1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
|
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "updater/install.h"
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <ftw.h>
#include <inttypes.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/capability.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/xattr.h>
#include <time.h>
#include <unistd.h>
#include <utime.h>
#include <memory>
#include <string>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parsedouble.h>
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <applypatch/applypatch.h>
#include <bootloader_message/bootloader_message.h>
#include <ext4_utils/wipe.h>
#include <openssl/sha.h>
#include <selinux/label.h>
#include <selinux/selinux.h>
#include <tune2fs.h>
#include <ziparchive/zip_archive.h>
#include "edify/expr.h"
#include "otafault/ota_io.h"
#include "otautil/dirutil.h"
#include "otautil/error_code.h"
#include "otautil/mounts.h"
#include "otautil/print_sha1.h"
#include "otautil/sysutil.h"
#include "updater/updater.h"
// Send over the buffer to recovery though the command pipe.
static void uiPrint(State* state, const std::string& buffer) {
UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie);
// "line1\nline2\n" will be split into 3 tokens: "line1", "line2" and "".
// So skip sending empty strings to UI.
std::vector<std::string> lines = android::base::Split(buffer, "\n");
for (auto& line : lines) {
if (!line.empty()) {
fprintf(ui->cmd_pipe, "ui_print %s\n", line.c_str());
}
}
// On the updater side, we need to dump the contents to stderr (which has
// been redirected to the log file). Because the recovery will only print
// the contents to screen when processing pipe command ui_print.
LOG(INFO) << buffer;
}
void uiPrintf(State* _Nonnull state, const char* _Nonnull format, ...) {
std::string error_msg;
va_list ap;
va_start(ap, format);
android::base::StringAppendV(&error_msg, format, ap);
va_end(ap);
uiPrint(state, error_msg);
}
// This is the updater side handler for ui_print() in edify script. Contents will be sent over to
// the recovery side for on-screen display.
Value* UIPrintFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name);
}
std::string buffer = android::base::Join(args, "");
uiPrint(state, buffer);
return StringValue(buffer);
}
// package_extract_file(package_file[, dest_file])
// Extracts a single package_file from the update package and writes it to dest_file,
// overwriting existing files if necessary. Without the dest_file argument, returns the
// contents of the package file as a binary blob.
Value* PackageExtractFileFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() < 1 || argv.size() > 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 or 2 args, got %zu", name,
argv.size());
}
if (argv.size() == 2) {
// The two-argument version extracts to a file.
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse %zu args", name,
argv.size());
}
const std::string& zip_path = args[0];
const std::string& dest_path = args[1];
ZipArchiveHandle za = static_cast<UpdaterInfo*>(state->cookie)->package_zip;
ZipString zip_string_path(zip_path.c_str());
ZipEntry entry;
if (FindEntry(za, zip_string_path, &entry) != 0) {
LOG(ERROR) << name << ": no " << zip_path << " in package";
return StringValue("");
}
unique_fd fd(TEMP_FAILURE_RETRY(
ota_open(dest_path.c_str(), O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR)));
if (fd == -1) {
PLOG(ERROR) << name << ": can't open " << dest_path << " for write";
return StringValue("");
}
bool success = true;
int32_t ret = ExtractEntryToFile(za, &entry, fd);
if (ret != 0) {
LOG(ERROR) << name << ": Failed to extract entry \"" << zip_path << "\" ("
<< entry.uncompressed_length << " bytes) to \"" << dest_path
<< "\": " << ErrorCodeString(ret);
success = false;
}
if (ota_fsync(fd) == -1) {
PLOG(ERROR) << "fsync of \"" << dest_path << "\" failed";
success = false;
}
if (ota_close(fd) == -1) {
PLOG(ERROR) << "close of \"" << dest_path << "\" failed";
success = false;
}
return StringValue(success ? "t" : "");
} else {
// The one-argument version returns the contents of the file as the result.
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse %zu args", name,
argv.size());
}
const std::string& zip_path = args[0];
ZipArchiveHandle za = static_cast<UpdaterInfo*>(state->cookie)->package_zip;
ZipString zip_string_path(zip_path.c_str());
ZipEntry entry;
if (FindEntry(za, zip_string_path, &entry) != 0) {
return ErrorAbort(state, kPackageExtractFileFailure, "%s(): no %s in package", name,
zip_path.c_str());
}
std::string buffer;
buffer.resize(entry.uncompressed_length);
int32_t ret =
ExtractToMemory(za, &entry, reinterpret_cast<uint8_t*>(&buffer[0]), buffer.size());
if (ret != 0) {
return ErrorAbort(state, kPackageExtractFileFailure,
"%s: Failed to extract entry \"%s\" (%zu bytes) to memory: %s", name,
zip_path.c_str(), buffer.size(), ErrorCodeString(ret));
}
return new Value(VAL_BLOB, buffer);
}
}
// apply_patch(src_file, tgt_file, tgt_sha1, tgt_size, patch1_sha1, patch1_blob, [...])
