// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <iterator>
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"
#include "core/memory_hook.h"
#include "core/memory_setup.h"
namespace Kernel {
static const char* GetMemoryStateName(MemoryState state) {
static const char* names[] = {
"Free", "Reserved", "IO", "Static", "Code", "Private",
"Shared", "Continuous", "Aliased", "Alias", "AliasCode", "Locked",
};
return names[(int)state];
}
bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
ASSERT(base + size == next.base);
if (permissions != next.permissions || meminfo_state != next.meminfo_state ||
type != next.type) {
return false;
}
if (type == VMAType::AllocatedMemoryBlock &&
(backing_block != next.backing_block || offset + size != next.offset)) {
return false;
}
if (type == VMAType::BackingMemory && backing_memory + size != next.backing_memory) {
return false;
}
if (type == VMAType::MMIO && paddr + size != next.paddr) {
return false;
}
return true;
}
VMManager::VMManager() {
Reset();
}
VMManager::~VMManager() {
Reset();
}
void VMManager::Reset() {
vma_map.clear();
// Initialize the map with a single free region covering the entire managed space.
VirtualMemoryArea initial_vma;
initial_vma.size = MAX_ADDRESS;
vma_map.emplace(initial_vma.base, initial_vma);
page_table.pointers.fill(nullptr);
page_table.special_regions.clear();
page_table.attributes.fill(Memory::PageType::Unmapped);
UpdatePageTableForVMA(initial_vma);
}
VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
if (target >= MAX_ADDRESS) {
return vma_map.end();
} else {
return std::prev(vma_map.upper_bound(target));
}
}
ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
std::shared_ptr<std::vector<u8>> block,
size_t offset, u64 size,
MemoryState state) {
ASSERT(block != nullptr);
ASSERT(offset + size <= block->size());
// This is the appropriately sized VMA that will turn into our allocation.
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
VirtualMemoryArea& final_vma = vma_handle->second;
ASSERT(final_vma.size == size);
Core::CPU().MapBackingMemory(target, size, block->data() + offset,
VMAPermission::ReadWriteExecute);
final_vma.type = VMAType::AllocatedMemoryBlock;
final_vma.permissions = VMAPermission::ReadWrite;
final_vma.meminfo_state = state;
final_vma.backing_block = block;
final_vma.offset = offset;
UpdatePageTableForVMA(final_vma);
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}
ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8* memory, u64 size,
MemoryState state) {
ASSERT(memory != nullptr);
// This is the appropriately sized VMA that will turn into our allocation.
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
VirtualMemoryArea& final_vma = vma_handle->second;
ASSERT(final_vma.size == size);
Core::CPU().MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);
final_vma.type = VMAType::BackingMemory;
final_vma.permissions = VMAPermission::ReadWrite;
final_vma.meminfo_state = state;
final_vma.backing_memory = memory;
UpdatePageTableForVMA(final_vma);
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}
ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u64 size,
MemoryState state,
Memory::MemoryHookPointer mmio_handler) {
// This is the appropriately sized VMA that will turn into our allocation.
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
VirtualMemoryArea& final_vma = vma_handle->second;
ASSERT(final_vma.size == size);
final_vma.type = VMAType::MMIO;
final_vma.permissions = VMAPermission::ReadWrite;
final_vma.meminfo_state = state;
final_vma.paddr = paddr;
final_vma.mmio_handler = mmio_handler;
UpdatePageTableForVMA(final_vma);
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
}
VMManager::VMAIter VMManager::Unmap(VMAIter vma_handle) {
VirtualMemoryArea& vma = vma_handle->second;
vma.type = VMAType::Free;
vma.permissions = VMAPermission::None;
vma.meminfo_state = MemoryState::Free;
vma.backing_block = nullptr;
vma.offset = 0;
vma.backing_memory = nullptr;
vma.paddr = 0;
UpdatePageTableForVMA(vma);
return MergeAdjacent(vma_handle);
}
ResultCode VMManager::UnmapRange(VAddr target, u64 size) {
CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
VAddr target_end = target + size;
VMAIter end = vma_map.end();
// The comparison against the end of the range must be done using addresses since VMAs can be
// merged during this process, causing invalidation of the iterators.
while (vma != end && vma->second.base < target_end) {
vma = std::next(Unmap(vma));
}
ASSERT(FindVMA(target)->second.size >= size);
return RESULT_SUCCESS;
}
VMManager::VMAHandle VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) {
VMAIter iter = StripIterConstness(vma_handle);
VirtualMemoryArea& vma = iter->second;
vma.permissions = new_perms;
UpdatePageTableForVMA(vma);
return MergeAdjacent(iter);
}
ResultCode VMManager::ReprotectRange(VAddr target, u64 size, VMAPermission new_perms) {
CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
VAddr target_end = target + size;
VMAIter end = vma_map.end();
// The comparison against the end of the range must be done using addresses since VMAs can be
// merged during this process, causing invalidation of the iterators.
while (vma != end && vma->second.base < target_end) {
vma = std::next(StripIterConstness(Reprotect(vma, new_perms)));
}
return RESULT_SUCCESS;
}
void VMManager::RefreshMemoryBlockMappings(const std::vector<u8>* block) {
// If this ever proves to have a noticeable performance impact, allow users of the function to
// specify a specific range of addresses to limit the scan to.
