summaryrefslogtreecommitdiffstats
path: root/src/common/x64/emitter.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/common/x64/emitter.h')
-rw-r--r--src/common/x64/emitter.h1067
1 files changed, 1067 insertions, 0 deletions
diff --git a/src/common/x64/emitter.h b/src/common/x64/emitter.h
new file mode 100644
index 000000000..e9c924126
--- /dev/null
+++ b/src/common/x64/emitter.h
@@ -0,0 +1,1067 @@
+// Copyright (C) 2003 Dolphin Project.
+
+// This program is free software: you can redistribute it and/or modify
+// it under the terms of the GNU General Public License as published by
+// the Free Software Foundation, version 2.0 or later versions.
+
+// This program is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License 2.0 for more details.
+
+// A copy of the GPL 2.0 should have been included with the program.
+// If not, see http://www.gnu.org/licenses/
+
+// Official SVN repository and contact information can be found at
+// http://code.google.com/p/dolphin-emu/
+
+#pragma once
+
+#include "common/assert.h"
+#include "common/common_types.h"
+#include "common/code_block.h"
+
+#if defined(ARCHITECTURE_x86_64) && !defined(_ARCH_64)
+#define _ARCH_64
+#endif
+
+#ifdef _ARCH_64
+#define PTRBITS 64
+#else
+#define PTRBITS 32
+#endif
+
+namespace Gen
+{
+
+enum X64Reg
+{
+ EAX = 0, EBX = 3, ECX = 1, EDX = 2,
+ ESI = 6, EDI = 7, EBP = 5, ESP = 4,
+
+ RAX = 0, RBX = 3, RCX = 1, RDX = 2,
+ RSI = 6, RDI = 7, RBP = 5, RSP = 4,
+ R8 = 8, R9 = 9, R10 = 10,R11 = 11,
+ R12 = 12,R13 = 13,R14 = 14,R15 = 15,
+
+ AL = 0, BL = 3, CL = 1, DL = 2,
+ SIL = 6, DIL = 7, BPL = 5, SPL = 4,
+ AH = 0x104, BH = 0x107, CH = 0x105, DH = 0x106,
+
+ AX = 0, BX = 3, CX = 1, DX = 2,
+ SI = 6, DI = 7, BP = 5, SP = 4,
+
+ XMM0=0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
+ XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15,
+
+ YMM0=0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
+ YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15,
+
+ INVALID_REG = 0xFFFFFFFF
+};
+
+enum CCFlags
+{
+ CC_O = 0,
+ CC_NO = 1,
+ CC_B = 2, CC_C = 2, CC_NAE = 2,
+ CC_NB = 3, CC_NC = 3, CC_AE = 3,
+ CC_Z = 4, CC_E = 4,
+ CC_NZ = 5, CC_NE = 5,
+ CC_BE = 6, CC_NA = 6,
+ CC_NBE = 7, CC_A = 7,
+ CC_S = 8,
+ CC_NS = 9,
+ CC_P = 0xA, CC_PE = 0xA,
+ CC_NP = 0xB, CC_PO = 0xB,
+ CC_L = 0xC, CC_NGE = 0xC,
+ CC_NL = 0xD, CC_GE = 0xD,
+ CC_LE = 0xE, CC_NG = 0xE,
+ CC_NLE = 0xF, CC_G = 0xF
+};
+
+enum
+{
+ NUMGPRs = 16,
+ NUMXMMs = 16,
+};
+
+enum
+{
+ SCALE_NONE = 0,
+ SCALE_1 = 1,
+ SCALE_2 = 2,
+ SCALE_4 = 4,
+ SCALE_8 = 8,
+ SCALE_ATREG = 16,
+ //SCALE_NOBASE_1 is not supported and can be replaced with SCALE_ATREG
+ SCALE_NOBASE_2 = 34,
+ SCALE_NOBASE_4 = 36,
+ SCALE_NOBASE_8 = 40,
+ SCALE_RIP = 0xFF,
+ SCALE_IMM8 = 0xF0,
+ SCALE_IMM16 = 0xF1,
+ SCALE_IMM32 = 0xF2,
+ SCALE_IMM64 = 0xF3,
+};
+
+enum NormalOp {
+ nrmADD,
+ nrmADC,
+ nrmSUB,
+ nrmSBB,
+ nrmAND,
+ nrmOR ,
+ nrmXOR,
+ nrmMOV,
+ nrmTEST,
+ nrmCMP,
+ nrmXCHG,
+};
+
+enum {
+ CMP_EQ = 0,
+ CMP_LT = 1,
+ CMP_LE = 2,
+ CMP_UNORD = 3,
+ CMP_NEQ = 4,
+ CMP_NLT = 5,
+ CMP_NLE = 6,
+ CMP_ORD = 7,
+};
+
+enum FloatOp {
+ floatLD = 0,
+ floatST = 2,
+ floatSTP = 3,
+ floatLD80 = 5,
+ floatSTP80 = 7,
+
+ floatINVALID = -1,
+};
+
+enum FloatRound {
+ FROUND_NEAREST = 0,
+ FROUND_FLOOR = 1,
+ FROUND_CEIL = 2,
+ FROUND_ZERO = 3,
+ FROUND_MXCSR = 4,
+
+ FROUND_RAISE_PRECISION = 0,
+ FROUND_IGNORE_PRECISION = 8,
+};
+
+class XEmitter;
+
+// RIP addressing does not benefit from micro op fusion on Core arch
+struct OpArg
+{
+ OpArg() {} // dummy op arg, used for storage
+ OpArg(u64 _offset, int _scale, X64Reg rmReg = RAX, X64Reg scaledReg = RAX)
+ {
+ operandReg = 0;
+ scale = (u8)_scale;
+ offsetOrBaseReg = (u16)rmReg;
+ indexReg = (u16)scaledReg;
+ //if scale == 0 never mind offsetting
+ offset = _offset;
+ }
+ bool operator==(const OpArg &b) const
+ {
+ return operandReg == b.operandReg && scale == b.scale && offsetOrBaseReg == b.offsetOrBaseReg &&
+ indexReg == b.indexReg && offset == b.offset;
+ }
+ void WriteRex(XEmitter *emit, int opBits, int bits, int customOp = -1) const;
+ void WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W = 0) const;
+ void WriteRest(XEmitter *emit, int extraBytes=0, X64Reg operandReg=INVALID_REG, bool warn_64bit_offset = true) const;
+ void WriteFloatModRM(XEmitter *emit, FloatOp op);
+ void WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg operandReg, int bits);
+ // This one is public - must be written to
+ u64 offset; // use RIP-relative as much as possible - 64-bit immediates are not available.