// Applies a binary patch to the src_file to produce the tgt_file. If the desired target is the
// same as the source, pass "-" for tgt_file. tgt_sha1 and tgt_size are the expected final SHA1
// hash and size of the target file. The remaining arguments must come in pairs: a SHA1 hash (a
// 40-character hex string) and a blob. The blob is the patch to be applied when the source
// file's current contents have the given SHA1.
//
// The patching is done in a safe manner that guarantees the target file either has the desired
// SHA1 hash and size, or it is untouched -- it will not be left in an unrecoverable intermediate
// state. If the process is interrupted during patching, the target file may be in an intermediate
// state; a copy exists in the cache partition so restarting the update can successfully update
// the file.
Value* ApplyPatchFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() < 6 || (argv.size() % 2) == 1) {
return ErrorAbort(state, kArgsParsingFailure,
"%s(): expected at least 6 args and an "
"even number, got %zu",
name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args, 0, 4)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& source_filename = args[0];
const std::string& target_filename = args[1];
const std::string& target_sha1 = args[2];
const std::string& target_size_str = args[3];
size_t target_size;
if (!android::base::ParseUint(target_size_str.c_str(), &target_size)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): can't parse \"%s\" as byte count", name,
target_size_str.c_str());
}
int patchcount = (argv.size() - 4) / 2;
std::vector<std::unique_ptr<Value>> arg_values;
if (!ReadValueArgs(state, argv, &arg_values, 4, argv.size() - 4)) {
return nullptr;
}
for (int i = 0; i < patchcount; ++i) {
if (arg_values[i * 2]->type != VAL_STRING) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): sha-1 #%d is not string", name, i * 2);
}
if (arg_values[i * 2 + 1]->type != VAL_BLOB) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): patch #%d is not blob", name, i * 2 + 1);
}
}
std::vector<std::string> patch_sha_str;
std::vector<std::unique_ptr<Value>> patches;
for (int i = 0; i < patchcount; ++i) {
patch_sha_str.push_back(arg_values[i * 2]->data);
patches.push_back(std::move(arg_values[i * 2 + 1]));
}
int result = applypatch(source_filename.c_str(), target_filename.c_str(), target_sha1.c_str(),
target_size, patch_sha_str, patches, nullptr);
return StringValue(result == 0 ? "t" : "");
}
// apply_patch_check(filename, [sha1, ...])
// Returns true if the contents of filename or the temporary copy in the cache partition (if
// present) have a SHA-1 checksum equal to one of the given sha1 values. sha1 values are
// specified as 40 hex digits. This function differs from sha1_check(read_file(filename),
// sha1 [, ...]) in that it knows to check the cache partition copy, so apply_patch_check() will
// succeed even if the file was corrupted by an interrupted apply_patch() update.
Value* ApplyPatchCheckFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() < 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): expected at least 1 arg, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args, 0, 1)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
std::vector<std::string> sha1s;
if (argv.size() > 1 && !ReadArgs(state, argv, &sha1s, 1, argv.size() - 1)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
int result = applypatch_check(filename.c_str(), sha1s);
return StringValue(result == 0 ? "t" : "");
}
// sha1_check(data)
// to return the sha1 of the data (given in the format returned by
// read_file).
//
// sha1_check(data, sha1_hex, [sha1_hex, ...])
// returns the sha1 of the file if it matches any of the hex
// strings passed, or "" if it does not equal any of them.
//
Value* Sha1CheckFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() < 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects at least 1 arg", name);
}
std::vector<std::unique_ptr<Value>> args;
if (!ReadValueArgs(state, argv, &args)) {
return nullptr;
}
if (args[0]->type == VAL_INVALID) {
return StringValue("");
}
uint8_t digest[SHA_DIGEST_LENGTH];
SHA1(reinterpret_cast<const uint8_t*>(args[0]->data.c_str()), args[0]->data.size(), digest);
if (argv.size() == 1) {
return StringValue(print_sha1(digest));
}
for (size_t i = 1; i < argv.size(); ++i) {
uint8_t arg_digest[SHA_DIGEST_LENGTH];
if (args[i]->type != VAL_STRING) {
LOG(ERROR) << name << "(): arg " << i << " is not a string; skipping";
} else if (ParseSha1(args[i]->data, arg_digest) != 0) {
// Warn about bad args and skip them.
