char *salt,
+ unsigned char *ikey, void *params UNUSED)
+{
+ printf("Using pbkdf2 for cryptfs KDF");
+
+ /* Turn the password into a key and IV that can decrypt the master key */
+ unsigned int keysize;
+ char* master_key = (char*)convert_hex_ascii_to_key(passwd, &keysize);
+ if (!master_key) return -1;
+ PKCS5_PBKDF2_HMAC_SHA1(master_key, keysize, salt, SALT_LEN,
+ HASH_COUNT, KEY_LEN_BYTES+IV_LEN_BYTES, ikey);
+
+ memset(master_key, 0, keysize);
+ free (master_key);
+ return 0;
+}
+
+static int scrypt(const char *passwd, const unsigned char *salt,
+ unsigned char *ikey, void *params)
+{
+ printf("Using scrypt for cryptfs KDF\n");
+
+ struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params;
+
+ int N = 1 << ftr->N_factor;
+ int r = 1 << ftr->r_factor;
+ int p = 1 << ftr->p_factor;
+
+ /* Turn the password into a key and IV that can decrypt the master key */
+ unsigned int keysize;
+ unsigned char* master_key = convert_hex_ascii_to_key(passwd, &keysize);
+ if (!master_key) return -1;
+ crypto_scrypt(master_key, keysize, salt, SALT_LEN, N, r, p, ikey,
+ KEY_LEN_BYTES + IV_LEN_BYTES);
+
+ memset(master_key, 0, keysize);
+ free (master_key);
+ return 0;
+}
+
+static int scrypt_keymaster(const char *passwd, const unsigned char *salt,
+ unsigned char *ikey, void *params)
+{
+ printf("Using scrypt with keymaster for cryptfs KDF\n");
+
+ int rc;
+ unsigned int key_size;
+ size_t signature_size;
+ unsigned char* signature;
+ struct crypt_mnt_ftr *ftr = (struct crypt_mnt_ftr *) params;
+
+ int N = 1 << ftr->N_factor;
+ int r = 1 << ftr->r_factor;
+ int p = 1 << ftr->p_factor;
+
+ unsigned char* master_key = convert_hex_ascii_to_key(passwd, &key_size);
+ if (!master_key) {
+ printf("Failed to convert passwd from hex");
+ return -1;
+ }
+
+ rc = crypto_scrypt(master_key, key_size, salt, SALT_LEN,
+ N, r, p, ikey, KEY_LEN_BYTES + IV_LEN_BYTES);
+ memset(master_key, 0, key_size);
+ free(master_key);
+
+ if (rc) {
+ printf("scrypt failed");
+ return -1;
+ }
+
+ if (keymaster_sign_object(ftr, ikey, KEY_LEN_BYTES + IV_LEN_BYTES,
+ &signature, &signature_size)) {
+ printf("Signing failed");
+ return -1;
+ }
+
+ rc = crypto_scrypt(signature, signature_size, salt, SALT_LEN,
+ N, r, p, ikey, KEY_LEN_BYTES + IV_LEN_BYTES);
+ free(signature);
+
+ if (rc) {
+ printf("scrypt failed");
+ return -1;
+ }
+
+ return 0;
+}
+
+static int encrypt_master_key(const char *passwd, const unsigned char *salt,
+ const unsigned char *decrypted_master_key,
+ unsigned char *encrypted_master_key,
+ struct crypt_mnt_ftr *crypt_ftr)
+{
+ unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
+ EVP_CIPHER_CTX e_ctx;
+ int encrypted_len, final_len;
+ int rc = 0;
+
+ /* Turn the password into an intermediate key and IV that can decrypt the master key */
+ get_device_scrypt_params(crypt_ftr);
+
+ switch (crypt_ftr->kdf_type) {
+ case KDF_SCRYPT_KEYMASTER_UNPADDED:
+ case KDF_SCRYPT_KEYMASTER_BADLY_PADDED:
+ case KDF_SCRYPT_KEYMASTER:
+ if (keymaster_create_key(crypt_ftr)) {
+ printf("keymaster_create_key failed");
+ return -1;
+ }
+
+ if (scrypt_keymaster(passwd, salt, ikey, crypt_ftr)) {
+ printf("scrypt failed");
+ return -1;
+ }
+ break;
+
+ case KDF_SCRYPT:
+ if (scrypt(passwd, salt, ikey, crypt_ftr)) {
+ printf("scrypt failed");
+ return -1;
+ }
+ break;
+
+ default:
+ printf("Invalid kdf_type");
+ return -1;
+ }
+
+ /* Initialize the decryption engine */
+ if (! EVP_EncryptInit(&e_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
+ printf("EVP_EncryptInit failed\n");
+ return -1;
+ }
+ EVP_CIPHER_CTX_set_padding(&e_ctx, 0); /* Turn off padding as our data is block aligned */
+
+ /* Encrypt the master key */
+ if (! EVP_EncryptUpdate(&e_ctx, encrypted_master_key, &encrypted_len,
+ decrypted_master_key, KEY_LEN_BYTES)) {
+ printf("EVP_EncryptUpdate failed\n");
+ return -1;
+ }
+ if (! EVP_EncryptFinal(&e_ctx, encrypted_master_key + encrypted_len, &final_len)) {
+ printf("EVP_EncryptFinal failed\n");
+ return -1;
+ }
+
+ if (encrypted_len + final_len != KEY_LEN_BYTES) {
+ printf("EVP_Encryption length check failed with %d, %d bytes\n", encrypted_len, final_len);
+ return -1;
+ }
+
+ /* Store the scrypt of the intermediate key, so we can validate if it's a
+ password error or mount error when things go wrong.
+ Note there's no need to check for errors, since if this is incorrect, we
+ simply won't wipe userdata, which is the correct default behavior
+ */
+ int N = 1 << crypt_ftr->N_factor;
+ int r = 1 << crypt_ftr->r_factor;
+ int p = 1 << crypt_ftr->p_factor;
+
+ rc = crypto_scrypt(ikey, KEY_LEN_BYTES,
+ crypt_ftr->salt, sizeof(crypt_ftr->salt), N, r, p,
+ crypt_ftr->scrypted_intermediate_key,
+ sizeof(crypt_ftr->scrypted_intermediate_key));
+
+ if (rc) {
+ printf("encrypt_master_key: crypto_scrypt failed");
+ }
+
+ return 0;
+}
+
+static int decrypt_master_key_aux(char *passwd, unsigned char *salt,
+ unsigned char *encrypted_master_key,
+ unsigned char *decrypted_master_key,
+ kdf_func kdf, void *kdf_params,
+ unsigned char** intermediate_key,
+ size_t* intermediate_key_size)
+{
+ unsigned char ikey[32+32] = { 0 }; /* Big enough to hold a 256 bit key and 256 bit IV */
+ EVP_CIPHER_CTX d_ctx;
+ int decrypted_len, final_len;
+
+ /* Turn the password into an intermediate key and IV that can decrypt the
+ master key */
+ if (kdf(passwd, salt, ikey, kdf_params)) {
+ printf("kdf failed");
+ return -1;
+ }
+
+ /* Initialize the decryption engine */
+ if (! EVP_DecryptInit(&d_ctx, EVP_aes_128_cbc(), ikey, ikey+KEY_LEN_BYTES)) {
+ return -1;
+ }
+ EVP_CIPHER_CTX_set_padding(&d_ctx, 0); /* Turn off padding as our data is block aligned */
+ /* Decrypt the master key */
+ if (! EVP_DecryptUpdate(&d_ctx, decrypted_master_key, &decrypted_len,
+ encrypted_master_key, KEY_LEN_BYTES)) {
+ return -1;
+ }
+ if (! EVP_DecryptFinal(&d_ctx, decrypted_master_key + decrypted_len, &final_len)) {
+ return -1;
+ }
+
+ if (decrypted_len + final_len != KEY_LEN_BYTES) {
+ return -1;
+ }
+
+ /* Copy intermediate key if needed by params */
+ if (intermediate_key && intermediate_key_size) {
+ *intermediate_key = (unsigned char*) malloc(KEY_LEN_BYTES);
+ if (intermediate_key) {
+ memcpy(*intermediate_key, ikey, KEY_LEN_BYTES);
+ *intermediate_key_size = KEY_LEN_BYTES;
+ }
+ }
+
+ return 0;
+}
+
+static void get_kdf_func(struct crypt_mnt_ftr *ftr, kdf_func *kdf, void** kdf_params)
+{
+ if (ftr->kdf_type == KDF_SCRYPT_KEYMASTER_UNPADDED ||
+ ftr->kdf_type == KDF_SCRYPT_KEYMASTER_BADLY_PADDED ||
+ ftr->kdf_type == KDF_SCRYPT_KEYMASTER) {
+ *kdf = scrypt_keymaster;
+ *kdf_params = ftr;
+ } else if (ftr->kdf_type == KDF_SCRYPT) {
+ *kdf = scrypt;
+ *kdf_params = ftr;
+ } else {
+ *kdf = pbkdf2;
+ *kdf_params = NULL;
+ }
+}
+
+static int decrypt_master_key(char *passwd, unsigned char *decrypted_master_key,
+ struct crypt_mnt_ftr *crypt_ftr,
+ unsigned char** intermediate_key,
+ size_t* intermediate_key_size)
+{
+ kdf_func kdf;
+ void *kdf_params;
+ int ret;
+
+ get_kdf_func(crypt_ftr, &kdf, &kdf_params);
+ ret = decrypt_master_key_aux(passwd, crypt_ftr->salt, crypt_ftr->master_key,
+ decrypted_master_key, kdf, kdf_params,
+ intermediate_key, intermediate_key_size);
+ if (ret != 0) {
+ printf("failure decrypting master key");
+ }
+
+ return ret;
+}
+
+static int create_encrypted_random_key(char *passwd, unsigned char *master_key, unsigned char *salt,
+ struct crypt_mnt_ftr *crypt_ftr) {
+ int fd;
+ unsigned char key_buf[KEY_LEN_BYTES];
+ EVP_CIPHER_CTX e_ctx;
+ int encrypted_len, final_len;
+
+ /* Get some random bits for a key */
+ fd = open("/dev/urandom", O_RDONLY);
+ read(fd, key_buf, sizeof(key_buf));
+ read(fd, salt, SALT_LEN);
+ close(fd);
+
+ /* Now encrypt it with the password */
+ return encrypt_master_key(passwd, salt, key_buf, master_key, crypt_ftr);
+}
+
+static int wait_and_unmount(char *mountpoint, bool kill)
+{
+ int i, err, rc;
+#define WAIT_UNMOUNT_COUNT 20
+
+ /* Now umount the tmpfs filesystem */
+ for (i=0; i<WAIT_UNMOUNT_COUNT; i++) {
+ if (umount(mountpoint) == 0) {
+ break;
+ }
+
+ if (errno == EINVAL) {
+ /* EINVAL is returned if the directory is not a mountpoint,
+ * i.e. there is no filesystem mounted there. So just get out.