+ u16 operandReg;
+
+ void WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const;
+ bool IsImm() const {return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64;}
+ bool IsSimpleReg() const {return scale == SCALE_NONE;}
+ bool IsSimpleReg(X64Reg reg) const
+ {
+ if (!IsSimpleReg())
+ return false;
+ return GetSimpleReg() == reg;
+ }
+
+ bool CanDoOpWith(const OpArg &other) const
+ {
+ if (IsSimpleReg()) return true;
+ if (!IsSimpleReg() && !other.IsSimpleReg() && !other.IsImm()) return false;
+ return true;
+ }
+
+ int GetImmBits() const
+ {
+ switch (scale)
+ {
+ case SCALE_IMM8: return 8;
+ case SCALE_IMM16: return 16;
+ case SCALE_IMM32: return 32;
+ case SCALE_IMM64: return 64;
+ default: return -1;
+ }
+ }
+
+ void SetImmBits(int bits) {
+ switch (bits)
+ {
+ case 8: scale = SCALE_IMM8; break;
+ case 16: scale = SCALE_IMM16; break;
+ case 32: scale = SCALE_IMM32; break;
+ case 64: scale = SCALE_IMM64; break;
+ }
+ }
+
+ X64Reg GetSimpleReg() const
+ {
+ if (scale == SCALE_NONE)
+ return (X64Reg)offsetOrBaseReg;
+ else
+ return INVALID_REG;
+ }
+
+ u32 GetImmValue() const {
+ return (u32)offset;
+ }
+
+ // For loops.
+ void IncreaseOffset(int sz) {
+ offset += sz;
+ }
+
+private:
+ u8 scale;
+ u16 offsetOrBaseReg;
+ u16 indexReg;
+};
+
+inline OpArg M(const void *ptr) {return OpArg((u64)ptr, (int)SCALE_RIP);}
+template <typename T>
+inline OpArg M(const T *ptr) {return OpArg((u64)(const void *)ptr, (int)SCALE_RIP);}
+inline OpArg R(X64Reg value) {return OpArg(0, SCALE_NONE, value);}
+inline OpArg MatR(X64Reg value) {return OpArg(0, SCALE_ATREG, value);}
+
+inline OpArg MDisp(X64Reg value, int offset)
+{
+ return OpArg((u32)offset, SCALE_ATREG, value);
+}
+
+inline OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset)
+{
+ return OpArg(offset, scale, base, scaled);
+}
+
+inline OpArg MScaled(X64Reg scaled, int scale, int offset)
+{
+ if (scale == SCALE_1)
+ return OpArg(offset, SCALE_ATREG, scaled);
+ else
+ return OpArg(offset, scale | 0x20, RAX, scaled);
+}
+
+inline OpArg MRegSum(X64Reg base, X64Reg offset)
+{
+ return MComplex(base, offset, 1, 0);
+}
+
+inline OpArg Imm8 (u8 imm) {return OpArg(imm, SCALE_IMM8);}
+inline OpArg Imm16(u16 imm) {return OpArg(imm, SCALE_IMM16);} //rarely used
+inline OpArg Imm32(u32 imm) {return OpArg(imm, SCALE_IMM32);}
+inline OpArg Imm64(u64 imm) {return OpArg(imm, SCALE_IMM64);}
+inline OpArg UImmAuto(u32 imm) {
+ return OpArg(imm, imm >= 128 ? SCALE_IMM32 : SCALE_IMM8);
+}
+inline OpArg SImmAuto(s32 imm) {
+ return OpArg(imm, (imm >= 128 || imm < -128) ? SCALE_IMM32 : SCALE_IMM8);
+}
+
+#ifdef _ARCH_64
+inline OpArg ImmPtr(const void* imm) {return Imm64((u64)imm);}
+#else
+inline OpArg ImmPtr(const void* imm) {return Imm32((u32)imm);}
+#endif
+
+inline u32 PtrOffset(const void* ptr, const void* base)
+{
+#ifdef _ARCH_64
+ s64 distance = (s64)ptr-(s64)base;
+ if (distance >= 0x80000000LL ||
+ distance < -0x80000000LL)
+ {
+ ASSERT_MSG(0, "pointer offset out of range");
+ return 0;
+ }
+
+ return (u32)distance;
+#else
+ return (u32)ptr-(u32)base;
+#endif
+}
+
+//usage: int a[]; ARRAY_OFFSET(a,10)
+#define ARRAY_OFFSET(array,index) ((u32)((u64)&(array)[index]-(u64)&(array)[0]))
+//usage: struct {int e;} s; STRUCT_OFFSET(s,e)
+#define STRUCT_OFFSET(str,elem) ((u32)((u64)&(str).elem-(u64)&(str)))
+
+struct FixupBranch
+{
+ u8 *ptr;
+ int type; //0 = 8bit 1 = 32bit
+};
+
+enum SSECompare
+{
+ EQ = 0,
+ LT,
+ LE,
+ UNORD,
+ NEQ,
+ NLT,
+ NLE,
+ ORD,
+};
+
+typedef const u8* JumpTarget;
+
+class XEmitter
+{
+ friend struct OpArg; // for Write8 etc
+private:
+ u8 *code;
+ bool flags_locked;
+
+ void CheckFlags();
+