LOG(ERROR) << name << "(): error parsing \"" << args[i]->data << "\" as sha-1; skipping";
} else if (memcmp(digest, arg_digest, SHA_DIGEST_LENGTH) == 0) {
// Found a match.
return args[i].release();
}
}
// Didn't match any of the hex strings; return false.
return StringValue("");
}
// mount(fs_type, partition_type, location, mount_point)
// mount(fs_type, partition_type, location, mount_point, mount_options)
// fs_type="ext4" partition_type="EMMC" location=device
Value* MountFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 4 && argv.size() != 5) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 4-5 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& fs_type = args[0];
const std::string& partition_type = args[1];
const std::string& location = args[2];
const std::string& mount_point = args[3];
std::string mount_options;
if (argv.size() == 5) {
mount_options = args[4];
}
if (fs_type.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "fs_type argument to %s() can't be empty", name);
}
if (partition_type.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "partition_type argument to %s() can't be empty",
name);
}
if (location.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "location argument to %s() can't be empty", name);
}
if (mount_point.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to %s() can't be empty",
name);
}
{
char* secontext = nullptr;
if (sehandle) {
selabel_lookup(sehandle, &secontext, mount_point.c_str(), 0755);
setfscreatecon(secontext);
}
mkdir(mount_point.c_str(), 0755);
if (secontext) {
freecon(secontext);
setfscreatecon(nullptr);
}
}
if (mount(location.c_str(), mount_point.c_str(), fs_type.c_str(),
MS_NOATIME | MS_NODEV | MS_NODIRATIME, mount_options.c_str()) < 0) {
uiPrintf(state, "%s: Failed to mount %s at %s: %s", name, location.c_str(), mount_point.c_str(),
strerror(errno));
return StringValue("");
}
return StringValue(mount_point);
}
// is_mounted(mount_point)
Value* IsMountedFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& mount_point = args[0];
if (mount_point.empty()) {
return ErrorAbort(state, kArgsParsingFailure,
"mount_point argument to unmount() can't be empty");
}
scan_mounted_volumes();
MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point.c_str());
if (vol == nullptr) {
return StringValue("");
}
return StringValue(mount_point);
}
Value* UnmountFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& mount_point = args[0];
if (mount_point.empty()) {
return ErrorAbort(state, kArgsParsingFailure,
"mount_point argument to unmount() can't be empty");
}
scan_mounted_volumes();
MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point.c_str());
if (vol == nullptr) {
uiPrintf(state, "Failed to unmount %s: No such volume", mount_point.c_str());
return nullptr;
} else {
int ret = unmount_mounted_volume(vol);
if (ret != 0) {
uiPrintf(state, "Failed to unmount %s: %s", mount_point.c_str(), strerror(errno));
}
}
return StringValue(mount_point);
}
static int exec_cmd(const char* path, char* const argv[]) {
pid_t child;
if ((child = vfork()) == 0) {
execv(path, argv);
_exit(EXIT_FAILURE);
}
int status;
waitpid(child, &status, 0);
if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
LOG(ERROR) << path << " failed with status " << WEXITSTATUS(status);
}
return WEXITSTATUS(status);
}
// format(fs_type, partition_type, location, fs_size, mount_point)
//
// fs_type="ext4" partition_type="EMMC" location=device fs_size=<bytes> mount_point=<location>
// fs_type="f2fs" partition_type="EMMC" location=device fs_size=<bytes> mount_point=<location>
// if fs_size == 0, then make fs uses the entire partition.
