from __future__ import annotations
import asyncio
import aiohttp
import random
import string
import json
import uuid
import re
from typing import Optional, AsyncGenerator, Union
from aiohttp import ClientSession, ClientResponseError
from ..typing import AsyncResult, Messages, ImageType
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..image import ImageResponse, to_data_uri
class Blackbox(AsyncGeneratorProvider, ProviderModelMixin):
label = "Blackbox AI"
url = "https://www.blackbox.ai"
api_endpoint = "https://www.blackbox.ai/api/chat"
working = True
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'blackboxai'
image_models = ['ImageGeneration']
models = [
default_model,
'blackboxai-pro',
*image_models,
"llama-3.1-8b",
'llama-3.1-70b',
'llama-3.1-405b',
'gpt-4o',
'gemini-pro',
'gemini-1.5-flash',
'claude-sonnet-3.5',
'PythonAgent',
'JavaAgent',
'JavaScriptAgent',
'HTMLAgent',
'GoogleCloudAgent',
'AndroidDeveloper',
'SwiftDeveloper',
'Next.jsAgent',
'MongoDBAgent',
'PyTorchAgent',
'ReactAgent',
'XcodeAgent',
'AngularJSAgent',
]
agentMode = {
'ImageGeneration': {'mode': True, 'id': "ImageGenerationLV45LJp", 'name': "Image Generation"},
}
trendingAgentMode = {
"blackboxai": {},
"gemini-1.5-flash": {'mode': True, 'id': 'Gemini'},
"llama-3.1-8b": {'mode': True, 'id': "llama-3.1-8b"},
'llama-3.1-70b': {'mode': True, 'id': "llama-3.1-70b"},
'llama-3.1-405b': {'mode': True, 'id': "llama-3.1-405b"},
'blackboxai-pro': {'mode': True, 'id': "BLACKBOXAI-PRO"},
'PythonAgent': {'mode': True, 'id': "Python Agent"},
'JavaAgent': {'mode': True, 'id': "Java Agent"},
'JavaScriptAgent': {'mode': True, 'id': "JavaScript Agent"},
'HTMLAgent': {'mode': True, 'id': "HTML Agent"},
'GoogleCloudAgent': {'mode': True, 'id': "Google Cloud Agent"},
'AndroidDeveloper': {'mode': True, 'id': "Android Developer"},
'SwiftDeveloper': {'mode': True, 'id': "Swift Developer"},
'Next.jsAgent': {'mode': True, 'id': "Next.js Agent"},
'MongoDBAgent': {'mode': True, 'id': "MongoDB Agent"},
'PyTorchAgent': {'mode': True, 'id': "PyTorch Agent"},
'ReactAgent': {'mode': True, 'id': "React Agent"},
'XcodeAgent': {'mode': True, 'id': "Xcode Agent"},
'AngularJSAgent': {'mode': True, 'id': "AngularJS Agent"},
}
userSelectedModel = {
"gpt-4o": "gpt-4o",
"gemini-pro": "gemini-pro",
'claude-sonnet-3.5': "claude-sonnet-3.5",
}
model_prefixes = {
'gpt-4o': '@GPT-4o',
'gemini-pro': '@Gemini-PRO',
'claude-sonnet-3.5': '@Claude-Sonnet-3.5',
'PythonAgent': '@Python Agent',
'JavaAgent': '@Java Agent',
'JavaScriptAgent': '@JavaScript Agent',
'HTMLAgent': '@HTML Agent',
'GoogleCloudAgent': '@Google Cloud Agent',
'AndroidDeveloper': '@Android Developer',
'SwiftDeveloper': '@Swift Developer',
'Next.jsAgent': '@Next.js Agent',
'MongoDBAgent': '@MongoDB Agent',
'PyTorchAgent': '@PyTorch Agent',
'ReactAgent': '@React Agent',
'XcodeAgent': '@Xcode Agent',
'AngularJSAgent': '@AngularJS Agent',
'blackboxai-pro': '@BLACKBOXAI-PRO',
'ImageGeneration': '@Image Generation',
}
model_referers = {
"blackboxai": "/?model=blackboxai",
"gpt-4o": "/?model=gpt-4o",
"gemini-pro": "/?model=gemini-pro",
"claude-sonnet-3.5": "/?model=claude-sonnet-3.5"
}
model_aliases = {
"gemini-flash": "gemini-1.5-flash",
"claude-3.5-sonnet": "claude-sonnet-3.5",
"flux": "ImageGeneration",
}
@classmethod
def get_model(cls, model: str) -> str:
if model in cls.models:
return model
elif model in cls.model_aliases:
return cls.model_aliases[model]
else:
return cls.default_model
@staticmethod
def generate_random_string(length: int = 7) -> str:
characters = string.ascii_letters + string.digits
return ''.join(random.choices(characters, k=length))
@staticmethod
def generate_next_action() -> str:
return uuid.uuid4().hex
@staticmethod
def generate_next_router_state_tree() -> str:
router_state = [
"",
{
"children": [
"(chat)",
{
"children": [
"__PAGE__",
{}
]
}
]
},
None,
None,
True
]
return json.dumps(router_state)
@staticmethod
def clean_response(text: str) -> str:
pattern = r'^\$\@\$v=undefined-rv1\$\@\$'
cleaned_text = re.sub(pattern, '', text)
return cleaned_text
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: Optional[str] = None,
image: ImageType = None,
image_name: str = None,
web_search: bool = False,
**kwargs
) -> AsyncGenerator[Union[str, ImageResponse], None]:
"""
Creates an asynchronous generator for streaming responses from Blackbox AI.