+ */
+ break;
+ }
+
+ err = errno;
+
+ /* If allowed, be increasingly aggressive before the last two retries */
+ if (kill) {
+ if (i == (WAIT_UNMOUNT_COUNT - 3)) {
+ printf("sending SIGHUP to processes with open files\n");
+ //vold_killProcessesWithOpenFiles(mountpoint, 1);
+ } else if (i == (WAIT_UNMOUNT_COUNT - 2)) {
+ printf("sending SIGKILL to processes with open files\n");
+ //vold_killProcessesWithOpenFiles(mountpoint, 2);
+ }
+ }
+
+ sleep(1);
+ }
+
+ if (i < WAIT_UNMOUNT_COUNT) {
+ printf("unmounting %s succeeded\n", mountpoint);
+ rc = 0;
+ } else {
+ //vold_killProcessesWithOpenFiles(mountpoint, 0);
+ printf("unmounting %s failed: %s\n", mountpoint, strerror(err));
+ rc = -1;
+ }
+
+ return rc;
+}
+
+#define DATA_PREP_TIMEOUT 200
+static int prep_data_fs(void)
+{
+ int i;
+
+ /* Do the prep of the /data filesystem */
+ property_set("vold.post_fs_data_done", "0");
+ property_set("vold.decrypt", "trigger_post_fs_data");
+ printf("Just triggered post_fs_data\n");
+
+ /* Wait a max of 50 seconds, hopefully it takes much less */
+ for (i=0; i<DATA_PREP_TIMEOUT; i++) {
+ char p[PROPERTY_VALUE_MAX];
+
+ property_get("vold.post_fs_data_done", p, "0");
+ if (*p == '1') {
+ break;
+ } else {
+ usleep(250000);
+ }
+ }
+ if (i == DATA_PREP_TIMEOUT) {
+ /* Ugh, we failed to prep /data in time. Bail. */
+ printf("post_fs_data timed out!\n");
+ return -1;
+ } else {
+ printf("post_fs_data done\n");
+ return 0;
+ }
+}
+
+static void cryptfs_set_corrupt()
+{
+ // Mark the footer as bad
+ struct crypt_mnt_ftr crypt_ftr;
+ if (get_crypt_ftr_and_key(&crypt_ftr)) {
+ printf("Failed to get crypto footer - panic");
+ return;
+ }
+
+ crypt_ftr.flags |= CRYPT_DATA_CORRUPT;
+ if (put_crypt_ftr_and_key(&crypt_ftr)) {
+ printf("Failed to set crypto footer - panic");
+ return;
+ }
+}
+
+static void cryptfs_trigger_restart_min_framework()
+{
+ if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) {
+ printf("Failed to mount tmpfs on data - panic");
+ return;
+ }
+
+ if (property_set("vold.decrypt", "trigger_post_fs_data")) {
+ printf("Failed to trigger post fs data - panic");
+ return;
+ }
+
+ if (property_set("vold.decrypt", "trigger_restart_min_framework")) {
+ printf("Failed to trigger restart min framework - panic");
+ return;
+ }
+}
+
+/* returns < 0 on failure */
+static int cryptfs_restart_internal(int restart_main)
+{
+ char fs_type[32];
+ char real_blkdev[MAXPATHLEN];
+ char crypto_blkdev[MAXPATHLEN];
+ char fs_options[256];
+ unsigned long mnt_flags;
+ struct stat statbuf;
+ int rc = -1, i;
+ static int restart_successful = 0;
+
+ /* Validate that it's OK to call this routine */
+ if (! master_key_saved) {
+ printf("Encrypted filesystem not validated, aborting");
+ return -1;
+ }
+
+ if (restart_successful) {
+ printf("System already restarted with encrypted disk, aborting");
+ return -1;
+ }
+
+ if (restart_main) {
+ /* Here is where we shut down the framework. The init scripts
+ * start all services in one of three classes: core, main or late_start.
+ * On boot, we start core and main. Now, we stop main, but not core,
+ * as core includes vold and a few other really important things that
+ * we need to keep running. Once main has stopped, we should be able
+ * to umount the tmpfs /data, then mount the encrypted /data.
+ * We then restart the class main, and also the class late_start.
+ * At the moment, I've only put a few things in late_start that I know
+ * are not needed to bring up the framework, and that also cause problems
+ * with unmounting the tmpfs /data, but I hope to add add more services
+ * to the late_start class as we optimize this to decrease the delay
+ * till the user is asked for the password to the filesystem.
+ */
+
+ /* The init files are setup to stop the class main when vold.decrypt is
+ * set to trigger_reset_main.
+ */
+ property_set("vold.decrypt", "trigger_reset_main");
+ printf("Just asked init to shut down class main\n");
+
+ /* Ugh, shutting down the framework is not synchronous, so until it
+ * can be fixed, this horrible hack will wait a moment for it all to
+ * shut down before proceeding. Without it, some devices cannot
+ * restart the graphics services.
+ */
+ sleep(2);
+ }
+
+ /* Now that the framework is shutdown, we should be able to umount()
+ * the tmpfs filesystem, and mount the real one.
+ */
+
+ property_get("ro.crypto.fs_crypto_blkdev", crypto_blkdev, "");
+ if (strlen(crypto_blkdev) == 0) {
+ printf("fs_crypto_blkdev not set\n");
+ return -1;
+ }
+
+ if (! (rc = wait_and_unmount(DATA_MNT_POINT, true)) ) {
+ /* If ro.crypto.readonly is set to 1, mount the decrypted
+ * filesystem readonly. This is used when /data is mounted by
+ * recovery mode.
+ */
+ char ro_prop[PROPERTY_VALUE_MAX];
+ property_get("ro.crypto.readonly", ro_prop, "");
+ if (strlen(ro_prop) > 0 && atoi(ro_prop)) {
+ struct fstab_rec* rec = fs_mgr_get_entry_for_mount_point(fstab, DATA_MNT_POINT);
+ rec->flags |= MS_RDONLY;
+ }
+
+ /* If that succeeded, then mount the decrypted filesystem */
+ int retries = RETRY_MOUNT_ATTEMPTS;
+ int mount_rc;
+ while ((mount_rc = fs_mgr_do_mount(fstab, DATA_MNT_POINT,
+ crypto_blkdev, 0))
+ != 0) {
+ if (mount_rc == FS_MGR_DOMNT_BUSY) {
+ /* TODO: invoke something similar to
+ Process::killProcessWithOpenFiles(DATA_MNT_POINT,
+ retries > RETRY_MOUNT_ATTEMPT/2 ? 1 : 2 ) */
+ printf("Failed to mount %s because it is busy - waiting",
+ crypto_blkdev);
+ if (--retries) {
+ sleep(RETRY_MOUNT_DELAY_SECONDS);
+ } else {
+ /* Let's hope that a reboot clears away whatever is keeping
+ the mount busy */
+ cryptfs_reboot(reboot);
+ }
+ } else {
+ printf("Failed to mount decrypted data");
+ cryptfs_set_corrupt();
+ cryptfs_trigger_restart_min_framework();
+ printf("Started framework to offer wipe");
+ return -1;
+ }
+ }
+
+ property_set("vold.decrypt", "trigger_load_persist_props");
+ /* Create necessary paths on /data */
+ if (prep_data_fs()) {
+ return -1;
+ }
+
+ /* startup service classes main and late_start */
+ property_set("vold.decrypt", "trigger_restart_framework");
+ printf("Just triggered restart_framework\n");
+
+ /* Give it a few moments to get started */
+ sleep(1);
+ }
+
+ if (rc == 0) {
+ restart_successful = 1;
+ }
+
+ return rc;
+}
+
+int cryptfs_restart(void)
+{
+ /* Call internal implementation forcing a restart of main service group */
+ return cryptfs_restart_internal(1);
+}
+
+static int do_crypto_complete(char *mount_point UNUSED)
+{
+ struct crypt_mnt_ftr crypt_ftr;
+ char encrypted_state[PROPERTY_VALUE_MAX];
+ char key_loc[PROPERTY_VALUE_MAX];
+
+ property_get("ro.crypto.state", encrypted_state, "");
+ if (strcmp(encrypted_state, "encrypted") ) {
+ printf("not running with encryption, aborting");
+ return CRYPTO_COMPLETE_NOT_ENCRYPTED;
+ }
+
+ if (get_crypt_ftr_and_key(&crypt_ftr)) {
+ fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc));
+
+ /*
+ * Only report this error if key_loc is a file and it exists.
+ * If the device was never encrypted, and /data is not mountable for
+ * some reason, returning 1 should prevent the UI from presenting the
+ * a "enter password" screen, or worse, a "press button to wipe the
+ * device" screen.
+ */
+ if ((key_loc[0] == '/') && (access("key_loc", F_OK) == -1)) {
+ printf("master key file does not exist, aborting");
+ return CRYPTO_COMPLETE_NOT_ENCRYPTED;
+ } else {
+ printf("Error getting crypt footer and key\n");
+ return CRYPTO_COMPLETE_BAD_METADATA;
+ }
+ }
+
+ // Test for possible error flags
+ if (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS){
+ printf("Encryption process is partway completed\n");
+ return CRYPTO_COMPLETE_PARTIAL;
+ }
+
+ if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE){
+ printf("Encryption process was interrupted but cannot continue\n");
+ return CRYPTO_COMPLETE_INCONSISTENT;
+ }
+
+ if (crypt_ftr.flags & CRYPT_DATA_CORRUPT){
+ printf("Encryption is successful but data is corrupt\n");
+ return CRYPTO_COMPLETE_CORRUPT;
+ }
+
+ /* We passed the test! We shall diminish, and return to the west */
+ return CRYPTO_COMPLETE_ENCRYPTED;
+}
+
+static int test_mount_encrypted_fs(struct crypt_mnt_ftr* crypt_ftr,
+ char *passwd, char *mount_point, char *label)
+{
+ /* Allocate enough space for a 256 bit key, but we may use less */
+ unsigned char decrypted_master_key[32];
+ char crypto_blkdev[MAXPATHLEN];
+ char real_blkdev[MAXPATHLEN];
+ char tmp_mount_point[64];
+ unsigned int orig_failed_decrypt_count;
+ int rc;
+ kdf_func kdf;
+ void *kdf_params;
+ int use_keymaster = 0;
+ int upgrade = 0;
+ unsigned char* intermediate_key = 0;
+ size_t intermediate_key_size = 0;
+
+ printf("crypt_ftr->fs_size = %lld\n", crypt_ftr->fs_size);
+ orig_failed_decrypt_count = crypt_ftr->failed_decrypt_count;
+
+ if (! (crypt_ftr->flags & CRYPT_MNT_KEY_UNENCRYPTED) ) {
+ if (decrypt_master_key(passwd, decrypted_master_key, crypt_ftr,
+ &intermediate_key, &intermediate_key_size)) {
+ printf("Failed to decrypt master key\n");
+ rc = -1;
+ goto errout;
+ }
+ }
+
+ fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev));
+
+ // Create crypto block device - all (non fatal) code paths
+ // need it
+ if (create_crypto_blk_dev(crypt_ftr, decrypted_master_key,
+ real_blkdev, crypto_blkdev, label)) {
+ printf("Error creating decrypted block device\n");
+ rc = -1;
+ goto errout;
+ }
+
+ /* Work out if the problem is the password or the data */
+ unsigned char scrypted_intermediate_key[sizeof(crypt_ftr->
+ scrypted_intermediate_key)];
+ int N = 1 << crypt_ftr->N_factor;
+ int r = 1 << crypt_ftr->r_factor;
+ int p = 1 << crypt_ftr->p_factor;
+
+ rc = crypto_scrypt(intermediate_key, intermediate_key_size,
+ crypt_ftr->salt, sizeof(crypt_ftr->salt),
+ N, r, p, scrypted_intermediate_key,
+ sizeof(scrypted_intermediate_key));
+
+ // Does the key match the crypto footer?
