from __future__ import annotations
import re
import asyncio
import uuid
import json
import base64
import time
import requests
from copy import copy
try:
import nodriver
from nodriver.cdp.network import get_response_body
has_nodriver = True
except ImportError:
has_nodriver = False
try:
from platformdirs import user_config_dir
has_platformdirs = True
except ImportError:
has_platformdirs = False
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ...typing import AsyncResult, Messages, Cookies, ImageType, AsyncIterator
from ...requests.raise_for_status import raise_for_status
from ...requests.aiohttp import StreamSession
from ...image import ImageResponse, ImageRequest, to_image, to_bytes, is_accepted_format
from ...errors import MissingAuthError, ResponseError
from ...providers.response import BaseConversation, FinishReason, SynthesizeData
from ..helper import format_cookies
from ..openai.har_file import get_request_config, NoValidHarFileError
from ..openai.har_file import RequestConfig, arkReq, arkose_url, start_url, conversation_url, backend_url, backend_anon_url
from ..openai.proofofwork import generate_proof_token
from ..openai.new import get_requirements_token
from ... import debug
DEFAULT_HEADERS = {
"accept": "*/*",
"accept-encoding": "gzip, deflate, br, zstd",
"accept-language": "en-US,en;q=0.5",
"referer": "https://chatgpt.com/",
"sec-ch-ua": "\"Brave\";v=\"123\", \"Not:A-Brand\";v=\"8\", \"Chromium\";v=\"123\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"sec-gpc": "1",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36"
}
class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
"""A class for creating and managing conversations with OpenAI chat service"""
label = "OpenAI ChatGPT"
url = "https://chatgpt.com"
working = True
needs_auth = True
supports_gpt_4 = True
supports_message_history = True
supports_system_message = True
default_model = "auto"
default_vision_model = "gpt-4o"
fallback_models = ["auto", "gpt-4", "gpt-4o", "gpt-4o-mini", "gpt-4o-canmore", "o1-preview", "o1-mini"]
vision_models = fallback_models
image_models = fallback_models
_api_key: str = None
_headers: dict = None
_cookies: Cookies = None
_expires: int = None
@classmethod
def get_models(cls):
if not cls.models:
try:
response = requests.get(f"{cls.url}/backend-anon/models")
response.raise_for_status()
data = response.json()
cls.models = [model.get("slug") for model in data.get("models")]
except Exception:
cls.models = cls.fallback_models
return cls.models
@classmethod
async def create(
cls,
prompt: str = None,
model: str = "",
messages: Messages = [],
action: str = "next",
**kwargs
) -> Response:
"""
Create a new conversation or continue an existing one
Args:
prompt: The user input to start or continue the conversation
model: The name of the model to use for generating responses
messages: The list of previous messages in the conversation
history_disabled: A flag indicating if the history and training should be disabled
action: The type of action to perform, either "next", "continue", or "variant"
conversation_id: The ID of the existing conversation, if any
parent_id: The ID of the parent message, if any
image: The image to include in the user input, if any
**kwargs: Additional keyword arguments to pass to the generator
Returns:
A Response object that contains the generator, action, messages, and options
"""
# Add the user input to the messages list
if prompt is not None:
messages.append({
"role": "user",
"content": prompt
})
generator = cls.create_async_generator(
model,
messages,
return_conversation=True,
**kwargs
)
return Response(
generator,
action,
messages,
kwargs
)
@classmethod
async def upload_image(
cls,
session: StreamSession,
headers: dict,
image: ImageType,
image_name: str = None
) -> ImageRequest:
"""
Upload an image to the service and get the download URL
Args:
session: The StreamSession object to use for requests
headers: The headers to include in the requests
image: The image to upload, either a PIL Image object or a bytes object
Returns:
An ImageRequest object that contains the download URL, file name, and other data
"""
# Convert the image to a PIL Image object and get the extension
data_bytes = to_bytes(image)
image = to_image(data_bytes)
