summaryrefslogtreecommitdiffstats
path: root/g4f/Provider/needs_auth/OpenaiChat.py
blob: f50b9f9dc40f6fc881d5a48da0089a68a01f5f87 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
from __future__ import annotations

import re
import asyncio
import uuid
import json
import base64
import time
import requests
from copy import copy

try:
    import nodriver
    from nodriver.cdp.network import get_response_body
    has_nodriver = True
except ImportError:
    has_nodriver = False

from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ...typing import AsyncResult, Messages, Cookies, ImageType, AsyncIterator
from ...requests.raise_for_status import raise_for_status
from ...requests import StreamSession
from ...requests import get_nodriver
from ...image import ImageResponse, ImageRequest, to_image, to_bytes, is_accepted_format
from ...errors import MissingAuthError
from ...providers.response import BaseConversation, FinishReason, SynthesizeData
from ..helper import format_cookies
from ..openai.har_file import get_request_config, NoValidHarFileError
from ..openai.har_file import RequestConfig, arkReq, arkose_url, start_url, conversation_url, backend_url, backend_anon_url
from ..openai.proofofwork import generate_proof_token
from ..openai.new import get_requirements_token
from ... import debug

DEFAULT_HEADERS = {
    "accept": "*/*",
    "accept-encoding": "gzip, deflate, br, zstd",
    "accept-language": "en-US,en;q=0.5",
    "referer": "https://chatgpt.com/",
    "sec-ch-ua": "\"Brave\";v=\"123\", \"Not:A-Brand\";v=\"8\", \"Chromium\";v=\"123\"",
    "sec-ch-ua-mobile": "?0",
    "sec-ch-ua-platform": "\"Windows\"",
    "sec-fetch-dest": "empty",
    "sec-fetch-mode": "cors",
    "sec-fetch-site": "same-origin",
    "sec-gpc": "1",
    "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36"
}

class OpenaiChat(AsyncGeneratorProvider, ProviderModelMixin):
    """A class for creating and managing conversations with OpenAI chat service"""

    label = "OpenAI ChatGPT"
    url = "https://chatgpt.com"
    working = True
    needs_auth = True
    supports_gpt_4 = True
    supports_message_history = True
    supports_system_message = True
    default_model = "auto"
    default_vision_model = "gpt-4o"
    fallback_models = [default_model, "gpt-4", "gpt-4o", "gpt-4o-mini", "gpt-4o-canmore", "o1-preview", "o1-mini"]
    vision_models = fallback_models
    image_models = fallback_models

    _api_key: str = None
    _headers: dict = None
    _cookies: Cookies = None
    _expires: int = None

    @classmethod
    def get_models(cls):
        if not cls.models:
            try:
                response = requests.get(f"{cls.url}/backend-anon/models")
                response.raise_for_status()
                data = response.json()
                cls.models = [model.get("slug") for model in data.get("models")]
            except Exception:
                cls.models = cls.fallback_models
        return cls.models

    @classmethod
    async def upload_image(
        cls,
        session: StreamSession,
        headers: dict,
        image: ImageType,
        image_name: str = None
    ) -> ImageRequest:
        """
        Upload an image to the service and get the download URL
        
        Args:
            session: The StreamSession object to use for requests
            headers: The headers to include in the requests
            image: The image to upload, either a PIL Image object or a bytes object
        
        Returns:
            An ImageRequest object that contains the download URL, file name, and other data
        """
        # Convert the image to a PIL Image object and get the extension
        data_bytes = to_bytes(image)
        image = to_image(data_bytes)
        extension = image.format.lower()
        data = {
            "file_name": "" if image_name is None else image_name,
            "file_size": len(data_bytes),
            "use_case":	"multimodal"
        }
        # Post the image data to the service and get the image data
        async with session.post(f"{cls.url}/backend-api/files", json=data, headers=headers) as response:
            cls._update_request_args(session)
            await raise_for_status(response)
            image_data = {
                **data,
                **await response.json(),
                "mime_type": is_accepted_format(data_bytes),
                "extension": extension,
                "height": image.height,
                "width": image.width
            }
        # Put the image bytes to the upload URL and check the status
        async with session.put(
            image_data["upload_url"],
            data=data_bytes,
            headers={
                "Content-Type": image_data["mime_type"],
                "x-ms-blob-type": "BlockBlob"
            }
        ) as response:
            await raise_for_status(response)
        # Post the file ID to the service and get the download URL
        async with session.post(
            f"{cls.url}/backend-api/files/{image_data['file_id']}/uploaded",
            json={},
            headers=headers
        ) as response:
            cls._update_request_args(session)
            await raise_for_status(response)
            image_data["download_url"] = (await response.json())["download_url"]
        return ImageRequest(image_data)