+ if (rc == 0 && memcmp(scrypted_intermediate_key,
+ crypt_ftr->scrypted_intermediate_key,
+ sizeof(scrypted_intermediate_key)) == 0) {
+ printf("Password matches\n");
+ rc = 0;
+ } else {
+ /* Try mounting the file system anyway, just in case the problem's with
+ * the footer, not the key. */
+ sprintf(tmp_mount_point, "%s/tmp_mnt", mount_point);
+ mkdir(tmp_mount_point, 0755);
+ if (fs_mgr_do_mount(fstab, DATA_MNT_POINT, crypto_blkdev, tmp_mount_point)) {
+ printf("Error temp mounting decrypted block device '%s'\n", crypto_blkdev);
+ delete_crypto_blk_dev(label);
+
+ rc = ++crypt_ftr->failed_decrypt_count;
+ //put_crypt_ftr_and_key(crypt_ftr); // Do not penalize for attempting to decrypt in recovery
+ } else {
+ /* Success! */
+ printf("Password did not match but decrypted drive mounted - continue\n");
+ umount(tmp_mount_point);
+ rc = 0;
+ }
+ }
+
+ if (rc == 0) {
+ /*crypt_ftr->failed_decrypt_count = 0;
+ if (orig_failed_decrypt_count != 0) {
+ put_crypt_ftr_and_key(crypt_ftr);
+ }*/
+
+ /* Save the name of the crypto block device
+ * so we can mount it when restarting the framework. */
+ property_set("ro.crypto.fs_crypto_blkdev", crypto_blkdev);
+
+ /* Also save a the master key so we can reencrypted the key
+ * the key when we want to change the password on it. */
+ /*memcpy(saved_master_key, decrypted_master_key, KEY_LEN_BYTES);
+ saved_mount_point = strdup(mount_point);
+ master_key_saved = 1;
+ printf("%s(): Master key saved\n", __FUNCTION__);*/
+ rc = 0;
+
+ // Upgrade if we're not using the latest KDF.
+ /*use_keymaster = keymaster_check_compatibility();
+ if (crypt_ftr->kdf_type == KDF_SCRYPT_KEYMASTER) {
+ // Don't allow downgrade
+ } else if (use_keymaster == 1 && crypt_ftr->kdf_type != KDF_SCRYPT_KEYMASTER) {
+ crypt_ftr->kdf_type = KDF_SCRYPT_KEYMASTER;
+ upgrade = 1;
+ } else if (use_keymaster == 0 && crypt_ftr->kdf_type != KDF_SCRYPT) {
+ crypt_ftr->kdf_type = KDF_SCRYPT;
+ upgrade = 1;
+ }
+
+ if (upgrade) {
+ rc = encrypt_master_key(passwd, crypt_ftr->salt, saved_master_key,
+ crypt_ftr->master_key, crypt_ftr);
+ if (!rc) {
+ rc = put_crypt_ftr_and_key(crypt_ftr);
+ }
+ printf("Key Derivation Function upgrade: rc=%d\n", rc);
+
+ // Do not fail even if upgrade failed - machine is bootable
+ // Note that if this code is ever hit, there is a *serious* problem
+ // since KDFs should never fail. You *must* fix the kdf before
+ // proceeding!
+ if (rc) {
+ printf("Upgrade failed with error %d,"
+ " but continuing with previous state\n",
+ rc);
+ rc = 0;
+ }
+ }*/
+ }
+
+ errout:
+ if (intermediate_key) {
+ memset(intermediate_key, 0, intermediate_key_size);
+ free(intermediate_key);
+ }
+ return rc;
+}
+
+/* Called by vold when it wants to undo the crypto mapping of a volume it
+ * manages. This is usually in response to a factory reset, when we want
+ * to undo the crypto mapping so the volume is formatted in the clear.
+ */
+int cryptfs_revert_volume(const char *label)
+{
+ return delete_crypto_blk_dev((char *)label);
+}
+
+/*
+ * Called by vold when it's asked to mount an encrypted, nonremovable volume.
+ * Setup a dm-crypt mapping, use the saved master key from
+ * setting up the /data mapping, and return the new device path.
+ */
+int cryptfs_setup_volume(const char *label, int major, int minor,
+ char *crypto_sys_path, unsigned int max_path,
+ int *new_major, int *new_minor)
+{
+ char real_blkdev[MAXPATHLEN], crypto_blkdev[MAXPATHLEN];
+ struct crypt_mnt_ftr sd_crypt_ftr;
+ struct stat statbuf;
+ int nr_sec, fd;
+
+ sprintf(real_blkdev, "/dev/block/vold/%d:%d", major, minor);
+
+ get_crypt_ftr_and_key(&sd_crypt_ftr);
+
+ /* Update the fs_size field to be the size of the volume */
+ fd = open(real_blkdev, O_RDONLY);
+ nr_sec = get_blkdev_size(fd);
+ close(fd);
+ if (nr_sec == 0) {
+ printf("Cannot get size of volume %s\n", real_blkdev);
+ return -1;
+ }
+
+ sd_crypt_ftr.fs_size = nr_sec;
+ create_crypto_blk_dev(&sd_crypt_ftr, saved_master_key, real_blkdev,
+ crypto_blkdev, label);
+
+ stat(crypto_blkdev, &statbuf);
+ *new_major = MAJOR(statbuf.st_rdev);
+ *new_minor = MINOR(statbuf.st_rdev);
+
+ /* Create path to sys entry for this block device */
+ snprintf(crypto_sys_path, max_path, "/devices/virtual/block/%s", strrchr(crypto_blkdev, '/')+1);
+
+ return 0;
+}
+
+int cryptfs_crypto_complete(void)
+{
+ return do_crypto_complete("/data");
+}
+
+int check_unmounted_and_get_ftr(struct crypt_mnt_ftr* crypt_ftr)
+{
+ char encrypted_state[PROPERTY_VALUE_MAX];
+ property_get("ro.crypto.state", encrypted_state, "");
+ if ( master_key_saved || strcmp(encrypted_state, "encrypted") ) {
+ printf("encrypted fs already validated or not running with encryption,"
+ " aborting");
+ return -1;
+ }
+
+ if (get_crypt_ftr_and_key(crypt_ftr)) {
+ printf("Error getting crypt footer and key");
+ return -1;
+ }
+
+ return 0;
+}
+
+/*
+ * TODO - transition patterns to new format in calling code
+ * and remove this vile hack, and the use of hex in
+ * the password passing code.
+ *
+ * Patterns are passed in zero based (i.e. the top left dot
+ * is represented by zero, the top middle one etc), but we want
+ * to store them '1' based.
+ * This is to allow us to migrate the calling code to use this
+ * convention. It also solves a nasty problem whereby scrypt ignores
+ * trailing zeros, so patterns ending at the top left could be
+ * truncated, and similarly, you could add the top left to any
+ * pattern and still match.
+ * adjust_passwd is a hack function that returns the alternate representation
+ * if the password appears to be a pattern (hex numbers all less than 09)
+ * If it succeeds we need to try both, and in particular try the alternate
+ * first. If the original matches, then we need to update the footer
+ * with the alternate.
+ * All code that accepts passwords must adjust them first. Since
+ * cryptfs_check_passwd is always the first function called after a migration
+ * (and indeed on any boot) we only need to do the double try in this
+ * function.
+ */
+char* adjust_passwd(const char* passwd)
+{
+ size_t index, length;
+
+ if (!passwd) {
+ return 0;
+ }
+
+ // Check even length. Hex encoded passwords are always
+ // an even length, since each character encodes to two characters.
+ length = strlen(passwd);
+ if (length % 2) {
+ printf("Password not correctly hex encoded.");
+ return 0;
+ }
+
+ // Check password is old-style pattern - a collection of hex
+ // encoded bytes less than 9 (00 through 08)
+ for (index = 0; index < length; index +=2) {
+ if (passwd[index] != '0'
+ || passwd[index + 1] < '0' || passwd[index + 1] > '8') {
+ return 0;
+ }
+ }
+
+ // Allocate room for adjusted passwd and null terminate
+ char* adjusted = malloc(length + 1);
+ adjusted[length] = 0;
+
+ // Add 0x31 ('1') to each character
+ for (index = 0; index < length; index += 2) {
+ // output is 31 through 39 so set first byte to three, second to src + 1
+ adjusted[index] = '3';
+ adjusted[index + 1] = passwd[index + 1] + 1;
+ }
+
+ return adjusted;
+}
+
+/*
+ * Passwords in L get passed from Android to cryptfs in hex, so a '1'
+ * gets converted to '31' where 31 is 0x31 which is the ascii character
+ * code in hex of the character '1'. This function will convert the
+ * regular character codes to their hexadecimal representation to make
+ * decrypt work properly with Android 5.0 lollipop decryption.
+ */
+char* hexadj_passwd(const char* passwd)
+{
+ size_t index, length;
+ char* ptr = passwd;
+
+ if (!passwd) {
+ return 0;
+ }
+
+ length = strlen(passwd);
+
+ // Allocate room for hex passwd and null terminate
+ char* hex = malloc((length * 2) + 1);
+ hex[length * 2] = 0;
+
+ // Convert to hex
+ for (index = 0; index < length; index++) {
+ sprintf(hex + (index * 2), "%02X", *ptr);
+ ptr++;
+ }
+
+ return hex;
+}
+
+#define FSTAB_PREFIX "/fstab."
+
+int cryptfs_check_footer(void)
+{
+ int rc = -1;
+ char fstab_filename[PROPERTY_VALUE_MAX + sizeof(FSTAB_PREFIX)];
+ char propbuf[PROPERTY_VALUE_MAX];
+ struct crypt_mnt_ftr crypt_ftr;
+
+ property_get("ro.hardware", propbuf, "");
+ snprintf(fstab_filename, sizeof(fstab_filename), FSTAB_PREFIX"%s", propbuf);
+
+ fstab = fs_mgr_read_fstab(fstab_filename);
+ if (!fstab) {
+ printf("failed to open %s\n", fstab_filename);
+ return -1;
+ }
+
+ rc = get_crypt_ftr_and_key(&crypt_ftr);
+
+ return rc;
+}
+
+int cryptfs_check_passwd(char *passwd)
+{
+ struct crypt_mnt_ftr crypt_ftr;
+ int rc;
+ char fstab_filename[PROPERTY_VALUE_MAX + sizeof(FSTAB_PREFIX)];
+ char propbuf[PROPERTY_VALUE_MAX];
+
+ property_get("ro.hardware", propbuf, "");
+ snprintf(fstab_filename, sizeof(fstab_filename), FSTAB_PREFIX"%s", propbuf);
+
+ fstab = fs_mgr_read_fstab(fstab_filename);
+ if (!fstab) {
+ printf("failed to open %s\n", fstab_filename);
+ return -1;
+ }
+
+ rc = check_unmounted_and_get_ftr(&crypt_ftr);
+ if (rc)
+ return rc;
+
+ char* adjusted_passwd = adjust_passwd(passwd);
+ char* hex_passwd = hexadj_passwd(passwd);
+
+ if (adjusted_passwd) {
+ int failed_decrypt_count = crypt_ftr.failed_decrypt_count;
+ rc = test_mount_encrypted_fs(&crypt_ftr, adjusted_passwd,
+ DATA_MNT_POINT, "userdata");
+
+ // Maybe the original one still works?