+ void Rex(int w, int r, int x, int b);
+ void WriteSimple1Byte(int bits, u8 byte, X64Reg reg);
+ void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg);
+ void WriteMulDivType(int bits, OpArg src, int ext);
+ void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false);
+ void WriteShift(int bits, OpArg dest, OpArg &shift, int ext);
+ void WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext);
+ void WriteMXCSR(OpArg arg, int ext);
+ void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
+ void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
+ void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
+ void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
+ void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
+ void WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
+ void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
+ void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
+ void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg);
+ void WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2);
+
+ void ABI_CalculateFrameSize(u32 mask, size_t rsp_alignment, size_t needed_frame_size, size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp);
+
+protected:
+ inline void Write8(u8 value) {*code++ = value;}
+ inline void Write16(u16 value) {*(u16*)code = (value); code += 2;}
+ inline void Write32(u32 value) {*(u32*)code = (value); code += 4;}
+ inline void Write64(u64 value) {*(u64*)code = (value); code += 8;}
+
+public:
+ XEmitter() { code = nullptr; flags_locked = false; }
+ XEmitter(u8 *code_ptr) { code = code_ptr; flags_locked = false; }
+ virtual ~XEmitter() {}
+
+ void WriteModRM(int mod, int rm, int reg);
+ void WriteSIB(int scale, int index, int base);
+
+ void SetCodePtr(u8 *ptr);
+ void ReserveCodeSpace(int bytes);
+ const u8 *AlignCode4();
+ const u8 *AlignCode16();
+ const u8 *AlignCodePage();
+ const u8 *GetCodePtr() const;
+ u8 *GetWritableCodePtr();
+
+ void LockFlags() { flags_locked = true; }
+ void UnlockFlags() { flags_locked = false; }
+
+ // Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU
+ // INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other string instr.,
+ // INC and DEC are slow on Intel Core, but not on AMD. They create a
+ // false flag dependency because they only update a subset of the flags.
+ // XCHG is SLOW and should be avoided.
+
+ // Debug breakpoint
+ void INT3();
+
+ // Do nothing
+ void NOP(size_t count = 1);
+
+ // Save energy in wait-loops on P4 only. Probably not too useful.
+ void PAUSE();
+
+ // Flag control
+ void STC();
+ void CLC();
+ void CMC();
+
+ // These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and AMD!
+ void LAHF(); // 3 cycle vector path
+ void SAHF(); // direct path fast
+
+
+ // Stack control
+ void PUSH(X64Reg reg);
+ void POP(X64Reg reg);
+ void PUSH(int bits, const OpArg &reg);
+ void POP(int bits, const OpArg &reg);
+ void PUSHF();
+ void POPF();
+
+ // Flow control
+ void RET();
+ void RET_FAST();
+ void UD2();
+ FixupBranch J(bool force5bytes = false);
+
+ void JMP(const u8 * addr, bool force5Bytes = false);
+ void JMP(OpArg arg);
+ void JMPptr(const OpArg &arg);
+ void JMPself(); //infinite loop!
+#ifdef CALL
+#undef CALL
+#endif
+ void CALL(const void *fnptr);
+ void CALLptr(OpArg arg);
+
+ FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false);
+ //void J_CC(CCFlags conditionCode, JumpTarget target);
+ void J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes = false);
+
+ void SetJumpTarget(const FixupBranch &branch);
+
+ void SETcc(CCFlags flag, OpArg dest);
+ // Note: CMOV brings small if any benefit on current cpus.