extension = image.format.lower()
data = {
"file_name": "" if image_name is None else image_name,
"file_size": len(data_bytes),
"use_case": "multimodal"
}
# Post the image data to the service and get the image data
async with session.post(f"{cls.url}/backend-api/files", json=data, headers=headers) as response:
cls._update_request_args(session)
await raise_for_status(response)
image_data = {
**data,
**await response.json(),
"mime_type": is_accepted_format(data_bytes),
"extension": extension,
"height": image.height,
"width": image.width
}
# Put the image bytes to the upload URL and check the status
async with session.put(
image_data["upload_url"],
data=data_bytes,
headers={
"Content-Type": image_data["mime_type"],
"x-ms-blob-type": "BlockBlob"
}
) as response:
await raise_for_status(response)
# Post the file ID to the service and get the download URL
async with session.post(
f"{cls.url}/backend-api/files/{image_data['file_id']}/uploaded",
json={},
headers=headers
) as response:
cls._update_request_args(session)
await raise_for_status(response)
image_data["download_url"] = (await response.json())["download_url"]
return ImageRequest(image_data)
@classmethod
async def get_default_model(cls, session: StreamSession, headers: dict):
"""
Get the default model name from the service
Args:
session: The StreamSession object to use for requests
headers: The headers to include in the requests
Returns:
The default model name as a string
"""
if not cls.default_model:
url = f"{cls.url}/backend-anon/models" if cls._api_key is None else f"{cls.url}/backend-api/models"
async with session.get(url, headers=headers) as response:
cls._update_request_args(session)
if response.status == 401:
raise MissingAuthError('Add a .har file for OpenaiChat' if cls._api_key is None else "Invalid api key")
await raise_for_status(response)
data = await response.json()
if "categories" in data:
cls.default_model = data["categories"][-1]["default_model"]
return cls.default_model
raise ResponseError(data)
return cls.default_model
@classmethod
def create_messages(cls, messages: Messages, image_request: ImageRequest = None):
"""
Create a list of messages for the user input
Args:
prompt: The user input as a string
image_response: The image response object, if any
Returns:
A list of messages with the user input and the image, if any
"""
# Create a message object with the user role and the content
messages = [{
"author": {"role": message["role"]},
"content": {"content_type": "text", "parts": [message["content"]]},
"id": str(uuid.uuid4()),
"create_time": int(time.time()),
"id": str(uuid.uuid4()),
"metadata": {"serialization_metadata": {"custom_symbol_offsets": []}}
} for message in messages]
# Check if there is an image response
if image_request is not None:
# Change content in last user message
messages[-1]["content"] = {
"content_type": "multimodal_text",
"parts": [{
"asset_pointer": f"file-service://{image_request.get('file_id')}",
"height": image_request.get("height"),
"size_bytes": image_request.get("file_size"),
"width": image_request.get("width"),
}, messages[-1]["content"]["parts"][0]]
}
# Add the metadata object with the attachments
messages[-1]["metadata"] = {
"attachments": [{
"height": image_request.get("height"),
"id": image_request.get("file_id"),
"mimeType": image_request.get("mime_type"),
"name": image_request.get("file_name"),
"size": image_request.get("file_size"),
"width": image_request.get("width"),
}]
}
return messages
@classmethod
async def get_generated_image(cls, session: StreamSession, headers: dict, element: dict) -> ImageResponse:
"""
Retrieves the image response based on the message content.
This method processes the message content to extract image information and retrieves the
corresponding image from the backend API. It then returns an ImageResponse object containing
the image URL and the prompt used to generate the image.
Args:
session (StreamSession): The StreamSession object used for making HTTP requests.
headers (dict): HTTP headers to be used for the request.
line (dict): A dictionary representing the line of response that contains image information.
Returns:
ImageResponse: An object containing the image URL and the prompt, or None if no image is found.
