summaryrefslogblamecommitdiffstats
path: root/g4f/models.py
blob: a6c259e30e8295ff2a177365a9fcd4316055dd5d (plain) (tree)
1
2
3
4
5
6
7
8
                                   
 
                                 
 
                                                    
                       
                 
           


             
                   
              



                   
                 

                
               

              




                

                  







                   
                  
               
            
        
 
 
 
                            
            







                                                                                                       

                      
                                      
 

                               
                                                
                          
 
                

                       
                                      

                       
            
                    
                   


                      
                 


                      

      
 






                       
                     

                                    
                                      
                           
      

 
       

                             
                             
                                      
                                        
      
 
 

                                  
                             
                                      
                                                                                                                                   
      
 


                                  

                                      
                      


      

                            

                                      

                                                                                  


      
                





                                      

            
             
                              
                           
                          

 

                                 
                           
                                                            

 

                                  
                           
                                                                                           

 

                                   
                           
                                                

 

                                    
                           
                                                                                                       

 

                                     
                           
                                                                          
 
 
               
                     
                                   

                                                                                                            

 

                                 
                              
                                                                           

 
             

                                 
                            
                                                                



                 

                                    

                                                                
 
 


              
               
                             
                             
                          
 
 


                                 
                                                                    




                                   
                                                          

 
       

                               



                                                     
                 















                                                
 
 

                                    
                                
                                                



                                      
                                
                                                





                                                

 

                                     
                                
                                                     

 
 




                              
 
 
 




                               
 
 


                      
                           

                                                 
 
 


                       
                            

                                                   

 
 
               

                            



                                                   
            

                          





                                                   

                     



                                                   

                         





                                                   

                       




                                                   







                                               


                                 
                      
 
 
 


             
 

                    
                  
                                   
                                                                     


    

                  




                                                     


                             

                                                     
    

 
































                                                    
    

 
                 





                                                                                                   
                                 
    


            
        


                              
 




                               

        





                           
        



                                 

        



                             
 


                         
        

                               
 





                             
        

                     
 




                         
        



                                       
        






                       

        





                               
 
 

                     
        
        

                                 
        
        

                             
        
        


                           
        
        

                       

        





                             
        
        
        


















                                   
 
     
 
                                             
from __future__  import annotations

from dataclasses import dataclass

from .Provider import IterListProvider, ProviderType
from .Provider import (
    AiChatOnline,
    Allyfy,
    Bing,
    Blackbox,
    ChatGot,
    Chatgpt4Online,
    Chatgpt4o,
    ChatgptFree,
    DDG,
    DeepInfra,
    DeepInfraImage,
    FluxAirforce,
    FreeChatgpt,
    FreeGpt,
    FreeNetfly,
    Gemini,
    GeminiPro,
    GigaChat,
    HuggingChat,
    HuggingFace,
    Koala,
    Liaobots,
    MagickPenAsk,
    MagickPenChat,
    MetaAI,
    OpenaiChat,
    PerplexityLabs,
    Pi,
    Pizzagpt,
    Reka,
    Replicate,
    ReplicateHome,
    TeachAnything,
    TwitterBio,
    Upstage,
    You,
)


@dataclass(unsafe_hash=True)
class Model:
    """
    Represents a machine learning model configuration.

    Attributes:
        name (str): Name of the model.
        base_provider (str): Default provider for the model.
        best_provider (ProviderType): The preferred provider for the model, typically with retry logic.
    """
    name: str
    base_provider: str
    best_provider: ProviderType = None

    @staticmethod
    def __all__() -> list[str]:
        """Returns a list of all model names."""
        return _all_models

default = Model(
    name          = "",
    base_provider = "",
    best_provider = IterListProvider([
        ChatGot,
        Chatgpt4Online,
        DDG,
        FreeChatgpt,
        FreeNetfly,
        HuggingChat,
        MagickPenAsk,
        MagickPenChat,
        Pizzagpt,
        ChatgptFree,
        ReplicateHome,
        Upstage,
    ])
)