    @classmethod
    def create_messages(cls, messages: Messages, image_request: ImageRequest = None):
        """
        Create a list of messages for the user input
        
        Args:
            prompt: The user input as a string
            image_response: The image response object, if any
        
        Returns:
            A list of messages with the user input and the image, if any
        """
        # Create a message object with the user role and the content
        messages = [{
            "author": {"role": message["role"]},
            "content": {"content_type": "text", "parts": [message["content"]]},
            "id": str(uuid.uuid4()),
            "create_time": int(time.time()),
            "id": str(uuid.uuid4()),
            "metadata": {"serialization_metadata": {"custom_symbol_offsets": []}}
        } for message in messages]

        # Check if there is an image response
        if image_request is not None:
            # Change content in last user message
            messages[-1]["content"] = {
                "content_type": "multimodal_text",
                "parts": [{
                    "asset_pointer": f"file-service://{image_request.get('file_id')}",
                    "height": image_request.get("height"),
                    "size_bytes": image_request.get("file_size"),
                    "width": image_request.get("width"),
                }, messages[-1]["content"]["parts"][0]]
            }
            # Add the metadata object with the attachments
            messages[-1]["metadata"] = {
                "attachments": [{
                    "height": image_request.get("height"),
                    "id": image_request.get("file_id"),
                    "mimeType": image_request.get("mime_type"),
                    "name": image_request.get("file_name"),
                    "size": image_request.get("file_size"),
                    "width": image_request.get("width"),
                }]
            }
        return messages

    @classmethod
    async def get_generated_image(cls, session: StreamSession, headers: dict, element: dict) -> ImageResponse:
        """
        Retrieves the image response based on the message content.

        This method processes the message content to extract image information and retrieves the 
        corresponding image from the backend API. It then returns an ImageResponse object containing 
        the image URL and the prompt used to generate the image.

        Args:
            session (StreamSession): The StreamSession object used for making HTTP requests.
            headers (dict): HTTP headers to be used for the request.
            line (dict): A dictionary representing the line of response that contains image information.

        Returns:
            ImageResponse: An object containing the image URL and the prompt, or None if no image is found.

        Raises:
            RuntimeError: If there'san error in downloading the image, including issues with the HTTP request or response.
        """
        try:
            prompt = element["metadata"]["dalle"]["prompt"]
            file_id = element["asset_pointer"].split("file-service://", 1)[1]
        except Exception as e:
            raise RuntimeError(f"No Image: {e.__class__.__name__}: {e}")
        try:
            async with session.get(f"{cls.url}/backend-api/files/{file_id}/download", headers=headers) as response:
                cls._update_request_args(session)
                await raise_for_status(response)
                download_url = (await response.json())["download_url"]
                return ImageResponse(download_url, prompt)
        except Exception as e:
            raise RuntimeError(f"Error in downloading image: {e}")

    @classmethod
    async def create_async_generator(
        cls,
        model: str,
        messages: Messages,
        proxy: str = None,
        timeout: int = 180,
        cookies: Cookies = None,
        auto_continue: bool = False,
        history_disabled: bool = False,
        action: str = "next",
        conversation_id: str = None,
        conversation: Conversation = None,
        parent_id: str = None,
        image: ImageType = None,
        image_name: str = None,
        return_conversation: bool = False,
        max_retries: int = 3,
        **kwargs
    ) -> AsyncResult:
        """
        Create an asynchronous generator for the conversation.