Raises:
RuntimeError: If there'san error in downloading the image, including issues with the HTTP request or response.
"""
try:
prompt = element["metadata"]["dalle"]["prompt"]
file_id = element["asset_pointer"].split("file-service://", 1)[1]
except Exception as e:
raise RuntimeError(f"No Image: {e.__class__.__name__}: {e}")
try:
async with session.get(f"{cls.url}/backend-api/files/{file_id}/download", headers=headers) as response:
cls._update_request_args(session)
await raise_for_status(response)
download_url = (await response.json())["download_url"]
return ImageResponse(download_url, prompt)
except Exception as e:
raise RuntimeError(f"Error in downloading image: {e}")
@classmethod
async def delete_conversation(cls, session: StreamSession, headers: dict, conversation_id: str):
"""
Deletes a conversation by setting its visibility to False.
This method sends an HTTP PATCH request to update the visibility of a conversation.
It's used to effectively delete a conversation from being accessed or displayed in the future.
Args:
session (StreamSession): The StreamSession object used for making HTTP requests.
headers (dict): HTTP headers to be used for the request.
conversation_id (str): The unique identifier of the conversation to be deleted.
Raises:
HTTPError: If the HTTP request fails or returns an unsuccessful status code.
"""
async with session.patch(
f"{cls.url}/backend-api/conversation/{conversation_id}",
json={"is_visible": False},
headers=headers
) as response:
cls._update_request_args(session)
...
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
timeout: int = 180,
api_key: str = None,
cookies: Cookies = None,
auto_continue: bool = False,
history_disabled: bool = False,
action: str = "next",
conversation_id: str = None,
conversation: Conversation = None,
parent_id: str = None,
image: ImageType = None,
image_name: str = None,
return_conversation: bool = False,
max_retries: int = 3,
**kwargs
) -> AsyncResult:
"""
Create an asynchronous generator for the conversation.
Args:
model (str): The model name.
messages (Messages): The list of previous messages.
proxy (str): Proxy to use for requests.
timeout (int): Timeout for requests.
api_key (str): Access token for authentication.
cookies (dict): Cookies to use for authentication.
auto_continue (bool): Flag to automatically continue the conversation.
history_disabled (bool): Flag to disable history and training.
action (str): Type of action ('next', 'continue', 'variant').
conversation_id (str): ID of the conversation.
parent_id (str): ID of the parent message.
image (ImageType): Image to include in the conversation.
return_conversation (bool): Flag to include response fields in the output.
**kwargs: Additional keyword arguments.
Yields:
AsyncResult: Asynchronous results from the generator.
Raises:
RuntimeError: If an error occurs during processing.
"""
await cls.login(proxy)
async with StreamSession(
proxy=proxy,
impersonate="chrome",
timeout=timeout
) as session:
try:
image_request = await cls.upload_image(session, cls._headers, image, image_name) if image else None
except Exception as e:
image_request = None
debug.log("OpenaiChat: Upload image failed")
debug.log(f"{e.__class__.__name__}: {e}")
model = cls.get_model(model)
if conversation is None:
conversation = Conversation(conversation_id, str(uuid.uuid4()) if parent_id is None else parent_id)
else:
conversation = copy(conversation)
if cls._api_key is None:
auto_continue = False
conversation.finish_reason = None
while conversation.finish_reason is None:
async with session.post(
f"{cls.url}/backend-anon/sentinel/chat-requirements"
if cls._api_key is None else
f"{cls.url}/backend-api/sentinel/chat-requirements",
json={"p": get_requirements_token(RequestConfig.proof_token) if RequestConfig.proof_token else None},
headers=cls._headers
) as response:
cls._update_request_args(session)