############
### Text ###
############

### OpenAI ###
### GPT-3.5 / GPT-4 ###
# gpt-3.5
gpt_35_turbo = Model(
    name          = 'gpt-3.5-turbo',
    base_provider = 'openai',
    best_provider = IterListProvider([
        Allyfy, TwitterBio,
    ])
)

# gpt-4
gpt_4o = Model(
    name          = 'gpt-4o',
    base_provider = 'openai',
    best_provider = IterListProvider([
        Liaobots, Chatgpt4o, OpenaiChat,
    ])
)

gpt_4o_mini = Model(
    name          = 'gpt-4o-mini',
    base_provider = 'openai',
    best_provider = IterListProvider([
        DDG, Liaobots, You, FreeNetfly, MagickPenAsk, MagickPenChat, Pizzagpt, ChatgptFree, AiChatOnline, OpenaiChat, Koala,       
    ])
)

gpt_4_turbo = Model(
    name          = 'gpt-4-turbo',
    base_provider = 'openai',
    best_provider = IterListProvider([
        Liaobots, Bing
    ])
)

gpt_4 = Model(
    name          = 'gpt-4',
    base_provider = 'openai',
    best_provider = IterListProvider([
        Chatgpt4Online, Bing,
        gpt_4_turbo.best_provider, gpt_4o.best_provider, gpt_4o_mini.best_provider
    ])
)

### GigaChat ###
gigachat = Model(
    name          = 'GigaChat:latest',
    base_provider = 'gigachat',
    best_provider = GigaChat
)


### Meta ###
meta = Model(
    name          = "meta-ai",
    base_provider = "Meta",
    best_provider = MetaAI
)

llama_3_8b = Model(
    name          = "llama-3-8b",
    base_provider = "Meta",
    best_provider = IterListProvider([DeepInfra, Replicate])
)

llama_3_70b = Model(
    name          = "llama-3-70b",
    base_provider = "Meta",
    best_provider = IterListProvider([ReplicateHome, DeepInfra, PerplexityLabs, Replicate])
)

llama_3_1_8b = Model(
    name          = "llama-3.1-8b",
    base_provider = "Meta",
    best_provider = IterListProvider([Blackbox])
)

llama_3_1_70b = Model(
    name          = "llama-3.1-70b",
    base_provider = "Meta",
    best_provider = IterListProvider([DDG, HuggingChat, FreeGpt, Blackbox, TeachAnything, HuggingFace])
)

llama_3_1_405b = Model(
    name          = "llama-3.1-405b",
    base_provider = "Meta",
    best_provider = IterListProvider([HuggingChat, Blackbox, HuggingFace])
)

### Mistral ###
mixtral_8x7b = Model(
    name          = "mixtral-8x7b",
    base_provider = "Mistral",
    best_provider = IterListProvider([HuggingChat, DDG, ReplicateHome, TwitterBio, DeepInfra, HuggingFace,])
)

mistral_7b = Model(
    name          = "mistral-7b",
    base_provider = "Mistral",
    best_provider = IterListProvider([HuggingChat, HuggingFace, DeepInfra])
)

### 01-ai ###
yi_1_5_34b = Model(
    name          = "yi-1.5-34b",
    base_provider = "01-ai",
    best_provider = IterListProvider([HuggingChat, HuggingFace])
)


### Microsoft ###
phi_3_mini_4k = Model(
    name          = "phi-3-mini-4k",
    base_provider = "Microsoft",
    best_provider = IterListProvider([HuggingFace, HuggingChat])
)


### Google ###
# gemini
gemini = Model(
    name          = 'gemini',
    base_provider = 'Google',
    best_provider = Gemini
)

gemini_pro = Model(
    name          = 'gemini-pro',
    base_provider = 'Google',
    best_provider = IterListProvider([GeminiPro, ChatGot, Liaobots])
)

gemini_flash = Model(
    name          = 'gemini-flash',
    base_provider = 'Google',
    best_provider = IterListProvider([Liaobots, Blackbox])
)