        Args:
            model (str): The model name.
            messages (Messages): The list of previous messages.
            proxy (str): Proxy to use for requests.
            timeout (int): Timeout for requests.
            api_key (str): Access token for authentication.
            cookies (dict): Cookies to use for authentication.
            auto_continue (bool): Flag to automatically continue the conversation.
            history_disabled (bool): Flag to disable history and training.
            action (str): Type of action ('next', 'continue', 'variant').
            conversation_id (str): ID of the conversation.
            parent_id (str): ID of the parent message.
            image (ImageType): Image to include in the conversation.
            return_conversation (bool): Flag to include response fields in the output.
            **kwargs: Additional keyword arguments.

        Yields:
            AsyncResult: Asynchronous results from the generator.

        Raises:
            RuntimeError: If an error occurs during processing.
        """
        await cls.login(proxy)

        async with StreamSession(
            proxy=proxy,
            impersonate="chrome",
            timeout=timeout
        ) as session:
            try:
                image_request = await cls.upload_image(session, cls._headers, image, image_name) if image else None
            except Exception as e:
                image_request = None
                debug.log("OpenaiChat: Upload image failed")
                debug.log(f"{e.__class__.__name__}: {e}")
            model = cls.get_model(model)
            if conversation is None:
                conversation = Conversation(conversation_id, str(uuid.uuid4()) if parent_id is None else parent_id)
            else:
                conversation = copy(conversation)
            if cls._api_key is None:
                auto_continue = False
            conversation.finish_reason = None
            while conversation.finish_reason is None:
                async with session.post(
                    f"{cls.url}/backend-anon/sentinel/chat-requirements"
                    if cls._api_key is None else
                    f"{cls.url}/backend-api/sentinel/chat-requirements",
                    json={"p": get_requirements_token(RequestConfig.proof_token) if RequestConfig.proof_token else None},
                    headers=cls._headers
                ) as response:
                    cls._update_request_args(session)
                    await raise_for_status(response)
                    chat_requirements = await response.json()
                    need_turnstile = chat_requirements.get("turnstile", {}).get("required", False)
                    need_arkose = chat_requirements.get("arkose", {}).get("required", False) 
                    chat_token = chat_requirements.get("token")  

                if need_arkose and RequestConfig.arkose_token is None:
                    await get_request_config(proxy)
                    cls._create_request_args(RequestConfig,cookies, RequestConfig.headers)
                    cls._set_api_key(RequestConfig.access_token)
                    if RequestConfig.arkose_token is None:
                        raise MissingAuthError("No arkose token found in .har file")

