diff options
author | Tekky <98614666+xtekky@users.noreply.github.com> | 2024-10-30 09:54:54 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-10-30 09:54:54 +0100 |
commit | 1c8061af5550a150b1319d04275771698b226cec (patch) | |
tree | 489d5d84e812bd9ba3e2c88c2322b45f016c766d /g4f/Provider/nexra/NexraChatGPT.py | |
parent | re-include`AsyncClient` for backwards compatibility, with deprecationwarning. Use `Client` instead (diff) | |
parent | Update (docs/async_client.md docs/client.md docs/interference-api.md g4f/client/client.py) (diff) | |
download | gpt4free-1c8061af5550a150b1319d04275771698b226cec.tar gpt4free-1c8061af5550a150b1319d04275771698b226cec.tar.gz gpt4free-1c8061af5550a150b1319d04275771698b226cec.tar.bz2 gpt4free-1c8061af5550a150b1319d04275771698b226cec.tar.lz gpt4free-1c8061af5550a150b1319d04275771698b226cec.tar.xz gpt4free-1c8061af5550a150b1319d04275771698b226cec.tar.zst gpt4free-1c8061af5550a150b1319d04275771698b226cec.zip |
Diffstat (limited to '')
-rw-r--r-- | g4f/Provider/nexra/NexraChatGPT.py | 270 |
1 files changed, 233 insertions, 37 deletions
diff --git a/g4f/Provider/nexra/NexraChatGPT.py b/g4f/Provider/nexra/NexraChatGPT.py index fc5051ee..074a0363 100644 --- a/g4f/Provider/nexra/NexraChatGPT.py +++ b/g4f/Provider/nexra/NexraChatGPT.py @@ -1,45 +1,52 @@ from __future__ import annotations +import asyncio import json import requests +from typing import Any, Dict -from ...typing import CreateResult, Messages -from ..base_provider import ProviderModelMixin, AbstractProvider +from ...typing import AsyncResult, Messages +from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin from ..helper import format_prompt -class NexraChatGPT(AbstractProvider, ProviderModelMixin): + +class NexraChatGPT(AsyncGeneratorProvider, ProviderModelMixin): label = "Nexra ChatGPT" url = "https://nexra.aryahcr.cc/documentation/chatgpt/en" - api_endpoint = "https://nexra.aryahcr.cc/api/chat/gpt" + api_endpoint_nexra_chatgpt = "https://nexra.aryahcr.cc/api/chat/gpt" + api_endpoint_nexra_chatgpt4o = "https://nexra.aryahcr.cc/api/chat/complements" + api_endpoint_nexra_chatgpt_v2 = "https://nexra.aryahcr.cc/api/chat/complements" + api_endpoint_nexra_gptweb = "https://nexra.aryahcr.cc/api/chat/gptweb" working = True + supports_system_message = True + supports_message_history = True + supports_stream = True default_model = 'gpt-3.5-turbo' - models = ['gpt-4', 'gpt-4-0613', 'gpt-4-0314', 'gpt-4-32k-0314', default_model, 'gpt-3.5-turbo-16k', 'gpt-3.5-turbo-0613', 'gpt-3.5-turbo-16k-0613', 'gpt-3.5-turbo-0301', 'text-davinci-003', 'text-davinci-002', 'code-davinci-002', 'gpt-3', 'text-curie-001', 'text-babbage-001', 'text-ada-001', 'davinci', 'curie', 'babbage', 'ada', 'babbage-002', 'davinci-002'] + nexra_chatgpt = [ + 'gpt-4', 'gpt-4-0613', 'gpt-4-0314', 'gpt-4-32k-0314', + default_model, 'gpt-3.5-turbo-16k', 'gpt-3.5-turbo-0613', 'gpt-3.5-turbo-16k-0613', 'gpt-3.5-turbo-0301', + 'text-davinci-003', 'text-davinci-002', 'code-davinci-002', 'gpt-3', 'text-curie-001', 'text-babbage-001', 'text-ada-001', 'davinci', 'curie', 'babbage', 'ada', 'babbage-002', 'davinci-002' + ] + nexra_chatgpt4o = ['gpt-4o'] + nexra_chatgptv2 = ['chatgpt'] + nexra_gptweb = ['gptweb'] + models = nexra_chatgpt + nexra_chatgpt4o + nexra_chatgptv2 + nexra_gptweb model_aliases = { "gpt-4": "gpt-4-0613", - "gpt-4": "gpt-4-32k", - "gpt-4": "gpt-4-0314", - "gpt-4": "gpt-4-32k-0314", - + "gpt-4-32k": "gpt-4-32k-0314", "gpt-3.5-turbo": "gpt-3.5-turbo-16k", - "gpt-3.5-turbo": "gpt-3.5-turbo-0613", - "gpt-3.5-turbo": "gpt-3.5-turbo-16k-0613", - "gpt-3.5-turbo": "gpt-3.5-turbo-0301", - + "gpt-3.5-turbo-0613": "gpt-3.5-turbo-16k-0613", "gpt-3": "text-davinci-003", - "gpt-3": "text-davinci-002", - "gpt-3": "code-davinci-002", - "gpt-3": "text-curie-001", - "gpt-3": "text-babbage-001", - "gpt-3": "text-ada-001", - "gpt-3": "text-ada-001", - "gpt-3": "davinci", - "gpt-3": "curie", - "gpt-3": "babbage", - "gpt-3": "ada", - "gpt-3": "babbage-002", - "gpt-3": "davinci-002", + "text-davinci-002": "code-davinci-002", + "text-curie-001": "text-babbage-001", + "text-ada-001": "davinci", + "curie": "babbage", + "ada": "babbage-002", + "davinci-002": "davinci-002", + "chatgpt": "chatgpt", + "gptweb": "gptweb" } @classmethod @@ -50,40 +57,229 @@ class NexraChatGPT(AbstractProvider, ProviderModelMixin): return cls.model_aliases[model] else: return cls.default_model - + @classmethod - def create_completion( + async def create_async_generator( cls, model: str, messages: Messages, + stream: bool = False, proxy: str = None, markdown: bool = False, **kwargs - ) -> CreateResult: - model = cls.get_model(model) + ) -> AsyncResult: + if model in cls.nexra_chatgpt: + async for chunk in cls._create_async_generator_nexra_chatgpt(model, messages, proxy, **kwargs): + yield chunk + elif model in cls.nexra_chatgpt4o: + async for chunk in cls._create_async_generator_nexra_chatgpt4o(model, messages, stream, proxy, markdown, **kwargs): + yield chunk + elif model in cls.nexra_chatgptv2: + async for chunk in cls._create_async_generator_nexra_chatgpt_v2(model, messages, stream, proxy, markdown, **kwargs): + yield chunk + elif model in cls.nexra_gptweb: + async for chunk in cls._create_async_generator_nexra_gptweb(model, messages, proxy, **kwargs): + yield chunk + @classmethod + async def _create_async_generator_nexra_chatgpt( + cls, + model: str, + messages: Messages, + proxy: str = None, + markdown: bool = False, + **kwargs + ) -> AsyncResult: + model = cls.get_model(model) + headers = { - 'Content-Type': 'application/json' + "Content-Type": "application/json" } + prompt = format_prompt(messages) data = { - "messages": [], - "prompt": format_prompt(messages), + "messages": messages, + "prompt": prompt, "model": model, "markdown": markdown } + + loop = asyncio.get_event_loop() + try: + response = await loop.run_in_executor(None, cls._sync_post_request, cls.api_endpoint_nexra_chatgpt, data, headers, proxy) + filtered_response = cls._filter_response(response) + + for chunk in filtered_response: + yield chunk + except Exception as e: + print(f"Error during API request (nexra_chatgpt): {e}") + + @classmethod + async def _create_async_generator_nexra_chatgpt4o( + cls, + model: str, + messages: Messages, + stream: bool = False, + proxy: str = None, + markdown: bool = False, + **kwargs + ) -> AsyncResult: + model = cls.get_model(model) - response = requests.post(cls.api_endpoint, headers=headers, json=data) + headers = { + "Content-Type": "application/json" + } + + prompt = format_prompt(messages) + data = { + "messages": [ + { + "role": "user", + "content": prompt + } + ], + "stream": stream, + "markdown": markdown, + "model": model + } - return cls.process_response(response) + loop = asyncio.get_event_loop() + try: + response = await loop.run_in_executor(None, cls._sync_post_request, cls.api_endpoint_nexra_chatgpt4o, data, headers, proxy, stream) + + if stream: + async for chunk in cls._process_streaming_response(response): + yield