+ if (rc) {
+ // Don't double count this failure
+ crypt_ftr.failed_decrypt_count = failed_decrypt_count;
+ rc = test_mount_encrypted_fs(&crypt_ftr, passwd,
+ DATA_MNT_POINT, "userdata");
+ if (!rc) {
+ // cryptfs_changepw also adjusts so pass original
+ // Note that adjust_passwd only recognises patterns
+ // so we can safely use CRYPT_TYPE_PATTERN
+ printf("TWRP NOT Updating pattern to new format");
+ //cryptfs_changepw(CRYPT_TYPE_PATTERN, passwd);
+ } else if (hex_passwd) {
+ rc = test_mount_encrypted_fs(&crypt_ftr, hex_passwd,
+ DATA_MNT_POINT, "userdata");
+ }
+ }
+ free(adjusted_passwd);
+ } else {
+ rc = test_mount_encrypted_fs(&crypt_ftr, passwd,
+ DATA_MNT_POINT, "userdata");
+ if (rc && hex_passwd) {
+ rc = test_mount_encrypted_fs(&crypt_ftr, hex_passwd,
+ DATA_MNT_POINT, "userdata");
+ }
+ }
+
+ if (hex_passwd)
+ free(hex_passwd);
+
+ /*if (rc == 0 && crypt_ftr.crypt_type != CRYPT_TYPE_DEFAULT) {
+ printf("cryptfs_check_passwd update expiry time?\n");
+ cryptfs_clear_password();
+ password = strdup(passwd);
+ struct timespec now;
+ clock_gettime(CLOCK_BOOTTIME, &now);
+ password_expiry_time = now.tv_sec + password_max_age_seconds;
+ }*/
+
+ return rc;
+}
+
+int cryptfs_verify_passwd(char *passwd)
+{
+ struct crypt_mnt_ftr crypt_ftr;
+ /* Allocate enough space for a 256 bit key, but we may use less */
+ unsigned char decrypted_master_key[32];
+ char encrypted_state[PROPERTY_VALUE_MAX];
+ int rc;
+
+ property_get("ro.crypto.state", encrypted_state, "");
+ if (strcmp(encrypted_state, "encrypted") ) {
+ printf("device not encrypted, aborting");
+ return -2;
+ }
+
+ if (!master_key_saved) {
+ printf("encrypted fs not yet mounted, aborting");
+ return -1;
+ }
+
+ if (!saved_mount_point) {
+ printf("encrypted fs failed to save mount point, aborting");
+ return -1;
+ }
+
+ if (get_crypt_ftr_and_key(&crypt_ftr)) {
+ printf("Error getting crypt footer and key\n");
+ return -1;
+ }
+
+ if (crypt_ftr.flags & CRYPT_MNT_KEY_UNENCRYPTED) {
+ /* If the device has no password, then just say the password is valid */
+ rc = 0;
+ } else {
+ char* adjusted_passwd = adjust_passwd(passwd);
+ if (adjusted_passwd) {
+ passwd = adjusted_passwd;
+ }
+
+ decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0);
+ if (!memcmp(decrypted_master_key, saved_master_key, crypt_ftr.keysize)) {
+ /* They match, the password is correct */
+ rc = 0;
+ } else {
+ /* If incorrect, sleep for a bit to prevent dictionary attacks */
+ sleep(1);
+ rc = 1;
+ }
+
+ free(adjusted_passwd);
+ }
+
+ return rc;
+}
+
+/* Initialize a crypt_mnt_ftr structure. The keysize is
+ * defaulted to 16 bytes, and the filesystem size to 0.
+ * Presumably, at a minimum, the caller will update the
+ * filesystem size and crypto_type_name after calling this function.
+ */
+static int cryptfs_init_crypt_mnt_ftr(struct crypt_mnt_ftr *ftr)
+{
+ off64_t off;
+
+ memset(ftr, 0, sizeof(struct crypt_mnt_ftr));
+ ftr->magic = CRYPT_MNT_MAGIC;
+ ftr->major_version = CURRENT_MAJOR_VERSION;
+ ftr->minor_version = CURRENT_MINOR_VERSION;
+ ftr->ftr_size = sizeof(struct crypt_mnt_ftr);
+ ftr->keysize = KEY_LEN_BYTES;
+
+ switch (keymaster_check_compatibility()) {
+ case 1:
+ ftr->kdf_type = KDF_SCRYPT_KEYMASTER;
+ break;
+
+ case 0:
+ ftr->kdf_type = KDF_SCRYPT;
+ break;
+
+ default:
+ printf("keymaster_check_compatibility failed");
+ return -1;
+ }
+
+ get_device_scrypt_params(ftr);
+
+ ftr->persist_data_size = CRYPT_PERSIST_DATA_SIZE;
+ if (get_crypt_ftr_info(NULL, &off) == 0) {
+ ftr->persist_data_offset[0] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET;
+ ftr->persist_data_offset[1] = off + CRYPT_FOOTER_TO_PERSIST_OFFSET +
+ ftr->persist_data_size;
+ }
+
+ return 0;
+}
+
+static int cryptfs_enable_wipe(char *crypto_blkdev, off64_t size, int type)
+{
+ const char *args[10];
+ char size_str[32]; /* Must be large enough to hold a %lld and null byte */
+ int num_args;
+ int status;
+ int tmp;
+ int rc = -1;
+
+ if (type == EXT4_FS) {
+ args[0] = "/system/bin/make_ext4fs";
+ args[1] = "-a";
+ args[2] = "/data";
+ args[3] = "-l";
+ snprintf(size_str, sizeof(size_str), "%" PRId64, size * 512);
+ args[4] = size_str;
+ args[5] = crypto_blkdev;
+ num_args = 6;
+ printf("Making empty filesystem with command %s %s %s %s %s %s\n",
+ args[0], args[1], args[2], args[3], args[4], args[5]);
+ } else if (type == F2FS_FS) {
+ args[0] = "/system/bin/mkfs.f2fs";
+ args[1] = "-t";
+ args[2] = "-d1";
+ args[3] = crypto_blkdev;
+ snprintf(size_str, sizeof(size_str), "%" PRId64, size);
+ args[4] = size_str;
+ num_args = 5;
+ printf("Making empty filesystem with command %s %s %s %s %s\n",
+ args[0], args[1], args[2], args[3], args[4]);
+ } else {
+ printf("cryptfs_enable_wipe(): unknown filesystem type %d\n", type);
+ return -1;
+ }
+
+ tmp = android_fork_execvp(num_args, (char **)args, &status, false, true);
+
+ if (tmp != 0) {
+ printf("Error creating empty filesystem on %s due to logwrap error\n", crypto_blkdev);
+ } else {
+ if (WIFEXITED(status)) {
+ if (WEXITSTATUS(status)) {
+ printf("Error creating filesystem on %s, exit status %d ",
+ crypto_blkdev, WEXITSTATUS(status));
+ } else {
+ printf("Successfully created filesystem on %s\n", crypto_blkdev);
+ rc = 0;
+ }
+ } else {
+ printf("Error creating filesystem on %s, did not exit normally\n", crypto_blkdev);
+ }
+ }
+
+ return rc;
+}
+
+#define CRYPT_INPLACE_BUFSIZE 4096
+#define CRYPT_SECTORS_PER_BUFSIZE (CRYPT_INPLACE_BUFSIZE / CRYPT_SECTOR_SIZE)
+#define CRYPT_SECTOR_SIZE 512
+
+/* aligned 32K writes tends to make flash happy.
+ * SD card association recommends it.
+ */
+#define BLOCKS_AT_A_TIME 8
+
+struct encryptGroupsData
+{
+ int realfd;
+ int cryptofd;
+ off64_t numblocks;
+ off64_t one_pct, cur_pct, new_pct;
+ off64_t blocks_already_done, tot_numblocks;
+ off64_t used_blocks_already_done, tot_used_blocks;
+ char* real_blkdev, * crypto_blkdev;
+ int count;
+ off64_t offset;
+ char* buffer;
+ off64_t last_written_sector;
+ int completed;
+ time_t time_started;
+ int remaining_time;
+};
+
+static void update_progress(struct encryptGroupsData* data, int is_used)
+{
+ data->blocks_already_done++;
+
+ if (is_used) {
+ data->used_blocks_already_done++;
+ }
+ if (data->tot_used_blocks) {
+ data->new_pct = data->used_blocks_already_done / data->one_pct;
+ } else {
+ data->new_pct = data->blocks_already_done / data->one_pct;
+ }
+
+ if (data->new_pct > data->cur_pct) {
+ char buf[8];
+ data->cur_pct = data->new_pct;
+ snprintf(buf, sizeof(buf), "%" PRId64, data->cur_pct);
+ property_set("vold.encrypt_progress", buf);
+ }
+
+ if (data->cur_pct >= 5) {
+ struct timespec time_now;
+ if (clock_gettime(CLOCK_MONOTONIC, &time_now)) {
+ printf("Error getting time");
+ } else {
+ double elapsed_time = difftime(time_now.tv_sec, data->time_started);
+ off64_t remaining_blocks = data->tot_used_blocks
+ - data->used_blocks_already_done;
+ int remaining_time = (int)(elapsed_time * remaining_blocks
+ / data->used_blocks_already_done);
+
+ // Change time only if not yet set, lower, or a lot higher for
+ // best user experience
+ if (data->remaining_time == -1
+ || remaining_time < data->remaining_time
+ || remaining_time > data->remaining_time + 60) {
+ char buf[8];
+ snprintf(buf, sizeof(buf), "%d", remaining_time);
+ property_set("vold.encrypt_time_remaining", buf);
+ data->remaining_time = remaining_time;
+ }
+ }
+ }
+}
+
+static void log_progress(struct encryptGroupsData const* data, bool completed)
+{
+ // Precondition - if completed data = 0 else data != 0
+
+ // Track progress so we can skip logging blocks
+ static off64_t offset = -1;
+
+ // Need to close existing 'Encrypting from' log?
+ if (completed || (offset != -1 && data->offset != offset)) {
+ printf("Encrypted to sector %" PRId64,
+ offset / info.block_size * CRYPT_SECTOR_SIZE);
+ offset = -1;
+ }
+
+ // Need to start new 'Encrypting from' log?