// if fs_size > 0, that is the size to use
// if fs_size < 0, then reserve that many bytes at the end of the partition (not for "f2fs")
Value* FormatFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 5) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 5 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& fs_type = args[0];
const std::string& partition_type = args[1];
const std::string& location = args[2];
const std::string& fs_size = args[3];
const std::string& mount_point = args[4];
if (fs_type.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "fs_type argument to %s() can't be empty", name);
}
if (partition_type.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "partition_type argument to %s() can't be empty",
name);
}
if (location.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "location argument to %s() can't be empty", name);
}
if (mount_point.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to %s() can't be empty",
name);
}
int64_t size;
if (!android::base::ParseInt(fs_size, &size)) {
return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse int in %s", name,
fs_size.c_str());
}
if (fs_type == "ext4") {
const char* mke2fs_argv[] = { "/system/bin/mke2fs", "-t", "ext4", "-b", "4096",
location.c_str(), nullptr, nullptr };
std::string size_str;
if (size != 0) {
size_str = std::to_string(size / 4096LL);
mke2fs_argv[6] = size_str.c_str();
}
int status = exec_cmd(mke2fs_argv[0], const_cast<char**>(mke2fs_argv));
if (status != 0) {
LOG(ERROR) << name << ": mke2fs failed (" << status << ") on " << location;
return StringValue("");
}
const char* e2fsdroid_argv[] = { "/system/bin/e2fsdroid", "-e", "-a", mount_point.c_str(),
location.c_str(), nullptr };
status = exec_cmd(e2fsdroid_argv[0], const_cast<char**>(e2fsdroid_argv));
if (status != 0) {
LOG(ERROR) << name << ": e2fsdroid failed (" << status << ") on " << location;
return StringValue("");
}
return StringValue(location);
} else if (fs_type == "f2fs") {
if (size < 0) {
LOG(ERROR) << name << ": fs_size can't be negative for f2fs: " << fs_size;
return StringValue("");
}
std::string num_sectors = std::to_string(size / 512);
const char* f2fs_path = "/sbin/mkfs.f2fs";
const char* f2fs_argv[] = { "mkfs.f2fs",
"-d1",
"-f",
"-O",
"encrypt",
"-O",
"quota",
"-w",
"512",
location.c_str(),
(size < 512) ? nullptr : num_sectors.c_str(),
nullptr };
int status = exec_cmd(f2fs_path, const_cast<char**>(f2fs_argv));
if (status != 0) {
LOG(ERROR) << name << ": mkfs.f2fs failed (" << status << ") on " << location;
return StringValue("");
}
const char* sload_argv[] = { "/sbin/sload.f2fs", "-t", mount_point.c_str(), location.c_str(),
nullptr };
status = exec_cmd(sload_argv[0], const_cast<char**>(sload_argv));
if (status != 0) {
LOG(ERROR) << name << ": sload.f2fs failed (" << status << ") on " << location;
return StringValue("");
}
return StringValue(location);
} else {
LOG(ERROR) << name << ": unsupported fs_type \"" << fs_type << "\" partition_type \""
<< partition_type << "\"";
}
return nullptr;
}
Value* ShowProgressFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& frac_str = args[0];
const std::string& sec_str = args[1];
double frac;
if (!android::base::ParseDouble(frac_str.c_str(), &frac)) {
return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse double in %s", name,
frac_str.c_str());
}
int sec;
if (!android::base::ParseInt(sec_str.c_str(), &sec)) {
return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse int in %s", name,
sec_str.c_str());
}
UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie);
fprintf(ui->cmd_pipe, "progress %f %d\n", frac, sec);
return StringValue(frac_str);
}
Value* SetProgressFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& frac_str = args[0];
double frac;
if (!android::base::ParseDouble(frac_str.c_str(), &frac)) {
return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse double in %s", name,
frac_str.c_str());
}
UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie);
fprintf(ui->cmd_pipe, "set_progress %f\n", frac);
return StringValue(frac_str);
}
Value* GetPropFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::string key;
if (!Evaluate(state, argv[0], &key)) {
return nullptr;
}
std::string value = android::base::GetProperty(key, "");
return StringValue(value);
}
// file_getprop(file, key)
//
// interprets 'file' as a getprop-style file (key=value pairs, one
// per line. # comment lines, blank lines, lines without '=' ignored),
// and returns the value for 'key' (or "" if it isn't defined).
