1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
from __future__ import annotations
import re
from aiohttp import ClientSession
import json
from typing import List
import requests
from ...typing import AsyncResult, Messages
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..helper import format_prompt
def clean_response(text: str) -> str:
"""Clean response from unwanted patterns."""
patterns = [
r"One message exceeds the \d+chars per message limit\..+https:\/\/discord\.com\/invite\/\S+",
r"Rate limit \(\d+\/minute\) exceeded\. Join our discord for more: .+https:\/\/discord\.com\/invite\/\S+",
r"Rate limit \(\d+\/hour\) exceeded\. Join our discord for more: https:\/\/discord\.com\/invite\/\S+",
r"</s>", # zephyr-7b-beta
]
for pattern in patterns:
text = re.sub(pattern, '', text)
return text.strip()
def split_message(message: dict, chunk_size: int = 995) -> List[dict]:
"""Split a message into chunks of specified size."""
content = message.get('content', '')
if len(content) <= chunk_size:
return [message]
chunks = []
while content:
chunk = content[:chunk_size]
content = content[chunk_size:]
chunks.append({
'role': message['role'],
'content': chunk
})
return chunks
def split_messages(messages: Messages, chunk_size: int = 995) -> Messages:
"""Split all messages that exceed chunk_size into smaller messages."""
result = []
for message in messages:
result.extend(split_message(message, chunk_size))
return result
class AirforceChat(AsyncGeneratorProvider, ProviderModelMixin):
label = "AirForce Chat"
api_endpoint = "https://api.airforce/chat/completions"
supports_stream = True
supports_system_message = True
supports_message_history = True
default_model = 'llama-3.1-70b-chat'
response = requests.get('https://api.airforce/models')
data = response.json()
text_models = [model['id'] for model in data['data']]
models = [*text_models]
model_aliases = {
# openchat
"openchat-3.5": "openchat-3.5-0106",
# deepseek-ai
"deepseek-coder": "deepseek-coder-6.7b-instruct",
# NousResearch
"hermes-2-dpo": "Nous-Hermes-2-Mixtral-8x7B-DPO",
"hermes-2-pro": "hermes-2-pro-mistral-7b",
# teknium
"openhermes-2.5": "openhermes-2.5-mistral-7b",
# liquid
"lfm-40b": "lfm-40b-moe",
# DiscoResearch
"german-7b": "discolm-german-7b-v1",
# meta-llama
"llama-2-7b": "llama-2-7b-chat-int8",
"llama-2-7b": "llama-2-7b-chat-fp16",
"llama-3.1-70b": "llama-3.1-70b-chat",
"llama-3.1-8b": "llama-3.1-8b-chat",
"llama-3.1-70b": "llama-3.1-70b-turbo",
"llama-3.1-8b": "llama-3.1-8b-turbo",
# inferless
"neural-7b": "neural-chat-7b-v3-1",
# HuggingFaceH4
"zephyr-7b": "zephyr-7b-beta",
# llmplayground.net
#"any-uncensored": "any-uncensored",
}
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
stream: bool = False,
proxy: str = None,
max_tokens: str = 4096,
temperature: str = 1,
top_p: str = 1,
**kwargs
) -> AsyncResult:
model = cls.get_model(model)
chunked_messages = split_messages(messages)
headers = {
'accept': '*/*',
'accept-language': 'en-US,en;q=0.9',
'authorization': 'Bearer missing api key',
'cache-control': 'no-cache',
'content-type': 'application/json',
'origin': 'https://llmplayground.net',
'pragma': 'no-cache',
'priority': 'u=1, i',
'referer': 'https://llmplayground.net/',
'sec-ch-ua': '"Not?A_Brand";v="99", "Chromium";v="130"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Linux"',
'sec-fetch-dest': 'empty',
'sec-fetch-mode': 'cors',
'sec-fetch-site': 'cross-site',
'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36'
}
data = {
"messages": chunked_messages,
"model": model,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"stream": stream
}
async with ClientSession(headers=headers) as session:
async with session.post(cls.api_endpoint, json=data, proxy=proxy) as response:
response.raise_for_status()
text = ""
if stream:
async for line in response.content:
line = line.decode('utf-8')
if line.startswith('data: '):
json_str = line[6:]
try:
chunk = json.loads(json_str)
if 'choices' in chunk and chunk['choices']:
content = chunk['choices'][0].get('delta', {}).get('content', '')
text += content
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {json_str}, Error: {e}")
elif line.strip() == "[DONE]":
break
yield clean_response(text)
else:
response_json = await response.json()
text = response_json["choices"][0]["message"]["content"]
yield clean_response(text)
|