# gemma
gemma_2b = Model(
    name          = 'gemma-2b',
    base_provider = 'Google',
    best_provider = IterListProvider([ReplicateHome])
)

### Anthropic ###
claude_2 = Model(
    name          = 'claude-2',
    base_provider = 'Anthropic',
    best_provider = IterListProvider([You])
)

claude_2_0 = Model(
    name          = 'claude-2.0',
    base_provider = 'Anthropic',
    best_provider = IterListProvider([Liaobots])
)

claude_2_1 = Model(
    name          = 'claude-2.1',
    base_provider = 'Anthropic',
    best_provider = IterListProvider([Liaobots])
)

claude_3_opus = Model(
    name          = 'claude-3-opus',
    base_provider = 'Anthropic',
    best_provider = IterListProvider([Liaobots])
)

claude_3_sonnet = Model(
    name          = 'claude-3-sonnet',
    base_provider = 'Anthropic',
    best_provider = IterListProvider([Liaobots])
)

claude_3_5_sonnet = Model(
    name          = 'claude-3-5-sonnet',
    base_provider = 'Anthropic',
    best_provider = IterListProvider([Liaobots])
)

claude_3_haiku = Model(
    name          = 'claude-3-haiku',
    base_provider = 'Anthropic',
    best_provider = IterListProvider([DDG, Liaobots])
)


### Reka AI ###
reka_core = Model(
    name = 'reka-core',
    base_provider = 'Reka AI',
    best_provider = Reka
)


### Blackbox ###
blackbox = Model(
    name = 'blackbox',
    base_provider = 'Blackbox',
    best_provider = Blackbox
)


### Databricks ###
dbrx_instruct = Model(
    name = 'dbrx-instruct',
    base_provider = 'Databricks',
    best_provider = IterListProvider([DeepInfra])
)


### CohereForAI ###
command_r_plus = Model(
    name = 'command-r-plus',
    base_provider = 'CohereForAI',
    best_provider = IterListProvider([HuggingChat])
)


### iFlytek ###
sparkdesk_v1_1 = Model(
    name = 'sparkdesk-v1.1',
    base_provider = 'iFlytek',
    best_provider = IterListProvider([FreeChatgpt])
)

### Qwen ###
qwen_1_5_14b = Model(
    name = 'qwen-1.5-14b',
    base_provider = 'Qwen',
    best_provider = IterListProvider([FreeChatgpt])
)


### Zhipu AI ###
glm4_9b = Model(
    name = 'glm4-9B',
    base_provider = 'Zhipu AI',
    best_provider = IterListProvider([FreeChatgpt])
)

chatglm3_6b = Model(
    name = 'chatglm3-6b',
    base_provider = 'Zhipu AI',
    best_provider = IterListProvider([FreeChatgpt])
)


### 01-ai ###
yi_1_5_9b = Model(
    name = 'yi-1.5-9b',
    base_provider = '01-ai',
    best_provider = IterListProvider([FreeChatgpt])
)


### Pi ###
solar_1_mini = Model(
    name = 'solar-1-mini',
    base_provider = 'Upstage',
    best_provider = IterListProvider([Upstage])
)

### Pi ###
pi = Model(
    name = 'pi',
    base_provider = 'inflection',
    best_provider = Pi
)


#############
### Image ###
#############

### Stability AI ###
sdxl = Model(
    name = 'sdxl',
    base_provider = 'Stability AI',
    best_provider = IterListProvider([ReplicateHome, DeepInfraImage])
    
)

sd_3 = Model(
    name = 'sd-3',
    base_provider = 'Stability AI',
    best_provider = IterListProvider([ReplicateHome])
    
)

### Playground ###
playground_v2_5 = Model(
    name = 'playground-v2.5',
    base_provider = 'Stability AI',
    best_provider = IterListProvider([ReplicateHome])
    