+ if (!completed && offset != data->offset) {
+ printf("Encrypting from sector %" PRId64,
+ data->offset / info.block_size * CRYPT_SECTOR_SIZE);
+ }
+
+ // Update offset
+ if (!completed) {
+ offset = data->offset + (off64_t)data->count * info.block_size;
+ }
+}
+
+static int flush_outstanding_data(struct encryptGroupsData* data)
+{
+ if (data->count == 0) {
+ return 0;
+ }
+
+ printf("Copying %d blocks at offset %" PRIx64, data->count, data->offset);
+
+ if (pread64(data->realfd, data->buffer,
+ info.block_size * data->count, data->offset)
+ <= 0) {
+ printf("Error reading real_blkdev %s for inplace encrypt",
+ data->real_blkdev);
+ return -1;
+ }
+
+ if (pwrite64(data->cryptofd, data->buffer,
+ info.block_size * data->count, data->offset)
+ <= 0) {
+ printf("Error writing crypto_blkdev %s for inplace encrypt",
+ data->crypto_blkdev);
+ return -1;
+ } else {
+ log_progress(data, false);
+ }
+
+ data->count = 0;
+ data->last_written_sector = (data->offset + data->count)
+ / info.block_size * CRYPT_SECTOR_SIZE - 1;
+ return 0;
+}
+
+static int encrypt_groups(struct encryptGroupsData* data)
+{
+ unsigned int i;
+ u8 *block_bitmap = 0;
+ unsigned int block;
+ off64_t ret;
+ int rc = -1;
+
+ data->buffer = malloc(info.block_size * BLOCKS_AT_A_TIME);
+ if (!data->buffer) {
+ printf("Failed to allocate crypto buffer");
+ goto errout;
+ }
+
+ block_bitmap = malloc(info.block_size);
+ if (!block_bitmap) {
+ printf("failed to allocate block bitmap");
+ goto errout;
+ }
+
+ for (i = 0; i < aux_info.groups; ++i) {
+ printf("Encrypting group %d", i);
+
+ u32 first_block = aux_info.first_data_block + i * info.blocks_per_group;
+ u32 block_count = min(info.blocks_per_group,
+ aux_info.len_blocks - first_block);
+
+ off64_t offset = (u64)info.block_size
+ * aux_info.bg_desc[i].bg_block_bitmap;
+
+ ret = pread64(data->realfd, block_bitmap, info.block_size, offset);
+ if (ret != (int)info.block_size) {
+ printf("failed to read all of block group bitmap %d", i);
+ goto errout;
+ }
+
+ offset = (u64)info.block_size * first_block;
+
+ data->count = 0;
+
+ for (block = 0; block < block_count; block++) {
+ int used = bitmap_get_bit(block_bitmap, block);
+ update_progress(data, used);
+ if (used) {
+ if (data->count == 0) {
+ data->offset = offset;
+ }
+ data->count++;
+ } else {
+ if (flush_outstanding_data(data)) {
+ goto errout;
+ }
+ }
+
+ offset += info.block_size;
+
+ /* Write data if we are aligned or buffer size reached */
+ if (offset % (info.block_size * BLOCKS_AT_A_TIME) == 0
+ || data->count == BLOCKS_AT_A_TIME) {
+ if (flush_outstanding_data(data)) {
+ goto errout;
+ }
+ }
+
+ if (1) {
+ printf("Stopping encryption due to low battery");
+ rc = 0;
+ goto errout;
+ }
+
+ }
+ if (flush_outstanding_data(data)) {
+ goto errout;
+ }
+ }
+
+ data->completed = 1;
+ rc = 0;
+
+errout:
+ log_progress(0, true);
+ free(data->buffer);
+ free(block_bitmap);
+ return rc;
+}
+
+static int cryptfs_enable_inplace_ext4(char *crypto_blkdev,
+ char *real_blkdev,
+ off64_t size,
+ off64_t *size_already_done,
+ off64_t tot_size,
+ off64_t previously_encrypted_upto)
+{
+ u32 i;
+ struct encryptGroupsData data;
+ int rc; // Can't initialize without causing warning -Wclobbered
+
+ if (previously_encrypted_upto > *size_already_done) {
+ printf("Not fast encrypting since resuming part way through");
+ return -1;
+ }
+
+ memset(&data, 0, sizeof(data));
+ data.real_blkdev = real_blkdev;
+ data.crypto_blkdev = crypto_blkdev;
+
+ if ( (data.realfd = open(real_blkdev, O_RDWR)) < 0) {
+ printf("Error opening real_blkdev %s for inplace encrypt. err=%d(%s)\n",
+ real_blkdev, errno, strerror(errno));
+ rc = -1;
+ goto errout;
+ }
+
+ if ( (data.cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) {
+ printf("Error opening crypto_blkdev %s for ext4 inplace encrypt. err=%d(%s)\n",
+ crypto_blkdev, errno, strerror(errno));
+ rc = ENABLE_INPLACE_ERR_DEV;
+ goto errout;
+ }
+
+ if (setjmp(setjmp_env)) {
+ printf("Reading ext4 extent caused an exception\n");
+ rc = -1;
+ goto errout;
+ }
+
+ if (read_ext(data.realfd, 0) != 0) {
+ printf("Failed to read ext4 extent\n");
+ rc = -1;
+ goto errout;
+ }
+
+ data.numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
+ data.tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
+ data.blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
+
+ printf("Encrypting ext4 filesystem in place...");
+
+ data.tot_used_blocks = data.numblocks;
+ for (i = 0; i < aux_info.groups; ++i) {
+ data.tot_used_blocks -= aux_info.bg_desc[i].bg_free_blocks_count;
+ }
+
+ data.one_pct = data.tot_used_blocks / 100;
+ data.cur_pct = 0;
+
+ struct timespec time_started = {0};
+ if (clock_gettime(CLOCK_MONOTONIC, &time_started)) {
+ printf("Error getting time at start");
+ // Note - continue anyway - we'll run with 0
+ }
+ data.time_started = time_started.tv_sec;
+ data.remaining_time = -1;
+
+ rc = encrypt_groups(&data);
+ if (rc) {
+ printf("Error encrypting groups");
+ goto errout;
+ }
+
+ *size_already_done += data.completed ? size : data.last_written_sector;
+ rc = 0;
+
+errout:
+ close(data.realfd);
+ close(data.cryptofd);
+
+ return rc;
+}
+
+static void log_progress_f2fs(u64 block, bool completed)
+{
+ // Precondition - if completed data = 0 else data != 0
+
+ // Track progress so we can skip logging blocks
+ static u64 last_block = (u64)-1;
+
+ // Need to close existing 'Encrypting from' log?
+ if (completed || (last_block != (u64)-1 && block != last_block + 1)) {
+ printf("Encrypted to block %" PRId64, last_block);
+ last_block = -1;
+ }
+
+ // Need to start new 'Encrypting from' log?
+ if (!completed && (last_block == (u64)-1 || block != last_block + 1)) {
+ printf("Encrypting from block %" PRId64, block);
+ }
+
+ // Update offset
+ if (!completed) {
+ last_block = block;
+ }
+}
+
+static int encrypt_one_block_f2fs(u64 pos, void *data)
+{
+ struct encryptGroupsData *priv_dat = (struct encryptGroupsData *)data;
+
+ priv_dat->blocks_already_done = pos - 1;
+ update_progress(priv_dat, 1);
+
+ off64_t offset = pos * CRYPT_INPLACE_BUFSIZE;
+
+ if (pread64(priv_dat->realfd, priv_dat->buffer, CRYPT_INPLACE_BUFSIZE, offset) <= 0) {
+ printf("Error reading real_blkdev %s for f2fs inplace encrypt", priv_dat->crypto_blkdev);
+ return -1;
+ }
+
+ if (pwrite64(priv_dat->cryptofd, priv_dat->buffer, CRYPT_INPLACE_BUFSIZE, offset) <= 0) {
+ printf("Error writing crypto_blkdev %s for f2fs inplace encrypt", priv_dat->crypto_blkdev);
+ return -1;
+ } else {
+ log_progress_f2fs(pos, false);
+ }
+
+ return 0;
+}
+
+static int cryptfs_enable_inplace_f2fs(char *crypto_blkdev,
+ char *real_blkdev,
+ off64_t size,
+ off64_t *size_already_done,
+ off64_t tot_size,
+ off64_t previously_encrypted_upto)
+{
+ u32 i;
+ struct encryptGroupsData data;
+ struct f2fs_info *f2fs_info = NULL;
+ int rc = ENABLE_INPLACE_ERR_OTHER;
+ if (previously_encrypted_upto > *size_already_done) {
+ printf("Not fast encrypting since resuming part way through");
+ return ENABLE_INPLACE_ERR_OTHER;
+ }
+ memset(&data, 0, sizeof(data));
+ data.real_blkdev = real_blkdev;
+ data.crypto_blkdev = crypto_blkdev;
+ data.realfd = -1;
+ data.cryptofd = -1;
+ if ( (data.realfd = open64(real_blkdev, O_RDWR)) < 0) {
+ printf("Error opening real_blkdev %s for f2fs inplace encrypt\n",
+ real_blkdev);
+ goto errout;
+ }
+ if ( (data.cryptofd = open64(crypto_blkdev, O_WRONLY)) < 0) {
+ printf("Error opening crypto_blkdev %s for f2fs inplace encrypt. err=%d(%s)\n",
+ crypto_blkdev, errno, strerror(errno));
+ rc = ENABLE_INPLACE_ERR_DEV;
+ goto errout;
+ }
+
+ f2fs_info = generate_f2fs_info(data.realfd);
+ if (!f2fs_info)
+ goto errout;
+
+ data.numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
+ data.tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
+ data.blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
+
+ data.tot_used_blocks = get_num_blocks_used(f2fs_info);
+
+ data.one_pct = data.tot_used_blocks / 100;
+ data.cur_pct = 0;
+ data.time_started = time(NULL);
+ data.remaining_time = -1;
+
+ data.buffer = malloc(f2fs_info->block_size);
+ if (!data.buffer) {
+ printf("Failed to allocate crypto buffer");
+ goto errout;
+ }
+
+ data.count = 0;
+
+ /* Currently, this either runs to completion, or hits a nonrecoverable error */
+ rc = run_on_used_blocks(data.blocks_already_done, f2fs_info, &encrypt_one_block_f2fs, &data);
+
+ if (rc) {
+ printf("Error in running over f2fs blocks");
+ rc = ENABLE_INPLACE_ERR_OTHER;
+ goto errout;
+ }
+
+ *size_already_done += size;
+ rc = 0;
+
+errout:
+ if (rc)
+ printf("Failed to encrypt f2fs filesystem on %s", real_blkdev);
+
+ log_progress_f2fs(0, true);
+ free(f2fs_info);
+ free(data.buffer);
+ close(data.realfd);
+ close(data.cryptofd);
+
+ return rc;
+}
+
+static int cryptfs_enable_inplace_full(char *crypto_blkdev, char *real_blkdev,
+ off64_t size, off64_t *size_already_done,
+ off64_t tot_size,
+ off64_t previously_encrypted_upto)
+{
+ int realfd, cryptofd;
+ char *buf[CRYPT_INPLACE_BUFSIZE];
+ int rc = ENABLE_INPLACE_ERR_OTHER;
+ off64_t numblocks, i, remainder;
+ off64_t one_pct, cur_pct, new_pct;
+ off64_t blocks_already_done, tot_numblocks;
+
+ if ( (realfd = open(real_blkdev, O_RDONLY)) < 0) {
+ printf("Error opening real_blkdev %s for inplace encrypt\n", real_blkdev);
+ return ENABLE_INPLACE_ERR_OTHER;
+ }
+
+ if ( (cryptofd = open(crypto_blkdev, O_WRONLY)) < 0) {
+ printf("Error opening crypto_blkdev %s for inplace encrypt. err=%d(%s)\n",
+ crypto_blkdev, errno, strerror(errno));
+ close(realfd);
+ return ENABLE_INPLACE_ERR_DEV;
+ }
+
+ /* This is pretty much a simple loop of reading 4K, and writing 4K.