                if "proofofwork" in chat_requirements:
                    proofofwork = generate_proof_token(
                        **chat_requirements["proofofwork"],
                        user_agent=cls._headers.get("user-agent"),
                        proof_token=RequestConfig.proof_token
                    )
                [debug.log(text) for text in (
                    f"Arkose: {'False' if not need_arkose else RequestConfig.arkose_token[:12]+'...'}",
                    f"Proofofwork: {'False' if proofofwork is None else proofofwork[:12]+'...'}",
                    f"AccessToken: {'False' if cls._api_key is None else cls._api_key[:12]+'...'}",
                )]
                data = {
                    "action": action,
                    "messages": None,
                    "parent_message_id": conversation.message_id,
                    "model": model,
                    "paragen_cot_summary_display_override": "allow",
                    "history_and_training_disabled": history_disabled and not auto_continue and not return_conversation,
                    "conversation_mode": {"kind":"primary_assistant"},
                    "websocket_request_id": str(uuid.uuid4()),
                    "supported_encodings": ["v1"],
                    "supports_buffering": True
                }
                if conversation.conversation_id is not None:
                    data["conversation_id"] = conversation.conversation_id
                    debug.log(f"OpenaiChat: Use conversation: {conversation.conversation_id}")
                if action != "continue":
                    messages = messages if conversation_id is None else [messages[-1]]
                    data["messages"] = cls.create_messages(messages, image_request)
                headers = {
                    **cls._headers,
                    "accept": "text/event-stream",
                    "content-type": "application/json",
                    "openai-sentinel-chat-requirements-token": chat_token,
                }
                if RequestConfig.arkose_token:
                    headers["openai-sentinel-arkose-token"] = RequestConfig.arkose_token
                if proofofwork is not None:
                    headers["openai-sentinel-proof-token"] = proofofwork
                if need_turnstile and RequestConfig.turnstile_token is not None:
                    headers['openai-sentinel-turnstile-token'] = RequestConfig.turnstile_token
                async with session.post(
                    f"{cls.url}/backend-anon/conversation"
                    if cls._api_key is None else
                    f"{cls.url}/backend-api/conversation",
                    json=data,
                    headers=headers
                ) as response:
                    cls._update_request_args(session)
                    if response.status == 403 and max_retries > 0:
                        max_retries -= 1
                        debug.log(f"Retry: Error {response.status}: {await response.text()}")
                        await asyncio.sleep(5)
                        continue
                    await raise_for_status(response)
                    if return_conversation:
                        yield conversation
                    async for line in response.iter_lines():
                        async for chunk in cls.iter_messages_line(session, line, conversation):
                            yield chunk
                if not history_disabled:
                    yield SynthesizeData(cls.__name__, {
                        "conversation_id": conversation.conversation_id,
                        "message_id": conversation.message_id,
                        "voice": "maple",
                    })
                if auto_continue and conversation.finish_reason == "max_tokens":
                    conversation.finish_reason = None
                    action = "continue"
                    await asyncio.sleep(5)
                else:
                    break
            yield FinishReason(conversation.finish_reason)

    @classmethod
    async def iter_messages_line(cls, session: StreamSession, line: bytes, fields: Conversation) -> AsyncIterator:
        if not line.startswith(b"data: "):
            return
        elif line.startswith(b"data: [DONE]"):
            if fields.finish_reason is None:
                fields.finish_reason = "error"
            return
        try:
            line = json.loads(line[6:])
        except:
            return
        if isinstance(line, dict) and "v" in line:
            v = line.get("v")
            if isinstance(v, str) and fields.is_recipient:
                yield v
            elif isinstance(v, list) and fields.is_recipient:
                for m in v:
                    if m.get("p") == "/message/content/parts/0":
                        yield m.get("v")
                    elif m.get("p") == "/message/metadata":
                        fields.finish_reason = m.get("v", {}).get("finish_details", {}).get("type")
                        break
            elif isinstance(v, dict):
                if fields.conversation_id is None:
                    fields.conversation_id = v.get("conversation_id")
                    debug.log(f"OpenaiChat: New conversation: {fields.conversation_id}")
                m = v.get("message", {})
                fields.is_recipient = m.get("recipient") == "all"
                if fields.is_recipient:
                    c = m.get("content", {})
                    if c.get("content_type") == "multimodal_text":
                        generated_images = []
                        for element in c.get("parts"):
                            if isinstance(element, dict) and element.get("content_type") == "image_asset_pointer":
                                generated_images.append(
                                    cls.get_generated_image(session, cls._headers, element)
                                )
                        for image_response in await asyncio.gather(*generated_images):
                            yield image_response
                    if m.get("author", {}).get("role") == "assistant":
                        fields.message_id = v.get("message", {}).get("id")
            return
        if "error" in line and line.get("error"):
            raise RuntimeError(line.get("error"))

    @classmethod
    async def synthesize(cls, params: dict) -> AsyncIterator[bytes]:
        await cls.login()
        async with StreamSession(
            impersonate="chrome",
            timeout=900
        ) as session:
            async with session.get(
                f"{cls.url}/backend-api/synthesize",
                params=params,
                headers=cls._headers
            ) as response:
                await raise_for_status(response)
                async for chunk in response.iter_content():
                    yield chunk

    @classmethod
    async def login(cls, proxy: str = None):
        if cls._expires is not None and cls._expires < time.time():
            cls._headers = cls._api_key = None
        try:
            await get_request_config(proxy)
            cls._create_request_args(RequestConfig.cookies, RequestConfig.headers)
            cls._set_api_key(RequestConfig.access_token)
        except NoValidHarFileError:
            if has_nodriver:
                await cls.nodriver_auth(proxy)
            else:
                raise