Value* FileGetPropFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
const std::string& key = args[1];
struct stat st;
if (stat(filename.c_str(), &st) < 0) {
return ErrorAbort(state, kFileGetPropFailure, "%s: failed to stat \"%s\": %s", name,
filename.c_str(), strerror(errno));
}
constexpr off_t MAX_FILE_GETPROP_SIZE = 65536;
if (st.st_size > MAX_FILE_GETPROP_SIZE) {
return ErrorAbort(state, kFileGetPropFailure, "%s too large for %s (max %lld)",
filename.c_str(), name, static_cast<long long>(MAX_FILE_GETPROP_SIZE));
}
std::string buffer(st.st_size, '\0');
unique_file f(ota_fopen(filename.c_str(), "rb"));
if (f == nullptr) {
return ErrorAbort(state, kFileOpenFailure, "%s: failed to open %s: %s", name, filename.c_str(),
strerror(errno));
}
if (ota_fread(&buffer[0], 1, st.st_size, f.get()) != static_cast<size_t>(st.st_size)) {
ErrorAbort(state, kFreadFailure, "%s: failed to read %zu bytes from %s", name,
static_cast<size_t>(st.st_size), filename.c_str());
return nullptr;
}
ota_fclose(f);
std::vector<std::string> lines = android::base::Split(buffer, "\n");
for (size_t i = 0; i < lines.size(); i++) {
std::string line = android::base::Trim(lines[i]);
// comment or blank line: skip to next line
if (line.empty() || line[0] == '#') {
continue;
}
size_t equal_pos = line.find('=');
if (equal_pos == std::string::npos) {
continue;
}
// trim whitespace between key and '='
std::string str = android::base::Trim(line.substr(0, equal_pos));
// not the key we're looking for
if (key != str) continue;
return StringValue(android::base::Trim(line.substr(equal_pos + 1)));
}
return StringValue("");
}
// apply_patch_space(bytes)
Value* ApplyPatchSpaceFn(const char* name, State* state,
const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& bytes_str = args[0];
size_t bytes;
if (!android::base::ParseUint(bytes_str.c_str(), &bytes)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): can't parse \"%s\" as byte count", name,
bytes_str.c_str());
}
// Skip the cache size check if the update is a retry.
if (state->is_retry || CacheSizeCheck(bytes) == 0) {
return StringValue("t");
}
return StringValue("");
}
Value* WipeCacheFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (!argv.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects no args, got %zu", name,
argv.size());
}
fprintf(static_cast<UpdaterInfo*>(state->cookie)->cmd_pipe, "wipe_cache\n");
return StringValue("t");
}
Value* RunProgramFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() < 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects at least 1 arg", name);
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
char* args2[argv.size() + 1];
for (size_t i = 0; i < argv.size(); i++) {
args2[i] = &args[i][0];
}
args2[argv.size()] = nullptr;
LOG(INFO) << "about to run program [" << args2[0] << "] with " << argv.size() << " args";
pid_t child = fork();
if (child == 0) {
execv(args2[0], args2);
PLOG(ERROR) << "run_program: execv failed";
_exit(EXIT_FAILURE);
}
int status;
waitpid(child, &status, 0);
if (WIFEXITED(status)) {
if (WEXITSTATUS(status) != 0) {
LOG(ERROR) << "run_program: child exited with status " << WEXITSTATUS(status);
}
} else if (WIFSIGNALED(status)) {
LOG(ERROR) << "run_program: child terminated by signal " << WTERMSIG(status);
}
return StringValue(std::to_string(status));
}
// Read a local file and return its contents (the Value* returned
// is actually a FileContents*).
Value* ReadFileFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
Value* v = new Value(VAL_INVALID, "");
FileContents fc;
if (LoadFileContents(filename.c_str(), &fc) == 0) {
v->type = VAL_BLOB;
v->data = std::string(fc.data.begin(), fc.data.end());
}
return v;
}
// write_value(value, filename)
// Writes 'value' to 'filename'.
// Example: write_value("960000", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq")
Value* WriteValueFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name);
}
const std::string& filename = args[1];
if (filename.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Filename cannot be empty", name);
}
const std::string& value = args[0];
if (!android::base::WriteStringToFile(value, filename)) {
PLOG(ERROR) << name << ": Failed to write to \"" << filename << "\"";
return StringValue("");
} else {
return StringValue("t");
}
}
// Immediately reboot the device. Recovery is not finished normally,
// so if you reboot into recovery it will re-start applying the
// current package (because nothing has cleared the copy of the
// arguments stored in the BCB).
//
// The argument is the partition name passed to the android reboot
// property. It can be "recovery" to boot from the recovery
// partition, or "" (empty string) to boot from the regular boot
// partition.
Value* RebootNowFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
const std::string& property = args[1];
// Zero out the 'command' field of the bootloader message. Leave the rest intact.
bootloader_message boot;
std::string err;
if (!read_bootloader_message_from(&boot, filename, &err)) {
LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err;
return StringValue("");
}
memset(boot.command, 0, sizeof(boot.command));
if (!write_bootloader_message_to(boot, filename, &err)) {
LOG(ERROR) << name << "(): Failed to write to \"" << filename << "\": " << err;
return StringValue("");
}
reboot("reboot," + property);
sleep(5);
return ErrorAbort(state, kRebootFailure, "%s() failed to reboot", name);
}
// Store a string value somewhere that future invocations of recovery
// can access it. This value is called the "stage" and can be used to
// drive packages that need to do reboots in the middle of
// installation and keep track of where they are in the multi-stage
// install.