+ * The size passed in is the number of 512 byte sectors in the filesystem.
+ * So compute the number of whole 4K blocks we should read/write,
+ * and the remainder.
+ */
+ numblocks = size / CRYPT_SECTORS_PER_BUFSIZE;
+ remainder = size % CRYPT_SECTORS_PER_BUFSIZE;
+ tot_numblocks = tot_size / CRYPT_SECTORS_PER_BUFSIZE;
+ blocks_already_done = *size_already_done / CRYPT_SECTORS_PER_BUFSIZE;
+
+ printf("Encrypting filesystem in place...");
+
+ i = previously_encrypted_upto + 1 - *size_already_done;
+
+ if (lseek64(realfd, i * CRYPT_SECTOR_SIZE, SEEK_SET) < 0) {
+ printf("Cannot seek to previously encrypted point on %s", real_blkdev);
+ goto errout;
+ }
+
+ if (lseek64(cryptofd, i * CRYPT_SECTOR_SIZE, SEEK_SET) < 0) {
+ printf("Cannot seek to previously encrypted point on %s", crypto_blkdev);
+ goto errout;
+ }
+
+ for (;i < size && i % CRYPT_SECTORS_PER_BUFSIZE != 0; ++i) {
+ if (unix_read(realfd, buf, CRYPT_SECTOR_SIZE) <= 0) {
+ printf("Error reading initial sectors from real_blkdev %s for "
+ "inplace encrypt\n", crypto_blkdev);
+ goto errout;
+ }
+ if (unix_write(cryptofd, buf, CRYPT_SECTOR_SIZE) <= 0) {
+ printf("Error writing initial sectors to crypto_blkdev %s for "
+ "inplace encrypt\n", crypto_blkdev);
+ goto errout;
+ } else {
+ printf("Encrypted 1 block at %" PRId64, i);
+ }
+ }
+
+ one_pct = tot_numblocks / 100;
+ cur_pct = 0;
+ /* process the majority of the filesystem in blocks */
+ for (i/=CRYPT_SECTORS_PER_BUFSIZE; i<numblocks; i++) {
+ new_pct = (i + blocks_already_done) / one_pct;
+ if (new_pct > cur_pct) {
+ char buf[8];
+
+ cur_pct = new_pct;
+ snprintf(buf, sizeof(buf), "%" PRId64, cur_pct);
+ property_set("vold.encrypt_progress", buf);
+ }
+ if (unix_read(realfd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
+ printf("Error reading real_blkdev %s for inplace encrypt", crypto_blkdev);
+ goto errout;
+ }
+ if (unix_write(cryptofd, buf, CRYPT_INPLACE_BUFSIZE) <= 0) {
+ printf("Error writing crypto_blkdev %s for inplace encrypt", crypto_blkdev);
+ goto errout;
+ } else {
+ printf("Encrypted %d block at %" PRId64,
+ CRYPT_SECTORS_PER_BUFSIZE,
+ i * CRYPT_SECTORS_PER_BUFSIZE);
+ }
+
+ if (1) {
+ printf("Stopping encryption due to low battery");
+ *size_already_done += (i + 1) * CRYPT_SECTORS_PER_BUFSIZE - 1;
+ rc = 0;
+ goto errout;
+ }
+ }
+
+ /* Do any remaining sectors */
+ for (i=0; i<remainder; i++) {
+ if (unix_read(realfd, buf, CRYPT_SECTOR_SIZE) <= 0) {
+ printf("Error reading final sectors from real_blkdev %s for inplace encrypt", crypto_blkdev);
+ goto errout;
+ }
+ if (unix_write(cryptofd, buf, CRYPT_SECTOR_SIZE) <= 0) {
+ printf("Error writing final sectors to crypto_blkdev %s for inplace encrypt", crypto_blkdev);
+ goto errout;
+ } else {
+ printf("Encrypted 1 block at next location");
+ }
+ }
+
+ *size_already_done += size;
+ rc = 0;
+
+errout:
+ close(realfd);
+ close(cryptofd);
+
+ return rc;
+}
+
+/* returns on of the ENABLE_INPLACE_* return codes */
+static int cryptfs_enable_inplace(char *crypto_blkdev, char *real_blkdev,
+ off64_t size, off64_t *size_already_done,
+ off64_t tot_size,
+ off64_t previously_encrypted_upto)
+{
+ int rc_ext4, rc_f2fs, rc_full;
+ if (previously_encrypted_upto) {
+ printf("Continuing encryption from %" PRId64, previously_encrypted_upto);
+ }
+
+ if (*size_already_done + size < previously_encrypted_upto) {
+ *size_already_done += size;
+ return 0;
+ }
+
+ /* TODO: identify filesystem type.
+ * As is, cryptfs_enable_inplace_ext4 will fail on an f2fs partition, and
+ * then we will drop down to cryptfs_enable_inplace_f2fs.
+ * */
+ if ((rc_ext4 = cryptfs_enable_inplace_ext4(crypto_blkdev, real_blkdev,
+ size, size_already_done,
+ tot_size, previously_encrypted_upto)) == 0) {
+ return 0;
+ }
+ printf("cryptfs_enable_inplace_ext4()=%d\n", rc_ext4);
+
+ if ((rc_f2fs = cryptfs_enable_inplace_f2fs(crypto_blkdev, real_blkdev,
+ size, size_already_done,
+ tot_size, previously_encrypted_upto)) == 0) {
+ return 0;
+ }
+ printf("cryptfs_enable_inplace_f2fs()=%d\n", rc_f2fs);
+
+ rc_full = cryptfs_enable_inplace_full(crypto_blkdev, real_blkdev,
+ size, size_already_done, tot_size,
+ previously_encrypted_upto);
+ printf("cryptfs_enable_inplace_full()=%d\n", rc_full);
+
+ /* Hack for b/17898962, the following is the symptom... */
+ if (rc_ext4 == ENABLE_INPLACE_ERR_DEV
+ && rc_f2fs == ENABLE_INPLACE_ERR_DEV
+ && rc_full == ENABLE_INPLACE_ERR_DEV) {
+ return ENABLE_INPLACE_ERR_DEV;
+ }
+ return rc_full;
+}
+
+#define CRYPTO_ENABLE_WIPE 1
+#define CRYPTO_ENABLE_INPLACE 2
+
+#define FRAMEWORK_BOOT_WAIT 60
+
+static inline int should_encrypt(struct volume_info *volume)
+{
+ return (volume->flags & (VOL_ENCRYPTABLE | VOL_NONREMOVABLE)) ==
+ (VOL_ENCRYPTABLE | VOL_NONREMOVABLE);
+}
+
+static int cryptfs_SHA256_fileblock(const char* filename, __le8* buf)
+{
+ int fd = open(filename, O_RDONLY);
+ if (fd == -1) {
+ printf("Error opening file %s", filename);
+ return -1;
+ }
+
+ char block[CRYPT_INPLACE_BUFSIZE];
+ memset(block, 0, sizeof(block));
+ if (unix_read(fd, block, sizeof(block)) < 0) {
+ printf("Error reading file %s", filename);
+ close(fd);
+ return -1;
+ }
+
+ close(fd);
+
+ SHA256_CTX c;
+ SHA256_Init(&c);
+ SHA256_Update(&c, block, sizeof(block));
+ SHA256_Final(buf, &c);
+
+ return 0;
+}
+
+static int get_fs_type(struct fstab_rec *rec)
+{
+ if (!strcmp(rec->fs_type, "ext4")) {
+ return EXT4_FS;
+ } else if (!strcmp(rec->fs_type, "f2fs")) {
+ return F2FS_FS;
+ } else {
+ return -1;
+ }
+}
+
+static int cryptfs_enable_all_volumes(struct crypt_mnt_ftr *crypt_ftr, int how,
+ char *crypto_blkdev, char *real_blkdev,
+ int previously_encrypted_upto)
+{
+ off64_t cur_encryption_done=0, tot_encryption_size=0;
+ int i, rc = -1;
+
+ if (1) {
+ printf("Not starting encryption due to low battery");
+ return 0;
+ }
+
+ /* The size of the userdata partition, and add in the vold volumes below */
+ tot_encryption_size = crypt_ftr->fs_size;
+
+ if (how == CRYPTO_ENABLE_WIPE) {
+ struct fstab_rec* rec = fs_mgr_get_entry_for_mount_point(fstab, DATA_MNT_POINT);
+ int fs_type = get_fs_type(rec);
+ if (fs_type < 0) {
+ printf("cryptfs_enable: unsupported fs type %s\n", rec->fs_type);
+ return -1;
+ }
+ rc = cryptfs_enable_wipe(crypto_blkdev, crypt_ftr->fs_size, fs_type);
+ } else if (how == CRYPTO_ENABLE_INPLACE) {
+ rc = cryptfs_enable_inplace(crypto_blkdev, real_blkdev,
+ crypt_ftr->fs_size, &cur_encryption_done,
+ tot_encryption_size,
+ previously_encrypted_upto);
+
+ if (rc == ENABLE_INPLACE_ERR_DEV) {
+ /* Hack for b/17898962 */
+ printf("cryptfs_enable: crypto block dev failure. Must reboot...\n");
+ cryptfs_reboot(reboot);
+ }
+
+ if (!rc) {
+ crypt_ftr->encrypted_upto = cur_encryption_done;
+ }
+
+ if (!rc && crypt_ftr->encrypted_upto == crypt_ftr->fs_size) {
+ /* The inplace routine never actually sets the progress to 100% due
+ * to the round down nature of integer division, so set it here */
+ property_set("vold.encrypt_progress", "100");
+ }
+ } else {
+ /* Shouldn't happen */
+ printf("cryptfs_enable: internal error, unknown option\n");
+ rc = -1;
+ }
+
+ return rc;
+}
+
+int cryptfs_enable_internal(char *howarg, int crypt_type, char *passwd,
+ int allow_reboot)
+{
+ int how = 0;
+ char crypto_blkdev[MAXPATHLEN], real_blkdev[MAXPATHLEN];
+ unsigned long nr_sec;
+ unsigned char decrypted_master_key[KEY_LEN_BYTES];
+ int rc=-1, fd, i, ret;
+ struct crypt_mnt_ftr crypt_ftr;
+ struct crypt_persist_data *pdata;
+ char encrypted_state[PROPERTY_VALUE_MAX];
+ char lockid[32] = { 0 };
+ char key_loc[PROPERTY_VALUE_MAX];
+ char fuse_sdcard[PROPERTY_VALUE_MAX];
+ char *sd_mnt_point;
+ int num_vols;
+ struct volume_info *vol_list = 0;
+ off64_t previously_encrypted_upto = 0;
+printf("cryptfs_enable_internal disabled by TWRP\n");
+return -1;
+ if (!strcmp(howarg, "wipe")) {
+ how = CRYPTO_ENABLE_WIPE;
+ } else if (! strcmp(howarg, "inplace")) {
+ how = CRYPTO_ENABLE_INPLACE;
+ } else {
+ /* Shouldn't happen, as CommandListener vets the args */
+ goto error_unencrypted;
+ }
+
+ /* See if an encryption was underway and interrupted */
+ if (how == CRYPTO_ENABLE_INPLACE
+ && get_crypt_ftr_and_key(&crypt_ftr) == 0
+ && (crypt_ftr.flags & CRYPT_ENCRYPTION_IN_PROGRESS)) {
+ previously_encrypted_upto = crypt_ftr.encrypted_upto;
+ crypt_ftr.encrypted_upto = 0;
+ crypt_ftr.flags &= ~CRYPT_ENCRYPTION_IN_PROGRESS;
+
+ /* At this point, we are in an inconsistent state. Until we successfully
+ complete encryption, a reboot will leave us broken. So mark the
+ encryption failed in case that happens.