+ void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag);
+
+ // Fences
+ void LFENCE();
+ void MFENCE();
+ void SFENCE();
+
+ // Bit scan
+ void BSF(int bits, X64Reg dest, OpArg src); //bottom bit to top bit
+ void BSR(int bits, X64Reg dest, OpArg src); //top bit to bottom bit
+
+ // Cache control
+ enum PrefetchLevel
+ {
+ PF_NTA, //Non-temporal (data used once and only once)
+ PF_T0, //All cache levels
+ PF_T1, //Levels 2+ (aliased to T0 on AMD)
+ PF_T2, //Levels 3+ (aliased to T0 on AMD)
+ };
+ void PREFETCH(PrefetchLevel level, OpArg arg);
+ void MOVNTI(int bits, OpArg dest, X64Reg src);
+ void MOVNTDQ(OpArg arg, X64Reg regOp);
+ void MOVNTPS(OpArg arg, X64Reg regOp);
+ void MOVNTPD(OpArg arg, X64Reg regOp);
+
+ // Multiplication / division
+ void MUL(int bits, OpArg src); //UNSIGNED
+ void IMUL(int bits, OpArg src); //SIGNED
+ void IMUL(int bits, X64Reg regOp, OpArg src);
+ void IMUL(int bits, X64Reg regOp, OpArg src, OpArg imm);
+ void DIV(int bits, OpArg src);
+ void IDIV(int bits, OpArg src);
+
+ // Shift
+ void ROL(int bits, OpArg dest, OpArg shift);
+ void ROR(int bits, OpArg dest, OpArg shift);
+ void RCL(int bits, OpArg dest, OpArg shift);
+ void RCR(int bits, OpArg dest, OpArg shift);
+ void SHL(int bits, OpArg dest, OpArg shift);
+ void SHR(int bits, OpArg dest, OpArg shift);
+ void SAR(int bits, OpArg dest, OpArg shift);
+
+ // Bit Test
+ void BT(int bits, OpArg dest, OpArg index);
+ void BTS(int bits, OpArg dest, OpArg index);
+ void BTR(int bits, OpArg dest, OpArg index);
+ void BTC(int bits, OpArg dest, OpArg index);
+
+ // Double-Precision Shift
+ void SHRD(int bits, OpArg dest, OpArg src, OpArg shift);
+ void SHLD(int bits, OpArg dest, OpArg src, OpArg shift);
+
+ // Extend EAX into EDX in various ways
+ void CWD(int bits = 16);
+ inline void CDQ() {CWD(32);}
+ inline void CQO() {CWD(64);}
+ void CBW(int bits = 8);
+ inline void CWDE() {CBW(16);}
+ inline void CDQE() {CBW(32);}
+
+ // Load effective address
+ void LEA(int bits, X64Reg dest, OpArg src);
+
+ // Integer arithmetic
+ void NEG (int bits, OpArg src);
+ void ADD (int bits, const OpArg &a1, const OpArg &a2);
+ void ADC (int bits, const OpArg &a1, const OpArg &a2);
+ void SUB (int bits, const OpArg &a1, const OpArg &a2);
+ void SBB (int bits, const OpArg &a1, const OpArg &a2);
+ void AND (int bits, const OpArg &a1, const OpArg &a2);
+ void CMP (int bits, const OpArg &a1, const OpArg &a2);
+
+ // Bit operations
+ void NOT (int bits, OpArg src);
+ void OR (int bits, const OpArg &a1, const OpArg &a2);
+ void XOR (int bits, const OpArg &a1, const OpArg &a2);
+ void MOV (int bits, const OpArg &a1, const OpArg &a2);
+ void TEST(int bits, const OpArg &a1, const OpArg &a2);
+
+ // Are these useful at all? Consider removing.
+ void XCHG(int bits, const OpArg &a1, const OpArg &a2);
+ void XCHG_AHAL();
+
+ // Byte swapping (32 and 64-bit only).
+ void BSWAP(int bits, X64Reg reg);
+
+ // Sign/zero extension
+ void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src); //automatically uses MOVSXD if necessary
+ void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src);
+
+ // Available only on Atom or >= Haswell so far. Test with GetCPUCaps().movbe.