    @classmethod
    async def nodriver_auth(cls, proxy: str = None):
        browser = await get_nodriver(proxy=proxy)
        page = browser.main_tab
        def on_request(event: nodriver.cdp.network.RequestWillBeSent):
            if event.request.url == start_url or event.request.url.startswith(conversation_url):
                RequestConfig.access_request_id = event.request_id
                RequestConfig.headers = event.request.headers
            elif event.request.url in (backend_url, backend_anon_url):
                if "OpenAI-Sentinel-Proof-Token" in event.request.headers:
                        RequestConfig.proof_token = json.loads(base64.b64decode(
                            event.request.headers["OpenAI-Sentinel-Proof-Token"].split("gAAAAAB", 1)[-1].encode()
                        ).decode())
                if "OpenAI-Sentinel-Turnstile-Token" in event.request.headers:
                    RequestConfig.turnstile_token = event.request.headers["OpenAI-Sentinel-Turnstile-Token"]
                if "Authorization" in event.request.headers:
                    RequestConfig.access_token = event.request.headers["Authorization"].split()[-1]
            elif event.request.url == arkose_url:
                RequestConfig.arkose_request = arkReq(
                    arkURL=event.request.url,
                    arkBx=None,
                    arkHeader=event.request.headers,
                    arkBody=event.request.post_data,
                    userAgent=event.request.headers.get("user-agent")
                )
        await page.send(nodriver.cdp.network.enable())
        page.add_handler(nodriver.cdp.network.RequestWillBeSent, on_request)
        page = await browser.get(cls.url)
        try:
            if RequestConfig.access_request_id is not None:
                body = await page.send(get_response_body(RequestConfig.access_request_id))
                if isinstance(body, tuple) and body:
                    body = body[0]
                if body:
                    match = re.search(r'"accessToken":"(.*?)"', body)
                    if match:
                        RequestConfig.access_token = match.group(1)
        except KeyError:
            pass
        for c in await page.send(nodriver.cdp.network.get_cookies([cls.url])):
            RequestConfig.cookies[c.name] = c.value
        user_agent = await page.evaluate("window.navigator.userAgent")
        await page.select("#prompt-textarea", 240)
        while True:
            if RequestConfig.proof_token:
                break
            await asyncio.sleep(1)
        await page.close()
        cls._create_request_args(RequestConfig.cookies, RequestConfig.headers, user_agent=user_agent)
        cls._set_api_key(RequestConfig.access_token)

    @staticmethod
    def get_default_headers() -> dict:
        return {
            **DEFAULT_HEADERS,
            "content-type": "application/json",
        }

    @classmethod
    def _create_request_args(cls, cookies: Cookies = None, headers: dict = None, user_agent: str = None):
        cls._headers = cls.get_default_headers() if headers is None else headers
        if user_agent is not None:
            cls._headers["user-agent"] = user_agent
        cls._cookies = {} if cookies is None else cookies
        cls._update_cookie_header()

    @classmethod
    def _update_request_args(cls, session: StreamSession):
        for c in session.cookie_jar if hasattr(session, "cookie_jar") else session.cookies.jar:
            cls._cookies[c.key if hasattr(c, "key") else c.name] = c.value
        cls._update_cookie_header()

    @classmethod
    def _set_api_key(cls, api_key: str):
        cls._api_key = api_key
        cls._expires = int(time.time()) + 60 * 60 * 4
        if api_key:
            cls._headers["authorization"] = f"Bearer {api_key}"

    @classmethod
    def _update_cookie_header(cls):
        cls._headers["cookie"] = format_cookies(cls._cookies)

class Conversation(BaseConversation):
    """
    Class to encapsulate response fields.
    """
    def __init__(self, conversation_id: str = None, message_id: str = None, finish_reason: str = None):
        self.conversation_id = conversation_id
        self.message_id = message_id
        self.finish_reason = finish_reason
        self.is_recipient = False