await raise_for_status(response)
chat_requirements = await response.json()
need_turnstile = chat_requirements.get("turnstile", {}).get("required", False)
need_arkose = chat_requirements.get("arkose", {}).get("required", False)
chat_token = chat_requirements.get("token")
if need_arkose and RequestConfig.arkose_token is None:
await get_request_config(proxy)
cls._create_request_args(RequestConfig,cookies, RequestConfig.headers)
cls._set_api_key(RequestConfig.access_token)
if RequestConfig.arkose_token is None:
raise MissingAuthError("No arkose token found in .har file")
if "proofofwork" in chat_requirements:
proofofwork = generate_proof_token(
**chat_requirements["proofofwork"],
user_agent=cls._headers.get("user-agent"),
proof_token=RequestConfig.proof_token
)
[debug.log(text) for text in (
f"Arkose: {'False' if not need_arkose else RequestConfig.arkose_token[:12]+'...'}",
f"Proofofwork: {'False' if proofofwork is None else proofofwork[:12]+'...'}",
f"AccessToken: {'False' if cls._api_key is None else cls._api_key[:12]+'...'}",
)]
data = {
"action": action,
"messages": None,
"parent_message_id": conversation.message_id,
"model": model,
"paragen_cot_summary_display_override": "allow",
"history_and_training_disabled": history_disabled and not auto_continue and not return_conversation,
"conversation_mode": {"kind":"primary_assistant"},
"websocket_request_id": str(uuid.uuid4()),
"supported_encodings": ["v1"],
"supports_buffering": True
}
if conversation.conversation_id is not None:
data["conversation_id"] = conversation.conversation_id
debug.log(f"OpenaiChat: Use conversation: {conversation.conversation_id}")
if action != "continue":
messages = messages if conversation_id is None else [messages[-1]]
data["messages"] = cls.create_messages(messages, image_request)
headers = {
**cls._headers,
"accept": "text/event-stream",
"content-type": "application/json",
"openai-sentinel-chat-requirements-token": chat_token,
}
if RequestConfig.arkose_token:
headers["openai-sentinel-arkose-token"] = RequestConfig.arkose_token
if proofofwork is not None:
headers["openai-sentinel-proof-token"] = proofofwork
if need_turnstile and RequestConfig.turnstile_token is not None:
headers['openai-sentinel-turnstile-token'] = RequestConfig.turnstile_token
async with session.post(
f"{cls.url}/backend-anon/conversation"
if cls._api_key is None else
f"{cls.url}/backend-api/conversation",
json=data,
headers=headers
) as response:
cls._update_request_args(session)
if response.status == 403 and max_retries > 0:
max_retries -= 1
debug.log(f"Retry: Error {response.status}: {await response.text()}")
await asyncio.sleep(5)
continue
await raise_for_status(response)
if return_conversation:
history_disabled = False
yield conversation
async for line in response.iter_lines():
async for chunk in cls.iter_messages_line(session, line, conversation):
yield chunk
if not history_disabled:
yield SynthesizeData(cls.__name__, {
"conversation_id": conversation.conversation_id,
"message_id": conversation.message_id,
"voice": "maple",
})
if auto_continue and conversation.finish_reason == "max_tokens":
conversation.finish_reason = None
action = "continue"
await asyncio.sleep(5)
else:
break
yield FinishReason(conversation.finish_reason)
if history_disabled and auto_continue:
await cls.delete_conversation(session, cls._headers, conversation.conversation_id)
@classmethod
async def iter_messages_chunk(
cls,
messages: AsyncIterator,
session: StreamSession,
fields: Conversation,
) -> AsyncIterator:
async for message in messages:
async for chunk in cls.iter_messages_line(session, message, fields):
yield chunk
@classmethod
async def iter_messages_line(cls, session: StreamSession, line: bytes, fields: Conversation) -> AsyncIterator:
if not line.startswith(b"data: "):
return
elif line.startswith(b"data: [DONE]"):