//
// The first argument is the block device for the misc partition
// ("/misc" in the fstab), which is where this value is stored. The
// second argument is the string to store; it should not exceed 31
// bytes.
Value* SetStageFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
const std::string& stagestr = args[1];
// Store this value in the misc partition, immediately after the
// bootloader message that the main recovery uses to save its
// arguments in case of the device restarting midway through
// package installation.
bootloader_message boot;
std::string err;
if (!read_bootloader_message_from(&boot, filename, &err)) {
LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err;
return StringValue("");
}
strlcpy(boot.stage, stagestr.c_str(), sizeof(boot.stage));
if (!write_bootloader_message_to(boot, filename, &err)) {
LOG(ERROR) << name << "(): Failed to write to \"" << filename << "\": " << err;
return StringValue("");
}
return StringValue(filename);
}
// Return the value most recently saved with SetStageFn. The argument
// is the block device for the misc partition.
Value* GetStageFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 1) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
bootloader_message boot;
std::string err;
if (!read_bootloader_message_from(&boot, filename, &err)) {
LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err;
return StringValue("");
}
return StringValue(boot.stage);
}
Value* WipeBlockDeviceFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.size() != 2) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name,
argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name);
}
const std::string& filename = args[0];
const std::string& len_str = args[1];
size_t len;
if (!android::base::ParseUint(len_str.c_str(), &len)) {
return nullptr;
}
unique_fd fd(ota_open(filename.c_str(), O_WRONLY, 0644));
// The wipe_block_device function in ext4_utils returns 0 on success and 1
// for failure.
int status = wipe_block_device(fd, len);
return StringValue((status == 0) ? "t" : "");
}
Value* EnableRebootFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (!argv.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects no args, got %zu", name,
argv.size());
}
UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie);
fprintf(ui->cmd_pipe, "enable_reboot\n");
return StringValue("t");
}
Value* Tune2FsFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) {
if (argv.empty()) {
return ErrorAbort(state, kArgsParsingFailure, "%s() expects args, got %zu", name, argv.size());
}
std::vector<std::string> args;
if (!ReadArgs(state, argv, &args)) {
return ErrorAbort(state, kArgsParsingFailure, "%s() could not read args", name);
}
char* args2[argv.size() + 1];
// Tune2fs expects the program name as its args[0]
args2[0] = const_cast<char*>(name);
if (args2[0] == nullptr) {
return nullptr;
}
for (size_t i = 0; i < argv.size(); ++i) {
args2[i + 1] = &args[i][0];
}
// tune2fs changes the file system parameters on an ext2 file system; it
// returns 0 on success.
int result = tune2fs_main(argv.size() + 1, args2);
if (result != 0) {
return ErrorAbort(state, kTune2FsFailure, "%s() returned error code %d", name, result);
}
return StringValue("t");
}
void RegisterInstallFunctions() {
RegisterFunction("mount", MountFn);
RegisterFunction("is_mounted", IsMountedFn);
RegisterFunction("unmount", UnmountFn);
RegisterFunction("format", FormatFn);
RegisterFunction("show_progress", ShowProgressFn);
RegisterFunction("set_progress", SetProgressFn);
RegisterFunction("package_extract_file", PackageExtractFileFn);
RegisterFunction("getprop", GetPropFn);
RegisterFunction("file_getprop", FileGetPropFn);
RegisterFunction("apply_patch", ApplyPatchFn);
RegisterFunction("apply_patch_check", ApplyPatchCheckFn);
RegisterFunction("apply_patch_space", ApplyPatchSpaceFn);
RegisterFunction("wipe_block_device", WipeBlockDeviceFn);
RegisterFunction("read_file", ReadFileFn);
RegisterFunction("sha1_check", Sha1CheckFn);
RegisterFunction("write_value", WriteValueFn);
RegisterFunction("wipe_cache", WipeCacheFn);
RegisterFunction("ui_print", UIPrintFn);
RegisterFunction("run_program", RunProgramFn);
RegisterFunction("reboot_now", RebootNowFn);
RegisterFunction("get_stage", GetStageFn);
RegisterFunction("set_stage", SetStageFn);
RegisterFunction("enable_reboot", EnableRebootFn);
RegisterFunction("tune2fs", Tune2FsFn);
}
|