+ On successfully completing encryption, remove this flag */
+ crypt_ftr.flags |= CRYPT_INCONSISTENT_STATE;
+
+ put_crypt_ftr_and_key(&crypt_ftr);
+ }
+
+ property_get("ro.crypto.state", encrypted_state, "");
+ if (!strcmp(encrypted_state, "encrypted") && !previously_encrypted_upto) {
+ printf("Device is already running encrypted, aborting");
+ goto error_unencrypted;
+ }
+
+ // TODO refactor fs_mgr_get_crypt_info to get both in one call
+ fs_mgr_get_crypt_info(fstab, key_loc, 0, sizeof(key_loc));
+ fs_mgr_get_crypt_info(fstab, 0, real_blkdev, sizeof(real_blkdev));
+
+ /* Get the size of the real block device */
+ fd = open(real_blkdev, O_RDONLY);
+ if ( (nr_sec = get_blkdev_size(fd)) == 0) {
+ printf("Cannot get size of block device %s\n", real_blkdev);
+ goto error_unencrypted;
+ }
+ close(fd);
+
+ /* If doing inplace encryption, make sure the orig fs doesn't include the crypto footer */
+ if ((how == CRYPTO_ENABLE_INPLACE) && (!strcmp(key_loc, KEY_IN_FOOTER))) {
+ unsigned int fs_size_sec, max_fs_size_sec;
+ fs_size_sec = get_fs_size(real_blkdev);
+ if (fs_size_sec == 0)
+ fs_size_sec = get_f2fs_filesystem_size_sec(real_blkdev);
+
+ max_fs_size_sec = nr_sec - (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE);
+
+ if (fs_size_sec > max_fs_size_sec) {
+ printf("Orig filesystem overlaps crypto footer region. Cannot encrypt in place.");
+ goto error_unencrypted;
+ }
+ }
+
+ /* Get a wakelock as this may take a while, and we don't want the
+ * device to sleep on us. We'll grab a partial wakelock, and if the UI
+ * wants to keep the screen on, it can grab a full wakelock.
+ */
+ snprintf(lockid, sizeof(lockid), "enablecrypto%d", (int) getpid());
+ acquire_wake_lock(PARTIAL_WAKE_LOCK, lockid);
+
+ /* Get the sdcard mount point */
+ sd_mnt_point = getenv("EMULATED_STORAGE_SOURCE");
+ if (!sd_mnt_point) {
+ sd_mnt_point = getenv("EXTERNAL_STORAGE");
+ }
+ if (!sd_mnt_point) {
+ sd_mnt_point = "/mnt/sdcard";
+ }
+
+ /* TODO
+ * Currently do not have test devices with multiple encryptable volumes.
+ * When we acquire some, re-add support.
+ */
+ num_vols=0/*vold_getNumDirectVolumes()*/;
+ vol_list = malloc(sizeof(struct volume_info) * num_vols);
+ //vold_getDirectVolumeList(vol_list);
+
+ for (i=0; i<num_vols; i++) {
+ if (should_encrypt(&vol_list[i])) {
+ printf("Cannot encrypt if there are multiple encryptable volumes"
+ "%s\n", vol_list[i].label);
+ goto error_unencrypted;
+ }
+ }
+
+ /* The init files are setup to stop the class main and late start when
+ * vold sets trigger_shutdown_framework.
+ */
+ property_set("vold.decrypt", "trigger_shutdown_framework");
+ printf("Just asked init to shut down class main\n");
+
+ if (1 /*vold_unmountAllAsecs()*/) {
+ /* Just report the error. If any are left mounted,
+ * umounting /data below will fail and handle the error.
+ */
+ printf("Error unmounting internal asecs");
+ }
+
+ property_get("ro.crypto.fuse_sdcard", fuse_sdcard, "");
+ if (!strcmp(fuse_sdcard, "true")) {
+ /* This is a device using the fuse layer to emulate the sdcard semantics
+ * on top of the userdata partition. vold does not manage it, it is managed
+ * by the sdcard service. The sdcard service was killed by the property trigger
+ * above, so just unmount it now. We must do this _AFTER_ killing the framework,
+ * unlike the case for vold managed devices above.
+ */
+ if (wait_and_unmount(sd_mnt_point, false)) {
+ goto error_shutting_down;
+ }
+ }
+
+ /* Now unmount the /data partition. */
+ if (wait_and_unmount(DATA_MNT_POINT, false)) {
+ if (allow_reboot) {
+ goto error_shutting_down;
+ } else {
+ goto error_unencrypted;
+ }
+ }
+
+ /* Do extra work for a better UX when doing the long inplace encryption */
+ if (how == CRYPTO_ENABLE_INPLACE) {
+ /* Now that /data is unmounted, we need to mount a tmpfs
+ * /data, set a property saying we're doing inplace encryption,
+ * and restart the framework.
+ */
+ if (fs_mgr_do_tmpfs_mount(DATA_MNT_POINT)) {
+ goto error_shutting_down;
+ }
+ /* Tells the framework that inplace encryption is starting */
+ property_set("vold.encrypt_progress", "0");
+
+ /* restart the framework. */
+ /* Create necessary paths on /data */
+ if (prep_data_fs()) {
+ goto error_shutting_down;
+ }
+
+ /* Ugh, shutting down the framework is not synchronous, so until it
+ * can be fixed, this horrible hack will wait a moment for it all to
+ * shut down before proceeding. Without it, some devices cannot
+ * restart the graphics services.
+ */
+ sleep(2);
+
+ /* startup service classes main and late_start */
+ property_set("vold.decrypt", "trigger_restart_min_framework");
+ printf("Just triggered restart_min_framework\n");
+
+ /* OK, the framework is restarted and will soon be showing a
+ * progress bar. Time to setup an encrypted mapping, and
+ * either write a new filesystem, or encrypt in place updating
+ * the progress bar as we work.
+ */
+ }
+
+ /* Start the actual work of making an encrypted filesystem */
+ /* Initialize a crypt_mnt_ftr for the partition */
+ if (previously_encrypted_upto == 0) {
+ if (cryptfs_init_crypt_mnt_ftr(&crypt_ftr)) {
+ goto error_shutting_down;
+ }
+
+ if (!strcmp(key_loc, KEY_IN_FOOTER)) {
+ crypt_ftr.fs_size = nr_sec
+ - (CRYPT_FOOTER_OFFSET / CRYPT_SECTOR_SIZE);
+ } else {
+ crypt_ftr.fs_size = nr_sec;
+ }
+ /* At this point, we are in an inconsistent state. Until we successfully
+ complete encryption, a reboot will leave us broken. So mark the
+ encryption failed in case that happens.
+ On successfully completing encryption, remove this flag */
+ crypt_ftr.flags |= CRYPT_INCONSISTENT_STATE;
+ crypt_ftr.crypt_type = crypt_type;
+ strcpy((char *)crypt_ftr.crypto_type_name, "aes-cbc-essiv:sha256");
+
+ /* Make an encrypted master key */
+ if (create_encrypted_random_key(passwd, crypt_ftr.master_key, crypt_ftr.salt, &crypt_ftr)) {
+ printf("Cannot create encrypted master key\n");
+ goto error_shutting_down;
+ }
+
+ /* Write the key to the end of the partition */
+ put_crypt_ftr_and_key(&crypt_ftr);
+
+ /* If any persistent data has been remembered, save it.
+ * If none, create a valid empty table and save that.
+ */
+ if (!persist_data) {
+ pdata = malloc(CRYPT_PERSIST_DATA_SIZE);
+ if (pdata) {
+ init_empty_persist_data(pdata, CRYPT_PERSIST_DATA_SIZE);
+ persist_data = pdata;
+ }
+ }
+ if (persist_data) {
+ save_persistent_data();
+ }
+ }
+
+ decrypt_master_key(passwd, decrypted_master_key, &crypt_ftr, 0, 0);
+ create_crypto_blk_dev(&crypt_ftr, decrypted_master_key, real_blkdev, crypto_blkdev,
+ "userdata");
+
+ /* If we are continuing, check checksums match */
+ rc = 0;
+ if (previously_encrypted_upto) {
+ __le8 hash_first_block[SHA256_DIGEST_LENGTH];
+ rc = cryptfs_SHA256_fileblock(crypto_blkdev, hash_first_block);
+
+ if (!rc && memcmp(hash_first_block, crypt_ftr.hash_first_block,
+ sizeof(hash_first_block)) != 0) {
+ printf("Checksums do not match - trigger wipe");
+ rc = -1;
+ }
+ }
+
+ if (!rc) {
+ rc = cryptfs_enable_all_volumes(&crypt_ftr, how,
+ crypto_blkdev, real_blkdev,
+ previously_encrypted_upto);
+ }
+
+ /* Calculate checksum if we are not finished */
+ if (!rc && crypt_ftr.encrypted_upto != crypt_ftr.fs_size) {
+ rc = cryptfs_SHA256_fileblock(crypto_blkdev,
+ crypt_ftr.hash_first_block);
+ if (rc) {
+ printf("Error calculating checksum for continuing encryption");
+ rc = -1;
+ }
+ }
+
+ /* Undo the dm-crypt mapping whether we succeed or not */
+ delete_crypto_blk_dev("userdata");
+
+ free(vol_list);
+
+ if (! rc) {
+ /* Success */
+ crypt_ftr.flags &= ~CRYPT_INCONSISTENT_STATE;
+
+ if (crypt_ftr.encrypted_upto != crypt_ftr.fs_size) {
+ printf("Encrypted up to sector %lld - will continue after reboot",
+ crypt_ftr.encrypted_upto);
+ crypt_ftr.flags |= CRYPT_ENCRYPTION_IN_PROGRESS;
+ }
+
+ put_crypt_ftr_and_key(&crypt_ftr);
+
+ if (crypt_ftr.encrypted_upto == crypt_ftr.fs_size) {
+ char value[PROPERTY_VALUE_MAX];
+ property_get("ro.crypto.state", value, "");
+ if (!strcmp(value, "")) {
+ /* default encryption - continue first boot sequence */
+ property_set("ro.crypto.state", "encrypted");
+ release_wake_lock(lockid);
+ cryptfs_check_passwd(DEFAULT_PASSWORD);
+ cryptfs_restart_internal(1);
+ return 0;
+ } else {
+ sleep(2); /* Give the UI a chance to show 100% progress */
+ cryptfs_reboot(reboot);
+ }
+ } else {
+ sleep(2); /* Partially encrypted, ensure writes flushed to ssd */
+ cryptfs_reboot(shutdown);
+ }
+ } else {
+ char value[PROPERTY_VALUE_MAX];
+
+ property_get("ro.vold.wipe_on_crypt_fail", value, "0");
+ if (!strcmp(value, "1")) {
+ /* wipe data if encryption failed */
+ printf("encryption failed - rebooting into recovery to wipe data\n");
+ mkdir("/cache/recovery", 0700);
+ int fd = open("/cache/recovery/command", O_RDWR|O_CREAT|O_TRUNC, 0600);
+ if (fd >= 0) {
+ write(fd, "--wipe_data\n", strlen("--wipe_data\n") + 1);
+ write(fd, "--reason=cryptfs_enable_internal\n", strlen("--reason=cryptfs_enable_internal\n") + 1);
+ close(fd);
+ } else {
+ printf("could not open /cache/recovery/command\n");
+ }
+ cryptfs_reboot(recovery);
+ } else {
+ /* set property to trigger dialog */
+ property_set("vold.encrypt_progress", "error_partially_encrypted");
+ release_wake_lock(lockid);
+ }
+ return -1;
+ }
+
+ /* hrm, the encrypt step claims success, but the reboot failed.