if fields.finish_reason is None:
fields.finish_reason = "error"
return
try:
line = json.loads(line[6:])
except:
return
if isinstance(line, dict) and "v" in line:
v = line.get("v")
if isinstance(v, str) and fields.is_recipient:
yield v
elif isinstance(v, list) and fields.is_recipient:
for m in v:
if m.get("p") == "/message/content/parts/0":
yield m.get("v")
elif m.get("p") == "/message/metadata":
fields.finish_reason = m.get("v", {}).get("finish_details", {}).get("type")
break
elif isinstance(v, dict):
if fields.conversation_id is None:
fields.conversation_id = v.get("conversation_id")
debug.log(f"OpenaiChat: New conversation: {fields.conversation_id}")
m = v.get("message", {})
fields.is_recipient = m.get("recipient") == "all"
if fields.is_recipient:
c = m.get("content", {})
if c.get("content_type") == "multimodal_text":
generated_images = []
for element in c.get("parts"):
if isinstance(element, dict) and element.get("content_type") == "image_asset_pointer":
generated_images.append(
cls.get_generated_image(session, cls._headers, element)
)
for image_response in await asyncio.gather(*generated_images):
yield image_response
if m.get("author", {}).get("role") == "assistant":
fields.message_id = v.get("message", {}).get("id")
return
if "error" in line and line.get("error"):
raise RuntimeError(line.get("error"))
@classmethod
async def synthesize(cls, params: dict) -> AsyncIterator[bytes]:
await cls.login()
async with StreamSession(
impersonate="chrome",
timeout=900
) as session:
async with session.get(
f"{cls.url}/backend-api/synthesize",
params=params,
headers=cls._headers
) as response:
await raise_for_status(response)
async for chunk in response.iter_content():
yield chunk
@classmethod
async def login(cls, proxy: str = None):
if cls._expires is not None and cls._expires < time.time():
cls._headers = cls._api_key = None
try:
await get_request_config(proxy)
cls._create_request_args(RequestConfig.cookies, RequestConfig.headers)
cls._set_api_key(RequestConfig.access_token)
except NoValidHarFileError:
if has_nodriver:
await cls.nodriver_auth(proxy)
else:
raise
@classmethod
async def nodriver_auth(cls, proxy: str = None):
if has_platformdirs:
user_data_dir = user_config_dir("g4f-nodriver")
else:
user_data_dir = None
debug.log(f"Open nodriver with user_dir: {user_data_dir}")
browser = await nodriver.start(
user_data_dir=user_data_dir,
browser_args=None if proxy is None else [f"--proxy-server={proxy}"],
)
page = browser.main_tab
def on_request(event: nodriver.cdp.network.RequestWillBeSent):
if event.request.url == start_url or event.request.url.startswith(conversation_url):
RequestConfig.access_request_id = event.request_id
RequestConfig.headers = event.request.headers
elif event.request.url in (backend_url, backend_anon_url):
if "OpenAI-Sentinel-Proof-Token" in event.request.headers:
RequestConfig.proof_token = json.loads(base64.b64decode(
event.request.headers["OpenAI-Sentinel-Proof-Token"].split("gAAAAAB", 1)[-1].encode()
).decode())
if "OpenAI-Sentinel-Turnstile-Token" in event.request.headers:
RequestConfig.turnstile_token = event.request.headers["OpenAI-Sentinel-Turnstile-Token"]
if "Authorization" in event.request.headers:
RequestConfig.access_token = event.request.headers["Authorization"].split()[-1]
elif event.request.url == arkose_url:
RequestConfig.arkose_request = arkReq(
arkURL=event.request.url,
arkBx=None,
arkHeader=event.request.headers,
arkBody=event.request.post_data,
userAgent=event.request.headers.get("user-agent")
)
await page.send(nodriver.cdp.network.enable())
page.add_handler(nodriver.cdp.network.RequestWillBeSent, on_request)
page = await browser.get(cls.url)
try:
if RequestConfig.access_request_id is not None:
body = await page.send(get_response_body(RequestConfig.access_request_id))
if isinstance(body, tuple) and body:
body = body[0]
if body:
match = re.search(r'"accessToken":"(.*?)"', body)
if match:
RequestConfig.access_token = match.group(1)
except KeyError:
pass
for c in await page.send(nodriver.cdp.network.get_cookies([cls.url])):
RequestConfig.cookies[c.name] = c.value
RequestConfig.user_agent = await page.evaluate("window.navigator.userAgent")
await page.select("#prompt-textarea", 240)
while True:
if RequestConfig.proof_token:
break
await asyncio.sleep(1)
await page.close()
cls._create_request_args(RequestConfig.cookies, RequestConfig.headers, user_agent=RequestConfig.user_agent)
cls._set_api_key(RequestConfig.access_token)
@staticmethod
def get_default_headers() -> dict:
return {
**DEFAULT_HEADERS,
"content-type": "application/json",
}
@classmethod
def _create_request_args(cls, cookies: Cookies = None, headers: dict = None, user_agent: str = None):
cls._headers = cls.get_default_headers() if headers is None else headers
if user_agent is not None:
cls._headers["user-agent"] = user_agent
cls._cookies = {} if cookies is None else cookies
cls._update_cookie_header()
@classmethod
def _update_request_args(cls, session: StreamSession):
for c in session.cookie_jar if hasattr(session, "cookie_jar") else session.cookies.jar:
cls._cookies[c.key if hasattr(c, "key") else c.name] = c.value
cls._update_cookie_header()
@classmethod
def _set_api_key(cls, api_key: str):
cls._api_key = api_key
cls._expires = int(time.time()) + 60 * 60 * 4
if api_key:
cls._headers["authorization"] = f"Bearer {api_key}"
@classmethod
def _update_cookie_header(cls):
cls._headers["cookie"] = format_cookies(cls._cookies)
class Conversation(BaseConversation):
"""
Class to encapsulate response fields.
"""
def __init__(self, conversation_id: str = None, message_id: str = None, finish_reason: str = None):
self.conversation_id = conversation_id
self.message_id = message_id
self.finish_reason = finish_reason
self.is_recipient = False
class Response():
"""
Class to encapsulate a response from the chat service.
"""
def __init__(
self,
generator: AsyncResult,
action: str,
messages: Messages,
options: dict
):
self._generator = generator
self.action = action
self.is_end = False
self._message = None
self._messages = messages
self._options = options
self._fields = None
async def generator(self) -> AsyncIterator:
if self._generator is not None:
self._generator = None
chunks = []
async for chunk in self._generator:
if isinstance(chunk, Conversation):
self._fields = chunk
else:
yield chunk
chunks.append(str(chunk))
self._message = "".join(chunks)
if self._fields is None:
raise RuntimeError("Missing response fields")
self.is_end = self._fields.finish_reason == "stop"
def __aiter__(self):
return self.generator()
async def get_message(self) -> str:
await self.generator()
return self._message
async def get_fields(self) -> dict:
await self.generator()
return {
"conversation_id": self._fields.conversation_id,
"parent_id": self._fields.message_id
}
async def create_next(self, prompt: str, **kwargs) -> Response:
return await OpenaiChat.create(
**self._options,
prompt=prompt,
messages=await self.get_messages(),
action="next",
**await self.get_fields(),
**kwargs
)
async def do_continue(self, **kwargs) -> Response:
fields = await self.get_fields()
if self.is_end:
raise RuntimeError("Can't continue message. Message already finished.")
return await OpenaiChat.create(
**self._options,
messages=await self.get_messages(),
action="continue",
**fields,
**kwargs
)
async def create_variant(self, **kwargs) -> Response:
if self.action != "next":
raise RuntimeError("Can't create variant from continue or variant request.")
return await OpenaiChat.create(
**self._options,
messages=self._messages,
action="variant",
**await self.get_fields(),
**kwargs
)
async def get_messages(self) -> list:
messages = self._messages
messages.append({"role": "assistant", "content": await self.message()})
return messages