for (const auto& p : vma_map) {
const VirtualMemoryArea& vma = p.second;
if (block == vma.backing_block.get()) {
UpdatePageTableForVMA(vma);
}
}
}
void VMManager::LogLayout(Log::Level log_level) const {
for (const auto& p : vma_map) {
const VirtualMemoryArea& vma = p.second;
LOG_GENERIC(Log::Class::Kernel, log_level, "%08X - %08X size: %8X %c%c%c %s", vma.base,
vma.base + vma.size, vma.size,
(u8)vma.permissions & (u8)VMAPermission::Read ? 'R' : '-',
(u8)vma.permissions & (u8)VMAPermission::Write ? 'W' : '-',
(u8)vma.permissions & (u8)VMAPermission::Execute ? 'X' : '-',
GetMemoryStateName(vma.meminfo_state));
}
}
VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle& iter) {
// This uses a neat C++ trick to convert a const_iterator to a regular iterator, given
// non-const access to its container.
return vma_map.erase(iter, iter); // Erases an empty range of elements
}
ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u64 size) {
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size);
ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", base);
VMAIter vma_handle = StripIterConstness(FindVMA(base));
if (vma_handle == vma_map.end()) {
// Target address is outside the range managed by the kernel
return ERR_INVALID_ADDRESS;
}
VirtualMemoryArea& vma = vma_handle->second;
if (vma.type != VMAType::Free) {
// Region is already allocated
return ERR_INVALID_ADDRESS_STATE;
}
u64 start_in_vma = base - vma.base;
u64 end_in_vma = start_in_vma + size;
if (end_in_vma > vma.size) {
// Requested allocation doesn't fit inside VMA
return ERR_INVALID_ADDRESS_STATE;
}
if (end_in_vma != vma.size) {
// Split VMA at the end of the allocated region
SplitVMA(vma_handle, end_in_vma);
}
if (start_in_vma != 0) {
// Split VMA at the start of the allocated region
vma_handle = SplitVMA(vma_handle, start_in_vma);
}
return MakeResult<VMAIter>(vma_handle);
}
ResultVal<VMManager::VMAIter> VMManager::CarveVMARange(VAddr target, u64 size) {
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size);
ASSERT_MSG((target & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", target);
VAddr target_end = target + size;
ASSERT(target_end >= target);
ASSERT(target_end <= MAX_ADDRESS);
ASSERT(size > 0);
VMAIter begin_vma = StripIterConstness(FindVMA(target));
VMAIter i_end = vma_map.lower_bound(target_end);
for (auto i = begin_vma; i != i_end; ++i) {
if (i->second.type == VMAType::Free) {
return ERR_INVALID_ADDRESS_STATE;
}
}
if (target != begin_vma->second.base) {
begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
}
VMAIter end_vma = StripIterConstness(FindVMA(target_end));
if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
}
return MakeResult<VMAIter>(begin_vma);
}
VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
VirtualMemoryArea& old_vma = vma_handle->second;
VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA
// For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
// a bug. This restriction might be removed later.
ASSERT(offset_in_vma < old_vma.size);
ASSERT(offset_in_vma > 0);
old_vma.size = offset_in_vma;
new_vma.base += offset_in_vma;
new_vma.size -= offset_in_vma;
switch (new_vma.type) {
case VMAType::Free:
break;
case VMAType::AllocatedMemoryBlock:
new_vma.offset += offset_in_vma;
break;
case VMAType::BackingMemory:
new_vma.backing_memory += offset_in_vma;
break;
case VMAType::MMIO:
new_vma.paddr += offset_in_vma;
break;
}
ASSERT(old_vma.CanBeMergedWith(new_vma));
return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma);
}
VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) {
VMAIter next_vma = std::next(iter);
if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
iter->second.size += next_vma->second.size;
vma_map.erase(next_vma);
}
if (iter != vma_map.begin()) {
VMAIter prev_vma = std::prev(iter);
if (prev_vma->second.CanBeMergedWith(iter->second)) {
prev_vma->second.size += iter->second.size;
vma_map.erase(iter);
iter = prev_vma;
}
}
return iter;
}
void VMManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
switch (vma.type) {
case VMAType::Free:
Memory::UnmapRegion(page_table, vma.base, vma.size);
break;
case VMAType::AllocatedMemoryBlock:
Memory::MapMemoryRegion(page_table, vma.base, vma.size,
vma.backing_block->data() + vma.offset);
break;
case VMAType::BackingMemory:
Memory::MapMemoryRegion(page_table, vma.base, vma.size, vma.backing_memory);
break;
case VMAType::MMIO:
Memory::MapIoRegion(page_table, vma.base, vma.size, vma.mmio_handler);
break;
}
}
u64 VMManager::GetTotalMemoryUsage() {
LOG_WARNING(Kernel, "(STUBBED) called");
return 0xBE000000;
}
u64 VMManager::GetTotalHeapUsage() {
LOG_WARNING(Kernel, "(STUBBED) called");
return 0x0;
}
VAddr VMManager::GetAddressSpaceBaseAddr() {
LOG_WARNING(Kernel, "(STUBBED) called");
return 0x8000000;
}
u64 VMManager::GetAddressSpaceSize() {
LOG_WARNING(Kernel, "(STUBBED) called");
return MAX_ADDRESS;
}
VAddr VMManager::GetMapRegionBaseAddr() {
LOG_WARNING(Kernel, "(STUBBED) called");
return Memory::HEAP_VADDR;
}
VAddr VMManager::GetNewMapRegionBaseAddr() {
LOG_WARNING(Kernel, "(STUBBED) called");
return 0x8000000;
}
u64 VMManager::GetNewMapRegionSize() {
LOG_WARNING(Kernel, "(STUBBED) called");
return 0x8000000;
}
} // namespace Kernel