+ void MOVBE(int dbits, const OpArg& dest, const OpArg& src);
+
+ // Available only on AMD >= Phenom or Intel >= Haswell
+ void LZCNT(int bits, X64Reg dest, OpArg src);
+ // Note: this one is actually part of BMI1
+ void TZCNT(int bits, X64Reg dest, OpArg src);
+
+ // WARNING - These two take 11-13 cycles and are VectorPath! (AMD64)
+ void STMXCSR(OpArg memloc);
+ void LDMXCSR(OpArg memloc);
+
+ // Prefixes
+ void LOCK();
+ void REP();
+ void REPNE();
+ void FSOverride();
+ void GSOverride();
+
+ // x87
+ enum x87StatusWordBits {
+ x87_InvalidOperation = 0x1,
+ x87_DenormalizedOperand = 0x2,
+ x87_DivisionByZero = 0x4,
+ x87_Overflow = 0x8,
+ x87_Underflow = 0x10,
+ x87_Precision = 0x20,
+ x87_StackFault = 0x40,
+ x87_ErrorSummary = 0x80,
+ x87_C0 = 0x100,
+ x87_C1 = 0x200,
+ x87_C2 = 0x400,
+ x87_TopOfStack = 0x2000 | 0x1000 | 0x800,
+ x87_C3 = 0x4000,
+ x87_FPUBusy = 0x8000,
+ };
+
+ void FLD(int bits, OpArg src);
+ void FST(int bits, OpArg dest);
+ void FSTP(int bits, OpArg dest);
+ void FNSTSW_AX();
+ void FWAIT();
+
+ // SSE/SSE2: Floating point arithmetic
+ void ADDSS(X64Reg regOp, OpArg arg);
+ void ADDSD(X64Reg regOp, OpArg arg);
+ void SUBSS(X64Reg regOp, OpArg arg);
+ void SUBSD(X64Reg regOp, OpArg arg);
+ void MULSS(X64Reg regOp, OpArg arg);
+ void MULSD(X64Reg regOp, OpArg arg);
+ void DIVSS(X64Reg regOp, OpArg arg);
+ void DIVSD(X64Reg regOp, OpArg arg);
+ void MINSS(X64Reg regOp, OpArg arg);
+ void MINSD(X64Reg regOp, OpArg arg);
+ void MAXSS(X64Reg regOp, OpArg arg);
+ void MAXSD(X64Reg regOp, OpArg arg);
+ void SQRTSS(X64Reg regOp, OpArg arg);
+ void SQRTSD(X64Reg regOp, OpArg arg);
+ void RSQRTSS(X64Reg regOp, OpArg arg);
+
+ // SSE/SSE2: Floating point bitwise (yes)
+ void CMPSS(X64Reg regOp, OpArg arg, u8 compare);
+ void CMPSD(X64Reg regOp, OpArg arg, u8 compare);
+
+ inline void CMPEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_EQ); }
+ inline void CMPLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LT); }
+ inline void CMPLESS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LE); }
+ inline void CMPUNORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_UNORD); }
+ inline void CMPNEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NEQ); }
+ inline void CMPNLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NLT); }
+ inline void CMPORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_ORD); }
+
+ // SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double)
+ void ADDPS(X64Reg regOp, OpArg arg);
+ void ADDPD(X64Reg regOp, OpArg arg);
+ void SUBPS(X64Reg regOp, OpArg arg);
+ void SUBPD(X64Reg regOp, OpArg arg);
+ void CMPPS(X64Reg regOp, OpArg arg, u8 compare);
+ void CMPPD(X64Reg regOp, OpArg arg, u8 compare);
+ void MULPS(X64Reg regOp, OpArg arg);
+ void MULPD(X64Reg regOp, OpArg arg);
+ void DIVPS(X64Reg regOp, OpArg arg);
+ void DIVPD(X64Reg regOp, OpArg arg);
+ void MINPS(X64Reg regOp, OpArg arg);
+ void MINPD(X64Reg regOp, OpArg arg);
+ void MAXPS(X64Reg regOp, OpArg arg);
+ void MAXPD(X64Reg regOp, OpArg arg);
+ void SQRTPS(X64Reg regOp, OpArg arg);
+ void SQRTPD(X64Reg regOp, OpArg arg);
+ void RCPPS(X64Reg regOp, OpArg arg);
+ void RSQRTPS(X64Reg regOp, OpArg arg);
+
+ // SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double)
+ void ANDPS(X64Reg regOp, OpArg arg);
+ void ANDPD(X64Reg regOp, OpArg arg);
+ void ANDNPS(X64Reg regOp, OpArg arg);
+ void ANDNPD(X64Reg regOp, OpArg arg);
+ void ORPS(X64Reg regOp, OpArg arg);
+ void ORPD(X64Reg regOp, OpArg arg);
+ void XORPS(X64Reg regOp, OpArg arg);
+ void XORPD(X64Reg regOp, OpArg arg);
+
+ // SSE/SSE2: Shuffle components. These are tricky - see Intel documentation.
+ void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle);
+ void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle);
+
+ // SSE/SSE2: Useful alternative to shuffle in some cases.
+ void MOVDDUP(X64Reg regOp, OpArg arg);
+
+ // TODO: Actually implement
+#if 0
+ // SSE3: Horizontal operations in SIMD registers. Could be useful for various VFPU things like dot products...
+ void ADDSUBPS(X64Reg dest, OpArg src);
+ void ADDSUBPD(X64Reg dest, OpArg src);
+ void HADDPD(X64Reg dest, OpArg src);
+ void HSUBPS(X64Reg dest, OpArg src);
+ void HSUBPD(X64Reg dest, OpArg src);
+
+ // SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask".
+ void DPPD(X64Reg dest, OpArg src, u8 arg);
+
+ // These are probably useful for VFPU emulation.
+ void INSERTPS(X64Reg dest, OpArg src, u8 arg);
+ void EXTRACTPS(OpArg dest, X64Reg src, u8 arg);
+#endif
+
+ // SSE3: Horizontal operations in SIMD registers. Very slow! shufps-based code beats it handily on Ivy.
+ void HADDPS(X64Reg dest, OpArg src);
+
+ // SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask".