+ * This should not happen.
+ * Set the property and return. Hope the framework can deal with it.
+ */
+ property_set("vold.encrypt_progress", "error_reboot_failed");
+ release_wake_lock(lockid);
+ return rc;
+
+error_unencrypted:
+ free(vol_list);
+ property_set("vold.encrypt_progress", "error_not_encrypted");
+ if (lockid[0]) {
+ release_wake_lock(lockid);
+ }
+ return -1;
+
+error_shutting_down:
+ /* we failed, and have not encrypted anthing, so the users's data is still intact,
+ * but the framework is stopped and not restarted to show the error, so it's up to
+ * vold to restart the system.
+ */
+ printf("Error enabling encryption after framework is shutdown, no data changed, restarting system");
+ cryptfs_reboot(reboot);
+
+ /* shouldn't get here */
+ property_set("vold.encrypt_progress", "error_shutting_down");
+ free(vol_list);
+ if (lockid[0]) {
+ release_wake_lock(lockid);
+ }
+ return -1;
+}
+
+int cryptfs_enable(char *howarg, int type, char *passwd, int allow_reboot)
+{
+ char* adjusted_passwd = adjust_passwd(passwd);
+ if (adjusted_passwd) {
+ passwd = adjusted_passwd;
+ }
+
+ int rc = cryptfs_enable_internal(howarg, type, passwd, allow_reboot);
+
+ free(adjusted_passwd);
+ return rc;
+}
+
+int cryptfs_enable_default(char *howarg, int allow_reboot)
+{
+ return cryptfs_enable_internal(howarg, CRYPT_TYPE_DEFAULT,
+ DEFAULT_PASSWORD, allow_reboot);
+}
+
+int cryptfs_changepw(int crypt_type, const char *newpw)
+{
+ struct crypt_mnt_ftr crypt_ftr;
+ unsigned char decrypted_master_key[KEY_LEN_BYTES];
+
+ /* This is only allowed after we've successfully decrypted the master key */
+ if (!master_key_saved) {
+ printf("Key not saved, aborting");
+ return -1;
+ }
+
+ if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) {
+ printf("Invalid crypt_type %d", crypt_type);
+ return -1;
+ }
+
+ /* get key */
+ if (get_crypt_ftr_and_key(&crypt_ftr)) {
+ printf("Error getting crypt footer and key");
+ return -1;
+ }
+
+ crypt_ftr.crypt_type = crypt_type;
+
+ char* adjusted_passwd = adjust_passwd(newpw);
+ if (adjusted_passwd) {
+ newpw = adjusted_passwd;
+ }
+
+ encrypt_master_key(crypt_type == CRYPT_TYPE_DEFAULT ? DEFAULT_PASSWORD
+ : newpw,
+ crypt_ftr.salt,
+ saved_master_key,
+ crypt_ftr.master_key,
+ &crypt_ftr);
+
+ /* save the key */
+ put_crypt_ftr_and_key(&crypt_ftr);
+
+ free(adjusted_passwd);
+ return 0;
+}
+
+static int persist_get_key(char *fieldname, char *value)
+{
+ unsigned int i;
+
+ if (persist_data == NULL) {
+ return -1;
+ }
+ for (i = 0; i < persist_data->persist_valid_entries; i++) {
+ if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) {
+ /* We found it! */
+ strlcpy(value, persist_data->persist_entry[i].val, PROPERTY_VALUE_MAX);
+ return 0;
+ }
+ }
+
+ return -1;
+}
+
+static int persist_set_key(char *fieldname, char *value, int encrypted)
+{
+ unsigned int i;
+ unsigned int num;
+ struct crypt_mnt_ftr crypt_ftr;
+ unsigned int max_persistent_entries;
+ unsigned int dsize;
+
+ if (persist_data == NULL) {
+ return -1;
+ }
+
+ /* If encrypted, use the values from the crypt_ftr, otherwise
+ * use the values for the current spec.
+ */
+ if (encrypted) {
+ if(get_crypt_ftr_and_key(&crypt_ftr)) {
+ return -1;
+ }
+ dsize = crypt_ftr.persist_data_size;
+ } else {
+ dsize = CRYPT_PERSIST_DATA_SIZE;
+ }
+ max_persistent_entries = (dsize - sizeof(struct crypt_persist_data)) /
+ sizeof(struct crypt_persist_entry);
+
+ num = persist_data->persist_valid_entries;
+
+ for (i = 0; i < num; i++) {
+ if (!strncmp(persist_data->persist_entry[i].key, fieldname, PROPERTY_KEY_MAX)) {
+ /* We found an existing entry, update it! */
+ memset(persist_data->persist_entry[i].val, 0, PROPERTY_VALUE_MAX);
+ strlcpy(persist_data->persist_entry[i].val, value, PROPERTY_VALUE_MAX);
+ return 0;
+ }
+ }
+
+ /* We didn't find it, add it to the end, if there is room */
+ if (persist_data->persist_valid_entries < max_persistent_entries) {
+ memset(&persist_data->persist_entry[num], 0, sizeof(struct crypt_persist_entry));
+ strlcpy(persist_data->persist_entry[num].key, fieldname, PROPERTY_KEY_MAX);
+ strlcpy(persist_data->persist_entry[num].val, value, PROPERTY_VALUE_MAX);
+ persist_data->persist_valid_entries++;
+ return 0;
+ }
+
+ return -1;
+}
+
+/* Return the value of the specified field. */
+int cryptfs_getfield(char *fieldname, char *value, int len)
+{
+ char temp_value[PROPERTY_VALUE_MAX];
+ char real_blkdev[MAXPATHLEN];
+ /* 0 is success, 1 is not encrypted,
+ * -1 is value not set, -2 is any other error
+ */
+ int rc = -2;
+
+ if (persist_data == NULL) {
+ load_persistent_data();
+ if (persist_data == NULL) {
+ printf("Getfield error, cannot load persistent data");
+ goto out;
+ }
+ }
+
+ if (!persist_get_key(fieldname, temp_value)) {
+ /* We found it, copy it to the caller's buffer and return */
+ strlcpy(value, temp_value, len);
+ rc = 0;
+ } else {
+ /* Sadness, it's not there. Return the error */
+ rc = -1;
+ }
+
+out:
+ return rc;
+}
+
+/* Set the value of the specified field. */
+int cryptfs_setfield(char *fieldname, char *value)
+{
+ struct crypt_persist_data stored_pdata;
+ struct crypt_persist_data *pdata_p;
+ struct crypt_mnt_ftr crypt_ftr;
+ char encrypted_state[PROPERTY_VALUE_MAX];
+ /* 0 is success, -1 is an error */
+ int rc = -1;
+ int encrypted = 0;
+
+ if (persist_data == NULL) {
+ load_persistent_data();
+ if (persist_data == NULL) {
+ printf("Setfield error, cannot load persistent data");
+ goto out;
+ }
+ }
+
+ property_get("ro.crypto.state", encrypted_state, "");
+ if (!strcmp(encrypted_state, "encrypted") ) {
+ encrypted = 1;
+ }
+
+ if (persist_set_key(fieldname, value, encrypted)) {
+ goto out;
+ }
+
+ /* If we are running encrypted, save the persistent data now */
+ if (encrypted) {
+ if (save_persistent_data()) {
+ printf("Setfield error, cannot save persistent data");
+ goto out;
+ }
+ }
+
+ rc = 0;
+
+out:
+ return rc;
+}
+
+/* Checks userdata. Attempt to mount the volume if default-
+ * encrypted.
+ * On success trigger next init phase and return 0.
+ * Currently do not handle failure - see TODO below.
+ */
+int cryptfs_mount_default_encrypted(void)
+{
+ char decrypt_state[PROPERTY_VALUE_MAX];
+ property_get("vold.decrypt", decrypt_state, "0");
+ if (!strcmp(decrypt_state, "0")) {
+ printf("Not encrypted - should not call here");
+ } else {
+ int crypt_type = cryptfs_get_password_type();
+ if (crypt_type < 0 || crypt_type > CRYPT_TYPE_MAX_TYPE) {
+ printf("Bad crypt type - error");
+ } else if (crypt_type != CRYPT_TYPE_DEFAULT) {
+ printf("Password is not default - "
+ "starting min framework to prompt");
+ property_set("vold.decrypt", "trigger_restart_min_framework");
+ return 0;
+ } else if (cryptfs_check_passwd(DEFAULT_PASSWORD) == 0) {
+ printf("Password is default - restarting filesystem");
+ cryptfs_restart_internal(0);
+ return 0;
+ } else {
+ printf("Encrypted, default crypt type but can't decrypt");
+ }
+ }
+
+ /** Corrupt. Allow us to boot into framework, which will detect bad
+ crypto when it calls do_crypto_complete, then do a factory reset
+ */
+ property_set("vold.decrypt", "trigger_restart_min_framework");
+ return 0;
+}
+
+/* Returns type of the password, default, pattern, pin or password.
+ */
+int cryptfs_get_password_type(void)
+{
+ struct crypt_mnt_ftr crypt_ftr;
+ char fstab_filename[PROPERTY_VALUE_MAX + sizeof(FSTAB_PREFIX)];
+ char propbuf[PROPERTY_VALUE_MAX];
+
+ property_get("ro.hardware", propbuf, "");
+ snprintf(fstab_filename, sizeof(fstab_filename), FSTAB_PREFIX"%s", propbuf);
+
+ fstab = fs_mgr_read_fstab(fstab_filename);
+ if (!fstab) {
+ printf("failed to open %s\n", fstab_filename);
+ return -1;
+ }
+
+ if (get_crypt_ftr_and_key(&crypt_ftr)) {
+ printf("Error getting crypt footer and key\n");
+ return -1;
+ }
+
+ if (crypt_ftr.flags & CRYPT_INCONSISTENT_STATE) {
+ return -1;
+ }
+
+ return crypt_ftr.crypt_type;
+}
+
+char* cryptfs_get_password()
+{
+ struct timespec now;
+ clock_gettime(CLOCK_MONOTONIC, &now);
+ if (now.tv_sec < password_expiry_time) {
+ return password;
+ } else {
+ cryptfs_clear_password();
+ return 0;
+ }
+}
+
+void cryptfs_clear_password()
+{
+ if (password) {
+ size_t len = strlen(password);
+ memset(password, 0, len);
+ free(password);
+ password = 0;
+ password_expiry_time = 0;
+ }
+}