)

### Flux AI ###
flux = Model(
    name = 'flux',
    base_provider = 'Flux AI',
    best_provider = IterListProvider([FluxAirforce])
    
)

flux_realism = Model(
    name = 'flux-realism',
    base_provider = 'Flux AI',
    best_provider = IterListProvider([FluxAirforce])
    
)

flux_anime = Model(
    name = 'flux-anime',
    base_provider = 'Flux AI',
    best_provider = IterListProvider([FluxAirforce])
    
)

flux_3d = Model(
    name = 'flux-3d',
    base_provider = 'Flux AI',
    best_provider = IterListProvider([FluxAirforce])
    
)

flux_disney = Model(
    name = 'flux-disney',
    base_provider = 'Flux AI',
    best_provider = IterListProvider([FluxAirforce])
    
)

class ModelUtils:
    """
    Utility class for mapping string identifiers to Model instances.

    Attributes:
        convert (dict[str, Model]): Dictionary mapping model string identifiers to Model instances.
    """
    convert: dict[str, Model] = {
    
############
### Text ###
############
        
### OpenAI ###
# gpt-3.5
'gpt-3.5-turbo': gpt_35_turbo,

# gpt-4
'gpt-4o'         : gpt_4o,
'gpt-4o-mini'    : gpt_4o_mini,
'gpt-4'          : gpt_4,
'gpt-4-turbo'    : gpt_4_turbo,
        
        
### Meta ###
"meta-ai": meta,

# llama-3
'llama-3-8b': llama_3_8b,
'llama-3-70b': llama_3_70b,
        
# llama-3.1
'llama-3.1-8b': llama_3_1_8b,
'llama-3.1-70b': llama_3_1_70b,
'llama-3.1-405b': llama_3_1_405b,
        
        
### Mistral ###
'mixtral-8x7b': mixtral_8x7b,
'mistral-7b': mistral_7b,


### 01-ai ###
'yi-1.5-34b': yi_1_5_34b,
        
        
### Microsoft ###
'phi-3-mini-4k': phi_3_mini_4k,


### Google ###
# gemini
'gemini': gemini,
'gemini-pro': gemini_pro,
'gemini-flash': gemini_flash,
        
# gemma
'gemma-2b': gemma_2b,


### Anthropic ###
'claude-2': claude_2,
'claude-2.0': claude_2_0,
'claude-2.1': claude_2_1,
        
'claude-3-opus': claude_3_opus,
'claude-3-sonnet': claude_3_sonnet,
'claude-3-5-sonnet': claude_3_5_sonnet,
'claude-3-haiku': claude_3_haiku,
        
        
### Reka AI ###
'reka-core': reka_core,
      
        
### Blackbox ###
'blackbox': blackbox,
        
        
### CohereForAI ###
'command-r+': command_r_plus,
        
        
### Databricks ###
'dbrx-instruct': dbrx_instruct,


### GigaChat ###
'gigachat': gigachat,
        
        
### iFlytek ###
'sparkdesk-v1.1': sparkdesk_v1_1,
        
        
### Qwen ###
'qwen-1.5-14b': qwen_1_5_14b,
        
        
### Zhipu AI ###
'glm4-9b': glm4_9b,
'chatglm3-6b': chatglm3_6b,
        
        
### 01-ai ###
'yi-1.5-9b': yi_1_5_9b,
        
        
### Upstage ###
'solar-1-mini': solar_1_mini,


### Pi ###
'pi': pi,
        
        
        
#############
### Image ###
#############
        
### Stability AI ###
'sdxl': sdxl,
'sd-3': sd_3,
        
        
### Playground ###
'playground-v2.5': playground_v2_5,


### Flux AI ###
'flux': flux,
'flux-realism': flux_realism,
'flux-anime': flux_anime,
'flux-3d': flux_3d,
'flux-disney': flux_disney,

    }

_all_models = list(ModelUtils.convert.keys())