chunk + else: + for chunk in cls._process_non_streaming_response(response): + yield chunk + except Exception as e: + print(f"Error during API request (nexra_chatgpt4o): {e}") @classmethod - def process_response(cls, response): + async def _create_async_generator_nexra_chatgpt_v2( + cls, + model: str, + messages: Messages, + stream: bool = False, + proxy: str = None, + markdown: bool = False, + **kwargs + ) -> AsyncResult: + model = cls.get_model(model) + + headers = { + "Content-Type": "application/json" + } + + prompt = format_prompt(messages) + data = { + "messages": [ + { + "role": "user", + "content": prompt + } + ], + "stream": stream, + "markdown": markdown, + "model": model + } + + loop = asyncio.get_event_loop() + try: + response = await loop.run_in_executor(None, cls._sync_post_request, cls.api_endpoint_nexra_chatgpt_v2, data, headers, proxy, stream) + + if stream: + async for chunk in cls._process_streaming_response(response): + yield chunk + else: + for chunk in cls._process_non_streaming_response(response): + yield chunk + except Exception as e: + print(f"Error during API request (nexra_chatgpt_v2): {e}") + + @classmethod + async def _create_async_generator_nexra_gptweb( + cls, + model: str, + messages: Messages, + proxy: str = None, + markdown: bool = False, + **kwargs + ) -> AsyncResult: + model = cls.get_model(model) + + headers = { + "Content-Type": "application/json" + } + + prompt = format_prompt(messages) + data = { + "prompt": prompt, + "markdown": markdown, + } + + loop = asyncio.get_event_loop() + try: + response = await loop.run_in_executor(None, cls._sync_post_request, cls.api_endpoint_nexra_gptweb, data, headers, proxy) + + for chunk in response.iter_content(1024): + if chunk: + decoded_chunk = chunk.decode().lstrip('_') + try: + response_json = json.loads(decoded_chunk) + if response_json.get("status"): + yield response_json.get("gpt", "") + except json.JSONDecodeError: + continue + except Exception as e: + print(f"Error during API request (nexra_gptweb): {e}") + + @staticmethod + def _sync_post_request(url: str, data: Dict[str, Any], headers: Dict[str, str], proxy: str = None, stream: bool = False) -> requests.Response: + proxies = { + "http": proxy, + "https": proxy, + } if proxy else None + + try: + response = requests.post(url, json=data, headers=headers, proxies=proxies, stream=stream) + response.raise_for_status() + return response + except requests.RequestException as e: + print(f"Request failed: {e}") + raise + + @staticmethod + def _process_non_streaming_response(response: requests.Response) -> str: if response.status_code == 200: try: - data = response.json() - return data.get('gpt', '') + content = response.text.lstrip('') + data = json.loads(content) + return data.get('message', '') except json.JSONDecodeError: return "Error: Unable to decode JSON response" else: return f"Error: {response.status_code}" + + @staticmethod + async def _process_streaming_response(response: requests.Response): + full_message = "" + for line in response.iter_lines(decode_unicode=True): + if line: + try: + line = line.lstrip('') + data = json.loads(line) + if data.get('finish'): + break + message = data.get('message', '') + if message: + yield message[len(full_message):] + full_message = message + except json.JSONDecodeError: + pass + + @staticmethod + def _filter_response(response: requests.Response) -> str: + response_json = response.json() + return response_json.get("gpt", "") |