Parameters:
model (str): Model to use for generating responses.
messages (Messages): Message history.
proxy (Optional[str]): Proxy URL, if needed.
image (ImageType): Image data to be processed, if any.
image_name (str): Name of the image file, if an image is provided.
web_search (bool): Enables or disables web search mode.
**kwargs: Additional keyword arguments.
Yields:
Union[str, ImageResponse]: Segments of the generated response or ImageResponse objects.
"""
if image is not None:
messages[-1]['data'] = {
'fileText': '',
'imageBase64': to_data_uri(image),
'title': image_name
}
messages[-1]['content'] = 'FILE:BB\n$#$\n\n$#$\n' + messages[-1]['content']
model = cls.get_model(model)
chat_id = cls.generate_random_string()
next_action = cls.generate_next_action()
next_router_state_tree = cls.generate_next_router_state_tree()
agent_mode = cls.agentMode.get(model, {})
trending_agent_mode = cls.trendingAgentMode.get(model, {})
prefix = cls.model_prefixes.get(model, "")
formatted_prompt = ""
for message in messages:
role = message.get('role', '').capitalize()
content = message.get('content', '')
if role and content:
formatted_prompt += f"{role}: {content}\n"
if prefix:
formatted_prompt = f"{prefix} {formatted_prompt}".strip()
referer_path = cls.model_referers.get(model, f"/?model={model}")
referer_url = f"{cls.url}{referer_path}"
common_headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.9',
'cache-control': 'no-cache',
'origin': cls.url,
'pragma': 'no-cache',
'priority': 'u=1, i',
'sec-ch-ua': '"Chromium";v="129", "Not=A?Brand";v="8"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Linux"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'same-origin',
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) '
'AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/129.0.0.0 Safari/537.36'
}
headers_api_chat = {
'Content-Type': 'application/json',
'Referer': referer_url
}
headers_api_chat_combined = {**common_headers, **headers_api_chat}
payload_api_chat = {
"messages": [
{
"id": chat_id,
"content": formatted_prompt,
"role": "user",
"data": messages[-1].get('data')
}
],
"id": chat_id,
"previewToken": None,
"userId": None,
"codeModelMode": True,
"agentMode": agent_mode,
"trendingAgentMode": trending_agent_mode,
"isMicMode": False,
"userSystemPrompt": None,
"maxTokens": 1024,
"playgroundTopP": 0.9,
"playgroundTemperature": 0.5,
"isChromeExt": False,
"githubToken": None,
"clickedAnswer2": False,
"clickedAnswer3": False,
"clickedForceWebSearch": False,
"visitFromDelta": False,
"mobileClient": False,
"webSearchMode": web_search,
"userSelectedModel": cls.userSelectedModel.get(model, model),
"validated": "69783381-2ce4-4dbd-ac78-35e9063feabc"
}
headers_chat = {
'Accept': 'text/x-component',
'Content-Type': 'text/plain;charset=UTF-8',
'Referer': f'{cls.url}/chat/{chat_id}?model={model}',
'next-action': next_action,
'next-router-state-tree': next_router_state_tree,
'next-url': '/'
}
headers_chat_combined = {**common_headers, **headers_chat}
data_chat = '[]'
async with ClientSession(headers=common_headers) as session:
try:
async with session.post(
cls.api_endpoint,
headers=headers_api_chat_combined,
json=payload_api_chat,
proxy=proxy
) as response_api_chat:
response_api_chat.raise_for_status()
text = await response_api_chat.text()
cleaned_response = cls.clean_response(text)
if model in cls.image_models:
match = re.search(r'!\[.*?\]\((https?://[^\)]+)\)', cleaned_response)
if match:
image_url = match.group(1)
image_response = ImageResponse(images=image_url, alt="Generated Image")
yield image_response
else:
yield cleaned_response
else:
if web_search:
match = re.search(r'\$~~~\$(.*?)\$~~~\$', cleaned_response, re.DOTALL)
if match:
source_part = match.group(1).strip()
answer_part = cleaned_response[match.end():].strip()
try:
sources = json.loads(source_part)
source_formatted = "**Source:**\n"
for item in sources:
title = item.get('title', 'No Title')
link = item.get('link', '#')
position = item.get('position', '')
source_formatted += f"{position}. [{title}]({link})\n"
final_response = f"{answer_part}\n\n{source_formatted}"
except json.JSONDecodeError:
final_response = f"{answer_part}\n\nSource information is unavailable."
else:
final_response = cleaned_response
else:
if '$~~~$' in cleaned_response:
final_response = cleaned_response.split('$~~~$')[0].strip()
else:
final_response = cleaned_response
yield final_response
except ClientResponseError as e:
error_text = f"Error {e.status}: {e.message}"
try:
error_response = await e.response.text()
cleaned_error = cls.clean_response(error_response)
error_text += f" - {cleaned_error}"
except Exception:
pass
yield error_text
except Exception as e:
yield f"Unexpected error during /api/chat request: {str(e)}"
chat_url = f'{cls.url}/chat/{chat_id}?model={model}'
try:
async with session.post(
chat_url,
headers=headers_chat_combined,
data=data_chat,
proxy=proxy
) as response_chat:
response_chat.raise_for_status()
pass
except ClientResponseError as e:
error_text = f"Error {e.status}: {e.message}"
try:
error_response = await e.response.text()
cleaned_error = cls.clean_response(error_response)
error_text += f" - {cleaned_error}"
except Exception:
pass
yield error_text
except Exception as e:
yield f"Unexpected error during /chat/{chat_id} request: {str(e)}"