+ void DPPS(X64Reg dest, OpArg src, u8 arg);
+
+ void UNPCKLPS(X64Reg dest, OpArg src);
+ void UNPCKHPS(X64Reg dest, OpArg src);
+ void UNPCKLPD(X64Reg dest, OpArg src);
+ void UNPCKHPD(X64Reg dest, OpArg src);
+
+ // SSE/SSE2: Compares.
+ void COMISS(X64Reg regOp, OpArg arg);
+ void COMISD(X64Reg regOp, OpArg arg);
+ void UCOMISS(X64Reg regOp, OpArg arg);
+ void UCOMISD(X64Reg regOp, OpArg arg);
+
+ // SSE/SSE2: Moves. Use the right data type for your data, in most cases.
+ void MOVAPS(X64Reg regOp, OpArg arg);
+ void MOVAPD(X64Reg regOp, OpArg arg);
+ void MOVAPS(OpArg arg, X64Reg regOp);
+ void MOVAPD(OpArg arg, X64Reg regOp);
+
+ void MOVUPS(X64Reg regOp, OpArg arg);
+ void MOVUPD(X64Reg regOp, OpArg arg);
+ void MOVUPS(OpArg arg, X64Reg regOp);
+ void MOVUPD(OpArg arg, X64Reg regOp);
+
+ void MOVDQA(X64Reg regOp, OpArg arg);
+ void MOVDQA(OpArg arg, X64Reg regOp);
+ void MOVDQU(X64Reg regOp, OpArg arg);
+ void MOVDQU(OpArg arg, X64Reg regOp);
+
+ void MOVSS(X64Reg regOp, OpArg arg);
+ void MOVSD(X64Reg regOp, OpArg arg);
+ void MOVSS(OpArg arg, X64Reg regOp);
+ void MOVSD(OpArg arg, X64Reg regOp);
+
+ void MOVLPS(X64Reg regOp, OpArg arg);
+ void MOVLPD(X64Reg regOp, OpArg arg);
+ void MOVLPS(OpArg arg, X64Reg regOp);
+ void MOVLPD(OpArg arg, X64Reg regOp);
+
+ void MOVHPS(X64Reg regOp, OpArg arg);
+ void MOVHPD(X64Reg regOp, OpArg arg);
+ void MOVHPS(OpArg arg, X64Reg regOp);
+ void MOVHPD(OpArg arg, X64Reg regOp);
+
+ void MOVHLPS(X64Reg regOp1, X64Reg regOp2);
+ void MOVLHPS(X64Reg regOp1, X64Reg regOp2);
+
+ void MOVD_xmm(X64Reg dest, const OpArg &arg);
+ void MOVQ_xmm(X64Reg dest, OpArg arg);
+ void MOVD_xmm(const OpArg &arg, X64Reg src);
+ void MOVQ_xmm(OpArg arg, X64Reg src);
+
+ // SSE/SSE2: Generates a mask from the high bits of the components of the packed register in question.
+ void MOVMSKPS(X64Reg dest, OpArg arg);
+ void MOVMSKPD(X64Reg dest, OpArg arg);
+
+ // SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a weird one.
+ void MASKMOVDQU(X64Reg dest, X64Reg src);
+ void LDDQU(X64Reg dest, OpArg src);
+
+ // SSE/SSE2: Data type conversions.
+ void CVTPS2PD(X64Reg dest, OpArg src);
+ void CVTPD2PS(X64Reg dest, OpArg src);
+ void CVTSS2SD(X64Reg dest, OpArg src);
+ void CVTSI2SS(X64Reg dest, OpArg src);
+ void CVTSD2SS(X64Reg dest, OpArg src);
+ void CVTSI2SD(X64Reg dest, OpArg src);
+ void CVTDQ2PD(X64Reg regOp, OpArg arg);
+ void CVTPD2DQ(X64Reg regOp, OpArg arg);
+ void CVTDQ2PS(X64Reg regOp, OpArg arg);
+ void CVTPS2DQ(X64Reg regOp, OpArg arg);
+
+ void CVTTPS2DQ(X64Reg regOp, OpArg arg);
+ void CVTTPD2DQ(X64Reg regOp, OpArg arg);
+
+ // Destinations are X64 regs (rax, rbx, ...) for these instructions.
+ void CVTSS2SI(X64Reg xregdest, OpArg src);
+ void CVTSD2SI(X64Reg xregdest, OpArg src);
+ void CVTTSS2SI(X64Reg xregdest, OpArg arg);
+ void CVTTSD2SI(X64Reg xregdest, OpArg arg);
+
+ // SSE2: Packed integer instructions
+ void PACKSSDW(X64Reg dest, OpArg arg);
+ void PACKSSWB(X64Reg dest, OpArg arg);
+ void PACKUSDW(X64Reg dest, OpArg arg);
+ void PACKUSWB(X64Reg dest, OpArg arg);
+
+ void PUNPCKLBW(X64Reg dest, const OpArg &arg);
+ void PUNPCKLWD(X64Reg dest, const OpArg &arg);
+ void PUNPCKLDQ(X64Reg dest, const OpArg &arg);
+ void PUNPCKLQDQ(X64Reg dest, const OpArg &arg);
+
+ void PTEST(X64Reg dest, OpArg arg);
+ void PAND(X64Reg dest, OpArg arg);
+ void PANDN(X64Reg dest, OpArg arg);
+ void PXOR(X64Reg dest, OpArg arg);
+ void POR(X64Reg dest, OpArg arg);
+
+ void PADDB(X64Reg dest, OpArg arg);
+ void PADDW(X64Reg dest, OpArg arg);
+ void PADDD(X64Reg dest, OpArg arg);
+ void PADDQ(X64Reg dest, OpArg arg);
+
+ void PADDSB(X64Reg dest, OpArg arg);
+ void PADDSW(X64Reg dest, OpArg arg);
+ void PADDUSB(X64Reg dest, OpArg arg);
+ void PADDUSW(X64Reg dest, OpArg arg);
+
+ void PSUBB(X64Reg dest, OpArg arg);
+ void PSUBW(X64Reg dest, OpArg arg);
+ void PSUBD(X64Reg dest, OpArg arg);
+ void PSUBQ(X64Reg dest, OpArg arg);
+
+ void PSUBSB(X64Reg dest, OpArg arg);
+ void PSUBSW(X64Reg dest, OpArg arg);
+ void PSUBUSB(X64Reg dest, OpArg arg);
+ void PSUBUSW(X64Reg dest, OpArg arg);
+
+ void PAVGB(X64Reg dest, OpArg arg);
+ void PAVGW(X64Reg dest, OpArg arg);
+
+ void PCMPEQB(X64Reg dest, OpArg arg);
+ void PCMPEQW(X64Reg dest, OpArg arg);
+ void PCMPEQD(X64Reg dest, OpArg arg);
+
+ void PCMPGTB(X64Reg dest, OpArg arg);
+ void PCMPGTW(X64Reg dest, OpArg arg);
+ void PCMPGTD(X64Reg dest, OpArg arg);
+
+ void PEXTRW(X64Reg dest, OpArg arg, u8 subreg);
+ void PINSRW(X64Reg dest, OpArg arg, u8 subreg);
+
+ void PMADDWD(X64Reg dest, OpArg arg);
+ void PSADBW(X64Reg dest, OpArg arg);
+
+ void PMAXSW(X64Reg dest, OpArg arg);
+ void PMAXUB(X64Reg dest, OpArg arg);
+ void PMINSW(X64Reg dest, OpArg arg);
+ void PMINUB(X64Reg dest, OpArg arg);
+ // SSE4: More MAX/MIN instructions.
+ void PMINSB(X64Reg dest, OpArg arg);
+ void PMINSD(X64Reg dest, OpArg arg);
+ void PMINUW(X64Reg dest, OpArg arg);
+ void PMINUD(X64Reg dest, OpArg arg);
+ void PMAXSB(X64Reg dest, OpArg arg);
+ void PMAXSD(X64Reg dest, OpArg arg);
+ void PMAXUW(X64Reg dest, OpArg arg);
+ void PMAXUD(X64Reg dest, OpArg arg);
+
+ void PMOVMSKB(X64Reg dest, OpArg arg);
+ void PSHUFD(X64Reg dest, OpArg arg, u8 shuffle);
+ void PSHUFB(X64Reg dest, OpArg arg);
+
+ void PSHUFLW(X64Reg dest, OpArg arg, u8 shuffle);
+ void PSHUFHW(X64Reg dest, OpArg arg, u8 shuffle);
+
+ void PSRLW(X64Reg reg, int shift);
+ void PSRLD(X64Reg reg, int shift);
+ void PSRLQ(X64Reg reg, int shift);
+ void PSRLQ(X64Reg reg, OpArg arg);
+ void PSRLDQ(X64Reg reg, int shift);
+
+ void PSLLW(X64Reg reg, int shift);
+ void PSLLD(X64Reg reg, int shift);
+ void PSLLQ(X64Reg reg, int shift);
+ void PSLLDQ(X64Reg reg, int shift);
+
+ void PSRAW(X64Reg reg, int shift);
+ void PSRAD(X64Reg reg, int shift);
+
+ // SSE4: data type conversions
+ void PMOVSXBW(X64Reg dest, OpArg arg);
+ void PMOVSXBD(X64Reg dest, OpArg arg);
+ void PMOVSXBQ(X64Reg dest, OpArg arg);
+ void PMOVSXWD(X64Reg dest, OpArg arg);
+ void PMOVSXWQ(X64Reg dest, OpArg arg);
+ void PMOVSXDQ(X64Reg dest, OpArg arg);
+ void PMOVZXBW(X64Reg dest, OpArg arg);
+ void PMOVZXBD(X64Reg dest, OpArg arg);
+ void PMOVZXBQ(X64Reg dest, OpArg arg);
+ void PMOVZXWD(X64Reg dest, OpArg arg);
+ void PMOVZXWQ(X64Reg dest, OpArg arg);
+ void PMOVZXDQ(X64Reg dest, OpArg arg);
+
+ // SSE4: variable blend instructions (xmm0 implicit argument)
+ void PBLENDVB(X64Reg dest, OpArg arg);
+ void BLENDVPS(X64Reg dest, OpArg arg);
+ void BLENDVPD(X64Reg dest, OpArg arg);
+ void BLENDPS(X64Reg dest, const OpArg& arg, u8 blend);
+ void BLENDPD(X64Reg dest, const OpArg& arg, u8 blend);
+
+ // SSE4: rounding (see FloatRound for mode or use ROUNDNEARSS, etc. helpers.)
+ void ROUNDSS(X64Reg dest, OpArg arg, u8 mode);
+ void ROUNDSD(X64Reg dest, OpArg arg, u8 mode);
+ void ROUNDPS(X64Reg dest, OpArg arg, u8 mode);
+ void ROUNDPD(X64Reg dest, OpArg arg, u8 mode);
+
+ inline void ROUNDNEARSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_NEAREST); }
+ inline void ROUNDFLOORSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_FLOOR); }
+ inline void ROUNDCEILSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_CEIL); }
+ inline void ROUNDZEROSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_ZERO); }
+
+ inline void ROUNDNEARSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_NEAREST); }
+ inline void ROUNDFLOORSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_FLOOR); }
+ inline void ROUNDCEILSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_CEIL); }
+ inline void ROUNDZEROSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_ZERO); }
+
+ inline void ROUNDNEARPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_NEAREST); }
+ inline void ROUNDFLOORPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_FLOOR); }
+ inline void ROUNDCEILPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_CEIL); }
+ inline void ROUNDZEROPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_ZERO); }
+
+ inline void ROUNDNEARPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_NEAREST); }
+ inline void ROUNDFLOORPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_FLOOR); }
+ inline void ROUNDCEILPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_CEIL); }
+ inline void ROUNDZEROPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_ZERO); }
+
+ // AVX
+ void VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VADDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VSUBPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VMULPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VDIVPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VSHUFPD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle);
+ void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+
+ void VANDPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VANDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VANDNPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VANDNPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VXORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VXORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+
+ void VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VPOR(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VPXOR(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+
+ // FMA3
+ void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
+
+ // VEX GPR instructions
+ void SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
+ void SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
+ void SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
+ void RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate);
+ void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
+ void BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
+ void BLSR(int bits, X64Reg regOp, OpArg arg);
+ void BLSMSK(int bits, X64Reg regOp, OpArg arg);
+ void BLSI(int bits, X64Reg regOp, OpArg arg);
+ void BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
+ void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
+
+ void RDTSC();
+
+ // Utility functions
+ // The difference between this and CALL is that this aligns the stack
+ // where appropriate.
+ void ABI_CallFunction(const void *func);
+ template <typename T>
+ void ABI_CallFunction(T (*func)()) {
+ ABI_CallFunction((const void *)func);
+ }
+
+ void ABI_CallFunction(const u8 *func) {
+ ABI_CallFunction((const void *)func);
+ }
+ void ABI_CallFunctionC16(const void *func, u16 param1);
+ void ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2);
+
+
+ // These only support u32 parameters, but that's enough for a lot of uses.
+ // These will destroy the 1 or 2 first "parameter regs".
+ void ABI_CallFunctionC(const void *func, u32 param1);
+ void ABI_CallFunctionCC(const void *func, u32 param1, u32 param2);
+ void ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3);
+ void ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3);
+ void ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2, u32 param3, void *param4);
+ void ABI_CallFunctionP(const void *func, void *param1);
+ void ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2);
+ void ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3);
+ void ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3);
+ void ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2);
+ void ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3);
+ void ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1);
+ void ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2);
+
+ // Pass a register as a parameter.
+ void ABI_CallFunctionR(const void *func, X64Reg reg1);
+ void ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2);
+
+ template <typename Tr, typename T1>
+ void ABI_CallFunctionC(Tr (*func)(T1), u32 param1) {
+ ABI_CallFunctionC((const void *)func, param1);
+ }
+
+ // A function that doesn't have any control over what it will do to regs,
+ // such as the dispatcher, should be surrounded by these.
+ void ABI_PushAllCalleeSavedRegsAndAdjustStack();
+ void ABI_PopAllCalleeSavedRegsAndAdjustStack();
+
+ // A function that doesn't know anything about it's surroundings, should
+ // be surrounded by these to establish a safe environment, where it can roam free.
+ // An example is a backpatch injected function.
+ void ABI_PushAllCallerSavedRegsAndAdjustStack();
+ void ABI_PopAllCallerSavedRegsAndAdjustStack();
+
+ unsigned int ABI_GetAlignedFrameSize(unsigned int frameSize);
+ void ABI_AlignStack(unsigned int frameSize);
+ void ABI_RestoreStack(unsigned int frameSize);
+
+ // Sets up a __cdecl function.
+ // Only x64 really needs the parameter count.
+ void ABI_EmitPrologue(int maxCallParams);
+ void ABI_EmitEpilogue(int maxCallParams);
+
+ #ifdef _M_IX86
+ inline int ABI_GetNumXMMRegs() { return 8; }
+ #else
+ inline int ABI_GetNumXMMRegs() { return 16; }
+ #endif
+}; // class XEmitter
+
+
+// Everything that needs to generate X86 code should inherit from this.
+// You get memory management for free, plus, you can use all the MOV etc functions without
+// having to prefix them with gen-> or something similar.
+
+class XCodeBlock : public CodeBlock<XEmitter> {
+public:
+ void PoisonMemory() override;
+};
+
+} // namespace